Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Aim

The main purpose of this research work is to examine the free vibration performance of a Smart Functionally Graded (SFG) porous composite beam having non-uniform porosity distribution (PD) with non-linear elastic moduli and mass density along the direction of thickness considering symmetric as well as asymmetric PD. This research work addresses the lack of literature regarding the analysis and the effect of variation of the slenderness Ratio (SR), Porosity Coefficient (PC), and Voltage levels on the free vibration properties of the SFG porous beam considering different boundary conditions and porosity distribution, which may lead to new patent applications in material design and vibration control.

Background

The Smart Functionally Graded (SFG) porous beam is a Functionally Graded (FG) Porous beam integrated with the PZT-4 piezoelectric material on the top layer. The free vibration properties of the considered beam have been examined and analyzed using the ANSYS software.

Objective

The objectives of this work are:-

To analyze the impact of variations of voltage levels and slenderness ratios on the free vibration properties of the SFG beam.

To showcase the effect of variation in the porosity coefficient on the dimensionless fundamental frequencies of the SFG considering 4 boundary conditions at different porosity distributions and voltage levels.

Methods

The research work studies and analyzes the performance of the SFG porous beam considering the equations of Timoshenko beam theory. To simulate the results and analyze the various effects, the ANSYS software has been utilized in this paper.

Results

Experimental data demonstrates that:

  • (1) Among all 4 boundary conditions considered in this research work, C-C has the highest fundamental frequency while C-F gives the lowest value of fundamental frequency.
  • (2) An increase in PC causes an increase in Dimensionless Fundamental Frequency (DFF) of SFG beams with PD1 whereas it decreases for beams with PD2.
  • (3) As the SR of the beam increases, the DFF of the beams with both PD1 and PD2 decreases for both voltage levels V=20 V and V=100 V.
  • (4) The natural frequency of the SFG beam increases as the voltage level is increased from 20 V to 100 V.
Conclusion

The free vibration of the SFG porous beam (made up of PZT-4 piezoelectric material) has been examined and analyzed using the ANSYS software. Various results were obtained from the simulation and these have been showcased in different Tables and Figures. The performance of the considered SFG porous beam has been investigated for 2 different Porosity Distributions (PD1 and PD2) by varying PC and SR.

Others

This research work also analyzes the impact of variation of PC, voltage levels, and SR on the free vibration properties of the SFG beam.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976324133240723092359
2024-08-12
2025-09-24
Loading full text...

Full text loading...

References

  1. KeL.L. YangJ. KitipornchaiS. BradfordM.A. Bending, buckling and vibration of size-dependent functionally graded annular microplates.Compos. Struct.201294113250325710.1016/j.compstruct.2012.04.037
    [Google Scholar]
  2. DasS. SarangiS.K. Static analysis of functionally graded composite beams.IOP Conf Ser Mater Sci Eng201614901213810.1088/1757‑899X/149/1/012138
    [Google Scholar]
  3. SmithB.H. SzyniszewskiS. HajjarJ.F. SchaferB.W. ArwadeS.R. Steel foam for structures: A review of applications, manufacturing and material properties.J. Construct. Steel Res.20127111010.1016/j.jcsr.2011.10.028
    [Google Scholar]
  4. AshbyM.F. EvansA. FleckN.A. GibsonL.J. HutchinsonJ.W. WadleyH.N.G. Metal foams: A design guide.Mater. Des.200223111910.1016/S0261‑3069(01)00049‑8
    [Google Scholar]
  5. WarrenW.E. KraynikA.M. The linear elastic properties of open-cell foams.J. Appl. Mech.198855234134610.1115/1.3173680
    [Google Scholar]
  6. BanhartJ. Manufacture, characterisation and application of cellular metals and metal foams.Prog. Mater. Sci.200146655963210.1016/S0079‑6425(00)00002‑5
    [Google Scholar]
  7. RabieiA. VendraL.J. A comparison of composite metal foam’s properties and other comparable metal foams.Mater. Lett.200963553353610.1016/j.matlet.2008.11.002
    [Google Scholar]
  8. LimT.J. SmithB. McDowellD.L. Behavior of a random hollow sphere metal foam.Acta Mater.200250112867287910.1016/S1359‑6454(02)00111‑8
    [Google Scholar]
  9. RajS.V. GhosnL.J. LerchB.A. HebsurM. CosgriffL.M. FedorJ. Mechanical properties of 17-4PH stainless steel foam panels.Mater. Sci. Eng. A20074561-230531610.1016/j.msea.2006.11.142
    [Google Scholar]
  10. ParkC. NuttS.R. Anisotropy and strain localization in steel foam.Mater. Sci. Eng. A20012991-2687410.1016/S0921‑5093(00)01418‑0
    [Google Scholar]
  11. BadicheX. ForestS. GuibertT. Mechanical properties and non-homogeneous deformation of open-cell nickel foams: Application of the mechanics of cellular solids and of porous materials.Mater. Sci. Eng. A20002891-227628810.1016/S0921‑5093(00)00898‑4
    [Google Scholar]
  12. GibsonL.J. Mechanical behavior of metallic foams.Annu. Rev. Mater. Sci.200030119122710.1146/annurev.matsci.30.1.191
    [Google Scholar]
  13. KwonY.W. CookeR.E. ParkC. Representative unit-cell models for open-cell metal foams with or without elastic filler.Mater. Sci. Eng. A20033431-2637010.1016/S0921‑5093(02)00360‑X
    [Google Scholar]
  14. SandersW.S. GibsonL.J. Mechanics of hollow sphere foams.Mater. Sci. Eng. A20033471-2708510.1016/S0921‑5093(02)00583‑X
    [Google Scholar]
  15. ZhangY. HanX. ZhangL. XuB. WangM. YangM. Integrated generation–consumption dispatch based on compensation mechanism considering demand response behavior.J. Mod. Power Syst. Clean Energy2018651025104110.1007/s40565‑018‑0382‑8
    [Google Scholar]
  16. YangJ. LiewK.M. KitipornchaiS. Imperfection sensitivity of the post-buckling behavior of higher-order shear deformable functionally graded plates.Int. J. Solids Struct.200643175247526610.1016/j.ijsolstr.2005.06.061
    [Google Scholar]
  17. ŞimşekM. YurtcuH.H. Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory.Compos. Struct.20139737838610.1016/j.compstruct.2012.10.038
    [Google Scholar]
  18. CoskunS. KimJ. ToutanjiH. Bending, free vibration, and buckling analysis of functionally graded porous micro-plates using a general third-order plate theory.J. Composites. Sci.2019311510.3390/jcs3010015
    [Google Scholar]
  19. FuG. ZhangZ. MaY. ZhengH. GuoQ. ZhuangX. On the size-dependent bending and buckling of the partially covered laminated microplate.Eng. Comput.202339168571010.1007/s00366‑022‑01658‑x
    [Google Scholar]
  20. FuG. ZhouS. QiL. The size-dependent static bending of a partially covered laminated microbeam.Int. J. Mech. Sci.201915241141910.1016/j.ijmecsci.2018.12.037
    [Google Scholar]
  21. FuG. ZhangZ. FuJ. ZhengH. On the strain gradient effects on buckling of the partially covered laminated microbeam.Appl. Math. Model.202210247249110.1016/j.apm.2021.10.002
    [Google Scholar]
  22. FuG. ZhouS. QiL. On the strain gradient elasticity theory for isotropic materials.Int. J. Eng. Sci.202015410334810.1016/j.ijengsci.2020.103348
    [Google Scholar]
  23. MagnuckiK. StasiewiczP. Elastic buckling of a porous beam.J. Theor. Appl. Mech.2004424859868
    [Google Scholar]
  24. JasionP. Magnucka-BlandziE. SzycW. MagnuckiK. Global and local buckling of sandwich circular and beam-rectangular plates with metal foam core.Thin-walled Struct.20126115416110.1016/j.tws.2012.04.013
    [Google Scholar]
  25. Magnucka-BlandziE. MagnuckiK. Effective design of a sandwich beam with a metal foam core.Thin-walled Struct.200745443243810.1016/j.tws.2007.03.005
    [Google Scholar]
  26. Van VinhP. Static bending analysis of functionally graded sandwich beams using a novel mixed beam element based on first-order shear deformation theory.Forces Mech.2021410003910.1016/j.finmec.2021.100039
    [Google Scholar]
  27. Magnucka-BlandziE. Dynamic stability of a metal foam circular plate.J. Theor. Appl. Mech.2009472421433
    [Google Scholar]
  28. Magnucka-BlandziE. Non-linear analysis of dynamic stability of metal foam circular plate.J. Theor. Appl. Mech.2010481207217
    [Google Scholar]
  29. Magnucka-BlandziE. Axi-symmetrical deflection and buckling of circular porous-cellular plate.Thin-walled Struct.200846333333710.1016/j.tws.2007.06.006
    [Google Scholar]
  30. BelicaT. MagnuckiK. Dynamic stability of a porous cylindrical shell.Proc. Appl. Math. Mech.20066120720810.1002/pamm.200610084
    [Google Scholar]
  31. BelicaT. MagnuckiK. Stability of a porous-cellular cylindrical shell subjected to combined loads.J. Theor. Appl. Mech.2013514927936
    [Google Scholar]
  32. MagnuckiK. MalinowskiM. LewinskiJ. Optimal design of an isotropic porous-cellular cylindrical shell. Design and Analysis.ASMEDC2006334535210.1115/PVP2006‑ICPVT‑11‑94029
    [Google Scholar]
  33. BiotM. Theory of buckling of a porous slab and its thermoelastic analogy.J. Appl. Mech.196431219419810.1115/1.3629586
    [Google Scholar]
  34. JabbariM. MojahedinA. HaghiM. Buckling analysis of thin circular FG plates made of saturated porous-soft ferromagnetic materials in transverse magnetic field.Thin-walled Struct.201485505610.1016/j.tws.2014.07.018
    [Google Scholar]
  35. JabbariM. HashemitaheriM. MojahedinA. EslamiM.R. Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials.J. Therm. Stresses201437220222010.1080/01495739.2013.839768
    [Google Scholar]
  36. JabbariM. JoubanehE.F. KhorshidvandA.R. EslamiM.R. Buckling analysis of porous circular plate with piezoelectric actuator layers under uniform radial compression.Int. J. Mech. Sci.201370505610.1016/j.ijmecsci.2013.01.031
    [Google Scholar]
  37. Farzaneh JoubanehE. MojahedinA. KhorshidvandA.R. JabbariM. Thermal buckling analysis of porous circular plate with piezoelectric sensor-actuator layers under uniform thermal load.J. Sandw. Struct. Mater.201517132510.1177/1099636214554172
    [Google Scholar]
  38. KumarM. SarangiS.K. Bending and vibration study of carbon nanotubes reinforced functionally graded smart composite beams.Eng. Res. Express20224202504310.1088/2631‑8695/ac76a0
    [Google Scholar]
  39. RenY. QingH. Bending and buckling analysis of functionally graded Timoshenko nanobeam using two-phase local/nonlocal piezoelectric integral model.Compos. Struct.202230011612910.1016/j.compstruct.2022.116129
    [Google Scholar]
  40. DucD.M. HungT.Q. TuT.M. Analytical and mesh-free approaches to dynamic analysis and active control of smart FGP-GPLRC beam.Structures202356March10502010.1016/j.istruc.2023.105020
    [Google Scholar]
  41. Quang HungT. DucD.M. Minh TuT. Static bending mesh-free analysis of smart piezoelectric porous beam reinforced with graphene platelets.Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci.202323771595161210.1177/09544062221133032
    [Google Scholar]
  42. ReddyJ.N. RuoccoE. LoyaJ.A. NevesA.M.A. Theories and analysis of functionally graded beams.Appl. Sci.20211115715910.3390/app11157159
    [Google Scholar]
  43. ReddyR.S. GuptaA. PandaS. Parametric instability control of porous functionally graded beam using piezoelectric actuators. J Inst Engin (India).Ser C2023104355356210.1007/s40032‑023‑00937‑w
    [Google Scholar]
  44. SinghA. NaskarS. KumariP. MukhopadhyayT. Viscoelastic free vibration analysis of in-plane functionally graded orthotropic plates integrated with piezoelectric sensors: Time-dependent 3D analytical solutions.Mech. Syst. Signal Process.202318410963610.1016/j.ymssp.2022.109636
    [Google Scholar]
  45. BodaghiM. ShakeriM. An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads.Compos. Struct.20129451721173510.1016/j.compstruct.2012.01.009
    [Google Scholar]
  46. ZhangW. YangJ. HaoY. Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory.Nonlinear Dyn.201059461966010.1007/s11071‑009‑9568‑y
    [Google Scholar]
  47. FuG. ZhangZ. DongC. On the size-dependent electro-mechanical response of the piezoelectric microbeam.Compos. Struct.202332111722510.1016/j.compstruct.2023.117225
    [Google Scholar]
  48. ChenD. YangJ. KitipornchaiS. Free and forced vibrations of shear deformable functionally graded porous beams.Int. J. Mech. Sci.2016108-109142210.1016/j.ijmecsci.2016.01.025
    [Google Scholar]
  49. ChoiJ.B. LakesR.S. Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson’s ratio.Int. J. Mech. Sci.1995371515910.1016/0020‑7403(94)00047‑N
    [Google Scholar]
  50. RohitV. SarojK.S. Analysis of elastic buckling and static bending properties of smart functionally graded porous beam.Recent Pat. Mech. Eng.2024171e19072423205110.2174/0122127976316874240702072614
    [Google Scholar]
  51. ZhangL. NabaviS. Wideband piezoelectric vibratory MEMS harvesterUS Patent 117993982023
    [Google Scholar]
/content/journals/meng/10.2174/0122127976324133240723092359
Loading
/content/journals/meng/10.2174/0122127976324133240723092359
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test