Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Background

The recent development of new and advanced materials has led to industry experiments, innovation, and patents. As a result, various alloys were developed and implanted for multiple applications in the space, automobile, chemical, steel, and manufacturing industries. Cobalt- and nickel-based alloys have been designed to cater to high-temperature and oxidation-resistance alloys.

Objective

Here, various literature reviews are investigated, and the machining of Haynes-25 is done using an electrical discharge machine with an optimization technique of the L orthogonal selection of Taguchi. The controllable input procedure constraints are Pulse On time (T), Duty factor (D), Current (I), Gap voltage (V), and Flushing pressure (F).

Methods

The performance characteristics output parameters considered are material removal rate, tool wear rate, and surface roughness values (R). Moreover, confirmation tests are conducted to determine the percentage error of the predicted model.

Results

The confirmation tests and results showed that the duty factor and current greatly influence the M.R.R, E.W.R, and Ra machining performance. The optimized condition is obtained at the implementation of the confirmation test and using the level of significance, ., ABCDE which can be used for the patent with the value of M.R.R..R as 0.05702, E.W.R. of 0.0091, and R of 2.34. Furthermore, regression models are developed to predict the material removal rate, tool wear rate, and surface roughness.

Conclusion

It is suggested that industries use these optimum conditions to lessen unused material and raise the productivity of Haynes-25 Electrical Discharge Machining, which can be patented.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976320500240716162425
2024-07-31
2025-09-24
Loading full text...

Full text loading...

References

  1. JafarianF. Electro discharge machining of Inconel 718 alloy and process optimization.Mater. Manuf. Process.20203519510310.1080/10426914.2020.1711919
    [Google Scholar]
  2. TripathyS. TripathyD.K. Multi-response optimization of machining process parameters for powder mixed electro-discharge machining of H-11 die steel using grey relational analysis and topsis.Mach. Sci. Technol.201721336238410.1080/10910344.2017.1283957
    [Google Scholar]
  3. MingW. XieZ. MaJ. Critical review on sustainable techniques in electrical discharge machining.J. Manuf. Process.20217237539910.1016/j.jmapro.2021.10.035
    [Google Scholar]
  4. GoudM. SharmaA.K. JawalkarC. A review on material removal mechanism in electrochemical discharge machining (E.C.D.M) and possibilities to enhance the material removal rate.Precision. Eng.20164511710.1016/j.precisioneng.2016.01.007
    [Google Scholar]
  5. TzengC.J. ChenR.Y. Optimization of electric discharge machining process using the response surface methodology and genetic algorithm approach.Int. J. Precis. Eng. Manuf.201314570971710.1007/s12541‑013‑0095‑x
    [Google Scholar]
  6. LinY.C. WangA.C. WangD.A. ChenC.C. Machining performance and optimizing machining parameters of Al2O3-tic ceramics using E.D.M based on the taguchi method.Mater. Manuf. Process.200924666767410.1080/10426910902769285
    [Google Scholar]
  7. SelvarajanL. ManoharM. AmosRobertRJ MouriP SelvakumarP. A review on less tool wear rate and improving surface quality of conductive ceramic composites by spark E.D.M.Mater. Today: Proc.2018525774578210.1016/j.matpr.2017.12.174
    [Google Scholar]
  8. SinghN.K. SinghY. SharmaA. SinglaA. NegiP. An environmental-friendly electrical discharge machining using different sustainable techniques: A review.Mater. Today: Proc.20217453756610.1080/2374068X.2020.1785210
    [Google Scholar]
  9. KumarN. MandalN. DasA.K. Micro-machining through electrochemical discharge processes: A review.Mater. Manuf. Proc.202035436340410.1080/10426914.2020.1711922
    [Google Scholar]
  10. PathanA.M. AgrawalD.H. BhattP.M. PatelH.H. JoshiU.S. Design and construction of low-temperature attachment for commercial AFM.Solid State Phenomena.2014209137142 https://www.scientific.net/SSP.209.137
    [Google Scholar]
  11. AgarwalD.H. BhattP.M. PathanA.M. PatelH. JoshiU.S. Development of portable experimental set-up for AFM to work at cryogenic temperature.AIP Conf Proc201214471531210.1063/1.4710113
    [Google Scholar]
  12. BhattP.M. AgrawalD.H. PathanA.M. ChauhanN.D. In2o3 thinfilm analysis by low temperature atomic force microscope.Procedia Eng.201238pp. 66166610.1016/j.proeng.2012.06.082
    [Google Scholar]
  13. SadeghiG. Energy storage on demand: Thermal energy storage development, materials, design, and integration challenges.Energy Storage Mater.20224619222210.1016/j.ensm.2022.01.017
    [Google Scholar]
  14. MohantyC. SatpathyM. MahapatraS. RanjanS.M. Optimization of cryo-treated E.D.M variables using TOPSIS-based TLBO algorithm.Sadhana201843204610.1007/s12046‑018‑0829‑7S
    [Google Scholar]
  15. SinghM. SinghS. Electrochemical discharge machining: A review on preceding and perspective research.Sage J20192335095440541879886510.1177/0954405418798865
    [Google Scholar]
  16. KumarS.S. VarolT. CanakciA. KumaranS.T. UthayakumarM. A review on the performance of the materials by surface modification through EDM.Int J Lightweight Mater Manuf20214112710.1016/j.ijlmm.2020.08.002
    [Google Scholar]
  17. KumarS.V. KumarM.P. Experimental investigation of the process parameters in cryogenic cooled electrode in EDM.J. Mech. Sci. Technol.20152993865387110.1007/s12206‑015‑0832‑4
    [Google Scholar]
  18. TiwariA. Effect of E.D.M parameters in obtaining MMR and EWR by matching SS using copper as an electrode.IJMET201456101109
    [Google Scholar]
  19. TahirW. JahanzaibM. RazaA. Effect of process parameters on cutting speed of wire EDM process in machining HSLA steel with cryogenic treated brass wire.Adv. Prod. Eng. Manag.201914214315210.14743/apem2019.2.317
    [Google Scholar]
  20. AbdulkareemS. KhanA.A. KonnehM. Reducing electrode wear ratio using cryogenic cooling during electrical discharge machining.Int. J. Adv. Manuf. Technol.20094511-121146115110.1007/s00170‑009‑2060‑5
    [Google Scholar]
  21. MukherjeeR. ChakrabortyS. Selection of E.D.M. Process parameters using a biogeography-based optimization algorithm.Mater. Manuf. Process.201227995496210.1080/10426914.2011.610089
    [Google Scholar]
  22. DessaiS.B.S. PrustyS. A review analysis of electrical-discharge machining of various nickel-based superalloys.Int Res J Modern Eng Technol and Sci20213314
    [Google Scholar]
  23. VermaV. SajeevanR. Multi process parameter optimization of diesinking E.D.M on Titanium Alloy (Ti6Al4V) using Taguchi Approach.Mater. Today: Proc.201524-52581258710.1016/j.matpr.2015.07.212
    [Google Scholar]
  24. TorresA. PuertasI. LuisC.J. Modelling of surface finish, electrode wear and material removal rate in electrical discharge machining of hard-to-machine alloys.Precis. Eng.201540334510.1016/j.precisioneng.2014.10.001
    [Google Scholar]
  25. PatelM. KumarS. JagadishJ. PimenovD.Y. GiasinK. Experimental analysis and optimization of E.D.M parameters on hchcr steel in context with different electrodes and dielectric fluids using hybrid Taguchi-based pca-utility and critic-utility approaches.Metals202111341910.3390/met11030419
    [Google Scholar]
  26. KandpalB.C. KumarJ. SinghH. Optimization and characterization of EDM of AA 6061/10% Al2O3 AMMC using Taguchi’s approach and utility concept.Prod. Manuf. Res.20175135137010.1080/21693277.2017.1389315
    [Google Scholar]
  27. KumarS. GhoshalS.K. AroraP.K. NagdeveL. Multi-variable optimization in die-sinking EDM process of AISI420 stainless steel.Mater. Manuf. Process.202136557258210.1080/10426914.2020.1843678
    [Google Scholar]
  28. AssarzadehS. GhoreishiM. Statistical modeling and optimization of process parameters in electro-discharge machining of cobalt-bonded tungsten carbide composite (WC/6%Co).Procedia CIRP2013646346810.1016/j.procir.2013.03.099
    [Google Scholar]
  29. RamananG. DhasJ.E.R. Multi-objective optimization of wire EDM machining parameters for AA7075-PAC composite using grey-fuzzy technique.Mater. Today Proc.2018526726673310.1016/j.matpr.2017.11.342
    [Google Scholar]
  30. SenthilkumarN. TamizharasanT. AnandakrishnanV. Experimental investigation and performance analysis of cemented carbide inserts of different geometries using Taguchi based grey relational analysis.Measurement20145852053610.1016/j.measurement.2014.09.025
    [Google Scholar]
  31. Pathan AbrarkhanM. KumarA. BadhekaV. Electro discharge machining of aluminium based metal matrix composites using SS 304 tool to reduce machining time3rd International Conference on Engineering and Advancement in Technology.9th July 2022; Hyderabad, India. 2022
    [Google Scholar]
  32. OzaA.D. KumarA. BadhekaV. Improvement of the machining performance of the TW-ECDM process using Magnetohydrodynamics (MHD) on quartz material.Materials2021149237710.3390/ma14092377 34063586
    [Google Scholar]
  33. OzaA.D. KumarA. BadhekaV. Improving quartz micro-machining performance by magnetohydrodynamic and zinc-coated assisted traveling wire-electrochemical discharge machining process.Mater. Today Proc.20202897097610.1016/j.matpr.2019.12.334
    [Google Scholar]
  34. XieB. Recent patents on the electrode structures and electrode materials in EDM process.Recent Patents. Mech. Eng.202013325626510.2174/2212797613666200320101843
    [Google Scholar]
  35. LiEn Recent patents about pulse power supply of EDM.Recent Patents. Mech. Eng.2020131243410.2174/2212797612666191127100146
    [Google Scholar]
  36. SarıkayaM. GüllüA. Multi-response optimization of MQL parameters using Taguchi-based G.R.A in turning of difficult-to-cut alloy Haynes 25.J. Clean. Prod.20141934735710.1016/j.jclepro.2014.12.020
    [Google Scholar]
  37. HoJ-R. LinC-K. TungP-C. Hybrid material processing method and system.US Patent 2023125893A1.2023
  38. MausamK. SharmaK. BharadwajG. SinghR.P. Multi-objective optimization design of die-sinking electric discharge machine (EDM) machining parameter for CNT-reinforced carbon fibre nanocomposite using grey relational analysis.J. Braz. Soc. Mech. Sci. Eng.201941834810.1007/s40430‑019‑1850‑4
    [Google Scholar]
/content/journals/meng/10.2174/0122127976320500240716162425
Loading
/content/journals/meng/10.2174/0122127976320500240716162425
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test