Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Background

The aerospace industry has been gradually adopting Industry 4.0 technologies, such as the Internet of Things (IoT), big data analytics, and cyber-physical systems, to enhance aircraft maintenance, repair, and overhaul (MRO) operations. These technologies have the potential to improve operational efficiency, reduce costs, and enhance safety in the MRO sector.

Objective

This study aims to analyze the current state of Industry 4.0 integration in aircraft maintenance/MRO operations by examining relevant use cases and conducting a patent landscape analysis. The primary objectives are to identify the key players, emerging trends, and technological hotspots in this field, as well as to understand the challenges and opportunities associated with the integration of Industry 4.0 in aircraft MRO.

Methods

The research methodology involves a comprehensive literature review to identify and analyze use cases of Industry 4.0 technologies in aircraft manufacturing and MRO operations. A systematic approach was adopted to collect and analyze relevant patent data from various patent databases. The search strategy involved the use of specific keywords related to Industry 4.0 technologies and aircraft MRO. The retrieved patent documents were then subjected to rigorous analysis, including bibliometric analysis, technological categorization, and patent landscape mapping.

Results

The patent landscape analysis revealed a steadily increasing trend in patent filings related to Industry 4.0 technologies in aircraft MRO. The major players in this field were identified, and their patent portfolios were analyzed. The analysis of use cases also highlighted that key technological areas, such as 3-D printing and digital twin technology, are attracting significant attention from aircraft industry stakeholders.

Conclusion

The analysis of patent landscapes in the field of aircraft maintenance, repair, and overhaul (MRO) provides valuable insights into the current state, emerging trends, and future directions within the industry. These insights are crucial for industry stakeholders, researchers, and policymakers to make informed decisions regarding technology adoption, investment strategies, and regulatory frameworks. In conclusion, the examination of patent landscapes serves as a foundational tool for enhancing transparency, standardization, and reproducibility in research, enabling stakeholders to navigate the complex landscape of Industry 4.0 in aircraft MRO effectively.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976321914240823092031
2024-09-04
2025-12-31
Loading full text...

Full text loading...

References

  1. LuY. The current status and developing trends of industry 4.0: A review.Inf. Syst. Front.202110.1007/s10796‑021‑10221‑w
    [Google Scholar]
  2. StumpfE. The Industry 4.0-Concept Within Aerospace.Handbook Industry 40: Law, Technology, Society. FrenzW. Berlin, HeidelbergSpringer202264365810.1007/978‑3‑662‑64448‑5_33
    [Google Scholar]
  3. BurnsT. CosgroveJ. DoyleF. A review of interoperability standards for industry 4.0.Procedia Manuf.20193864665310.1016/j.promfg.2020.01.083
    [Google Scholar]
  4. SuleimanZ. ShaikhollaS. DikhanbayevaD. ShehabE. TurkyilmazA. Industry 4.0: Clustering of concepts and characteristics.Cogent Engineering.2022912034264
    [Google Scholar]
  5. WollschlaegerM. SauterT. JasperneiteJ. The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0.IEEE Ind. Electron. Mag.2017111172710.1109/MIE.2017.2649104
    [Google Scholar]
  6. DuanL. Da XuL. Data analytics in industry 4.0: A survey.Inf. Syst. Front.202111710.1007/s10796‑021‑10190‑034456613
    [Google Scholar]
  7. Lazarova-MolnarS. NaderM. DuanL. Al-JaroodiJ. Data analytics framework for Industry 4.0: enabling collaboration for added benefits.IET20191411712510.1049/iet‑cim.2019.0012
    [Google Scholar]
  8. NascimentoT BussE DalmarcoG. Developing Industry 4.0 solutions for Decentralized Production: A new approach for Additive Manufacturing Units.2019
    [Google Scholar]
  9. FragapaneG. IvanovD. PeronM. SgarbossaF. StrandhagenJ.O. Increasing flexibility and productivity in Industry 4.0 production networks with autonomous mobile robots and smart intralogistics.Ann. Oper. Res.20223081-212514310.1007/s10479‑020‑03526‑7
    [Google Scholar]
  10. MarquesM. AgostinhoC. ZacharewiczG. Jardim-GonçalvesR. Decentralized decision support for intelligent manufacturing in Industry 4.0.J. Ambient Intell. Smart Environ.20179329931310.3233/AIS‑170436
    [Google Scholar]
  11. ErvuralB. ErvuralB. Overview of cyber security in the industry 4.0 Era. In: Industry 4.0: Managing The digital transformation.In: Springer Series in Advanced ManufacturingSpringerCham2018. pp. 267-28410.1007/978‑3‑319‑57870‑5_16
    [Google Scholar]
  12. KrupitzerC. MüllerS. LeschV. A survey on human machine interaction in industry 4.0. arXiv. http://arxiv.org/abs/2002.01025 2020
    [Google Scholar]
  13. CarterM. WrightJ. Interconnection in network industries.Rev. Ind. Organ.199914112510.1023/A:1007715215394
    [Google Scholar]
  14. BigliardiB. BottaniE. CasellaG. Enabling technologies, application areas and impact of industry 4.0: A bibliographic analysis.Procedia Manuf.20204232232610.1016/j.promfg.2020.02.086
    [Google Scholar]
  15. CañasH. MulaJ. Díaz-MadroñeroM. Campuzano-BolarínF. Implementing industry 4.0 principles.Comput. Ind. Eng.202115810737910.1016/j.cie.2021.107379
    [Google Scholar]
  16. CyprianN.N. NwaiwuU. ChibundoP.N. Industry 4.0: An overview.Proc Eng Sci202241697810.24874/PES04.01.010
    [Google Scholar]
  17. MiragliottaG. SianesiA. ConvertiniE. DistanteR. Data driven management in Industry 4.0: A method to measure data productivity.IFAC-PapersOnLine20185111192410.1016/j.ifacol.2018.08.228
    [Google Scholar]
  18. BousdekisA. LepeniotiK. ApostolouD. MentzasG. A review of data-driven decision-making methods for industry 4.0 maintenance applications.Electronics202110782810.3390/electronics10070828
    [Google Scholar]
  19. PapulováZ. GažováA. ŠufliarskýĽ. Implementation of automation technologies of industry 4.0 in automotive manufacturing companies.Procedia Comput. Sci.20222001488149710.1016/j.procs.2022.01.350
    [Google Scholar]
  20. SujathaM. PriyaN. BenoA. Blesslin SheebaT. ManikandanM. TresaI.M. JoseP.S.H. PeroumalV. ThimothyS.P. IoT and machine learning-based smart automation system for industry 4.0 using robotics and sensors.J. Nanomater.202220221610.1155/2022/6807585
    [Google Scholar]
  21. BeierG. UllrichA. NiehoffS. ReißigM. HabichM. Industry 4.0: How it is defined from a sociotechnical perspective and how much sustainability it includes – A literature review.J. Clean. Prod.202025912085610.1016/j.jclepro.2020.120856
    [Google Scholar]
  22. CoralloA. LazoiM. LezziM. Cybersecurity in the context of industry 4.0: A structured classification of critical assets and business impacts.Comput. Ind.202011410316510.1016/j.compind.2019.103165
    [Google Scholar]
  23. de AzambujaA.J.G. KernA. AnderlR. Analysis of cyber security features in industry 4.0 maturity models.Computer Security ESORICS 2021 International Workshops. Cham: Springer International Publishing. KatsikasS. LambrinoudakisC. CuppensN. MylopoulosJ. KalloniatisC. MengW. Lecture Notes in Computer Science20229110610.1007/978‑3‑030‑95484‑0_6
    [Google Scholar]
  24. GoreckyD. SchmittM. LoskyllM. ZühlkeD. Human-machine-interaction in the industry 4.0 era.2014 12th IEEE International Conference on Industrial Informatics (INDIN), Porto Alegre, Brazil, 2014, pp. 289-294,27-30 July 2014
    [Google Scholar]
  25. BarattaA. CiminoA. GnoniM.G. LongoF. Human robot collaboration in industry 4.0: A literature review.Procedia Comput. Sci.20232171887189510.1016/j.procs.2022.12.38936687281
    [Google Scholar]
  26. MartinelliA. MinaA. MoggiM. The enabling technologies of industry 4.0: Examining the seeds of the fourth industrial revolution.Ind. Corp. Change2020301510.1093/icc/dtaa060
    [Google Scholar]
  27. SigovA. RatkinL. IvanovL.A. XuL.D. Emerging enabling technologies for industry 4.0 and beyond.Inf. Syst. Front.202210.1007/s10796‑021‑10213‑w
    [Google Scholar]
  28. SooriM. ArezooB. DastresR. Internet of things for smart factories in industry 4.0, a review.Int Things Cyber-Physical Sys2023319220410.1016/j.iotcps.2023.04.006
    [Google Scholar]
  29. KhanI.H. JavaidM. Role of internet of things (IoT) in adoption of industry 4.0.J Industrial Integration Manag20227451553310.1142/S2424862221500068
    [Google Scholar]
  30. SharmaA. BurmanV. AggarwalS. Role of IoT in Industry 4.0.In: Advances in Energy TechnologySingaporeSpringer2022
    [Google Scholar]
  31. KumarR. RaniS. AwadhM.A. Exploring the application sphere of the internet of things in industry 4.0: A review, bibliometric and content analysis.Sensors20222211427610.3390/s2211427635684897
    [Google Scholar]
  32. BhatiaV. BhatiaB. Machine learning-based solutions for internet of things-based applications.In: Automated Secure Computing for Next-Generation Systems.John Wiley & Sons, Ltd202429531810.1002/9781394213948.ch15
    [Google Scholar]
  33. MalikP. SinghR. GehlotA. TanwarS. PadmanabanS. Holm-NielsenJ. Industrial internet of things in industrial revolution 4.0: A state-of-the art in review.Sensors2019, 19(21), 480710.3390/s19214807
    [Google Scholar]
  34. AlladiT. ChamolaV. PariziR.M. ChooK.K.R. Blockchain applications for industry 4.0 and industrial IoT: A review.IEEE Access2019717693517695110.1109/ACCESS.2019.2956748
    [Google Scholar]
  35. MarjaniM.N. FarizaG. AbdullahK. AhmadH. Big IoT data analytics: Architecture, opportunities, and open research challenges.EEE Access201755247526110.1109/access.2017.2689040
    [Google Scholar]
  36. AujlaG.S. ProdanR. RawatD.B. Big data analytics in industry 4.0 ecosystems.Softw. Pract. Exper.202252363964110.1002/spe.3008
    [Google Scholar]
  37. Kaliraj P, Devi T, editors. Big data applications in Industry 4.0 [Internet]. 1st ed.New York: Auerbach Publications;2022, p. 44610.1201/9781003175889
    [Google Scholar]
  38. PiresF. CachadaA. BarbosaJ. MoreiraA.P. LeitãoP. Digital twin in Industry 4.0: Technologies, applications, and challenges.In: Proceedings of the IEEE 17th International Conference on Industrial Informatics (INDIN); 2019 Jul 22-25; Helsinki, Finland. New York: IEEE; 2019. p. 721-72610.1109/indin41052.2019.8972134
    [Google Scholar]
  39. JavaidM. HaleemA. SumanR. Digital twin applications toward industry 4.0: A review.Cognitive Robotics20233719210.1016/j.cogr.2023.04.003
    [Google Scholar]
  40. DurãoL.F.C.S. HaagS. AnderlR. SchützerK. ZanculE. Digital twin requirements in the context of industry 4.0.In: Product Lifecycle Management to Support IndustryChamSpringer International Publishing2018204214
    [Google Scholar]
  41. Sittón-CandanedoI. AlonsoR. RodríguezS. GarciaC J. De LaPF. Edge Computing Architectures in Industry 4.0: A General Survey and Comparison.In: Handbuch KultursoziologieResearchGate2020121131
    [Google Scholar]
  42. KubiakK. DecG. StadnickaD. Possible applications of edge computing in the manufacturing industry—systematic literature review.Sensors2022227244510.3390/s2207244535408059
    [Google Scholar]
  43. OksS.J. JalowskiM. LechnerM. MirschbergerS. MerkleinM. Vogel-HeuserB. MösleinK.M. Cyber-physical systems in the context of industry 4.0: A review, categorization and outlook.Inf. Syst. Front.2022261731177210.1007/s10796‑022‑10252‑x
    [Google Scholar]
  44. JavaidM. HaleemA. SinghR.P. SumanR. Artificial intelligence applications for industry 4.0: A literature-based study.J Ind Integration Manag2022718311110.1142/S2424862221300040
    [Google Scholar]
  45. BaiD. LiG. JiangD. YunJ. TaoB. JiangG. SunY. JuZ. Surface defect detection methods for industrial products with imbalanced samples: A review of progress in the 2020s.Eng. Appl. Artif. Intell.202413010769710.1016/j.engappai.2023.107697
    [Google Scholar]
  46. BhatiaA. SehgalA.K. Additive manufacturing materials, methods and applications: A review.Mater. Today Proc.2023811060106710.1016/j.matpr.2021.04.379
    [Google Scholar]
  47. DilberogluU.M. GharehpapaghB. YamanU. DolenM. The role of additive manufacturing in the era of industry 4.0.Procedia Manuf.20171154555410.1016/j.promfg.2017.07.148
    [Google Scholar]
  48. KumarA. KumarP. MittalR.K. SinghH. Chapter 6 - Printing file formats for additive manufacturing technologies.Advances in Additive ManufacturingElsevier202387102 https://www.sciencedirect.com/science/article/pii/B9780323918343000065
    [Google Scholar]
  49. SrivastavaAK KumarA KumarP GautamP DograN Research Progress in metal additive manufacturing: Challenges and Opportunities.IJIDeM202311710.1007/s12008‑023‑01661‑6
    [Google Scholar]
  50. De PaceF. ManuriF. SannaA. Augmented reality in industry 4.0.Am J Comput Sci Inform Technol20186110.21767/2349‑3917.100017
    [Google Scholar]
  51. Blanco-NovoaO. Fernandez-CaramesT.M. Fraga-LamasP. Vilar-MontesinosM.A. A practical evaluation of commercial industrial augmented reality systems in an industry 4.0 Shipyard.IEEE Access201868201821810.1109/ACCESS.2018.2802699
    [Google Scholar]
  52. GoyalG. KumarA. GuptaA. 16 Recent developments in 3D printing: A critical analysis and deep dive into innovative real-world applications.In: Recent Developments in 3D Printing: A Critical Analysis and Deep Dive into Innovative Real-World Applications.BerlinDe Gruyter;Available from: https://www.degruyter.com/document/doi/10.1515/9783111215112-016/pdf?licenseType=restricted 2024. p. 335-352
    [Google Scholar]
  53. AtobishiT. SzalayZ.G. BayraktarS. Cloud computing and big data in the context of Industry 4.0: Opportunities and challenges.In: Proceedings of the IISES 35th International Academic Conference;2018 Jul 3–6; Seville, Spain10.20472/IAC.2018.035.004
    [Google Scholar]
  54. LiuY. XuX. Industry 4.0 and cloud manufacturing: A comparative analysis.J. Manuf. Sci. Eng.2016139303470110.1115/1.4034667
    [Google Scholar]
  55. CzimmermannT. ChiurazziM. MilazzoM. RoccellaS. BarbieriM. DarioP. OddoC.M. CiutiG. An autonomous robotic platform for manipulation and inspection of metallic surfaces in industry 4.0.IEEE Trans. Autom. Sci. Eng.20221931691170610.1109/TASE.2021.3122820
    [Google Scholar]
  56. KovácsG. BenotsmaneR. DudásL. The concept of autonomous systems in industry 4.0. Advanced logistic systems -.Theory Pract.20181217787
    [Google Scholar]
  57. BenotsmaneR. DudásL. KovácsG. Collaborating robots in Industry 4.0 conception.IOP Conf Ser: Mater Sci Eng2018448101202310.26649/musci.2018.025
    [Google Scholar]
  58. Routledge & CRC PressCyber Security Applications for Industry 40.Available from: https://www.routledge.com/Cyber-Security-Applications-for-Industry-40/Sujatha-Prakash-Jhanjhi/p/book/9781032066202cited 2023 Dec 21
  59. CulotG. FattoriF. PodreccaM. SartorM. Addressing industry 4.0 cybersecurity challenges.IEEE Eng. Manage. Rev.2019473798610.1109/EMR.2019.2927559
    [Google Scholar]
  60. BodkheU. TanwarS. ParekhK. KhanparaP. TyagiS. KumarN. AlazabM. Blockchain for industry 4.0: A comprehensive review.IEEE Access20208797647980010.1109/ACCESS.2020.2988579
    [Google Scholar]
  61. GhildiyalY. SinghR. AlkhayyatA. GehlotA. MalikP. SharmaR. AkramS.V. AlkwaiL.M. An imperative role of 6G communication with perspective of industry 4.0: Challenges and research directions.Sustain. Energy Technol. Assess.20235610304710.1016/j.seta.2023.103047
    [Google Scholar]
  62. LeiteJ.R.E. UrsiniE.L. ChmielewskiA.M.M. da SilvaA.J.D. New technological waves emerging in digital transformation: Internet of Things (IoT/IoE), 5G/6G mobile networks, and Industries 4.0/5.0. In: Isotani S, Reis R, Lima J, Lima F, editors.Proceedings of the 8th Brazilian Technology Symposium (BTSym’22)Cham: Springer; 2023. Vol. 329. p. 39-51.10.1007/978‑3‑031‑31007‑2_30
    [Google Scholar]
  63. KauffmanM. Industry 4.0: The impact of horizontal integration on manufacturing business models and intellectual property strategies
    [Google Scholar]
  64. K C Horizontal and vertical integration, as a requirement for cyber-physical systems in the context of Industry 4.0.Industry 40201724155157
    [Google Scholar]
  65. TabimV.M. AyalaN.F. FrankA.G. Implementing vertical integration in the industry 4.0 journey: Which factors influence the process of information systems adoption?Inf. Syst. Front.202111810.1007/s10796‑021‑10220‑x34776762
    [Google Scholar]
  66. Production | Airbus.Available from: https://www.airbus.com/en/products-services/commercial-aircraft/the-life-cycle-of-an-aircraft/production 2021
  67. MaF. CaoW. LuoY. QiuY. The review of manufacturing technology for aircraft structural part.Procedia CIRP20165659459810.1016/j.procir.2016.10.117
    [Google Scholar]
  68. SadraeyM.H. Aircraft design: A systems engineering approach.John Wiley & Sons201210.1002/9781118352700
    [Google Scholar]
  69. Aerospace manufacturing methods for prototyping and productionAvailable from: https://www.protolabs.com/resources/guides-and-trend-reports/aerospace-manufacturing-methods-for-prototyping-and-production/
  70. KumarA. KumarP. MittalR.K. SinghH. Preprocessing and postprocessing in additive manufacturing.Advances in Additive Manufacturing.Elsevier KumarA. MittalR.K. HaleemA. Additive Manufacturing Materials and Technologies202314116510.1007/978‑3‑031‑34563‑0
    [Google Scholar]
  71. KumarA. KumarP. SharmaN. SrivastavaA.K. 3D printing technologies: Digital manufacturing, artificial intelligence, industry 4.0.Walter de Gruyter GmbH & Co KG202410.1515/9783111215112
    [Google Scholar]
  72. SarhB. ButtrickJ. MunkC. BossiR. Aircraft manufacturing and assembly.In: Springer Handbook of AutomationHeidelberg: SpringerBerlin200989391010.1007/978‑3‑540‑78831‑7_51
    [Google Scholar]
  73. DmitrievA.Y. ZagidulinR.S. MitroshkinaT.A. Special aspects of quality assurance in the design, manufacture, testing of aerospace engineering products.IOP Conf. Series Mater. Sci. Eng.2020714101200610.1088/1757‑899X/714/1/012006
    [Google Scholar]
  74. HobbsA. Aircraft maintenance and inspection.In: International Encyclopedia of TransportationResearchGate20212532
    [Google Scholar]
  75. RodriguesD. LavoratoP. Maintenance, repair and overhaul (MRO) fundamentals and strategies: An aeronautical industry overview.Int. J. Comput. Appl.201613512212910.5120/ijca2016908563
    [Google Scholar]
  76. All that you need to know about aviation MROs.Available from: https://www.ramco.com/blog/aviation/all-that-you-need-to-know-about-aviation-mros 2021
  77. KarkunM.S. DharmalingaS. 3D printing technology in aerospace industry- A review.Int J Aviat Aeronaut Aerosp.20229210.15394/ijaaa.2022.1708
    [Google Scholar]
  78. Mittal RK, Haleem A, Kumar A, editors.Advances in Additive Manufacturing: Artificial Intelligence, Nature-Inspired, and Biomanufacturing.1st edAmsterdamElsevier;2022
    [Google Scholar]
  79. Aerospace 3D printing The best AM applications for the industry.Available from: https://www.3dcastor.com/post/the-best-applications-of-3d-printing-in-the-aerospace-industry
  80. SertogluK. 3D Printing Industry. 2021 Boeing takes to the sky with Chinook’s first 3D printed flight-critical part.Available from: https://3dprintingindustry.com/news/boeing-takes-to-the-sky-with-chinooks-first-3d-printed-flight-critical-part-194134/ 2021
  81. Blakey-MilnerB. GradlP. SneddenG. BrooksM. PitotJ. LopezE. LearyM. BertoF. du PlessisA. Metal additive manufacturing in aerospace: A review.Mater. Des.202120911000810.1016/j.matdes.2021.110008
    [Google Scholar]
  82. SLM solutions test technology for large airplane componentAvailable from: https://www.additivemanufacturing.media/news/safran-slm-solutions-test-technology-for-large-airplane-component 2023
  83. Engineering.comRolls Royce Builds the World’s Biggest Turbofan, Additive Replaces Landing Gear Forgings and New Life for Space Shuttle Engines.Available from: https://www.engineering.com/story/rolls-royce-builds-the-worlds-biggest-turbofan-additive-replaces-landing-gear-forgings-and-new-life-
  84. ChandavarkarA. The engineers at GE who brought 3D printing inside the world’s largest jet engine.AM ChronicleAvailable from: https://amchronicle.com/insights/engineers-who-brought-3d-printing-inside-the-worlds-largest-jet-engine/ 2020
    [Google Scholar]
  85. The Blade Runners: This factory is 3D printing turbine parts for the world’s largest jet engine | GE news.Available from: https://www.ge.com/news/reports/future-manufacturing-take-look-inside-factory-3d-printing-jet-engine-parts
  86. New manufacturing milestone: 30,000 additive fuel nozzles | GE additive.Available from: https://www.ge.com/additive/stories/new-manufacturing-milestone-30000-additive-fuel-nozzles
  87. 3D printing in aerospace & aviation | GE additive.Available from: https://www.ge.com/additive/additive-manufacturing/industries/aviation-aerospace
  88. WęgrzynN. The use of additive manufacturing for production of commercial airplane power plants components.Safety & Defense.2022823645
    [Google Scholar]
  89. Additive Manufacturing: Siemens uses innovative technology to prod.Available from: https://press.siemens.com/global/en/feature/additive-manufacturing-siemens-uses-innovative-technology-produce-gas-turbines
  90. KentF. Design & Development Agency in, [email protected]. Rolls Royce embraces additive manufacturing in its aircraft engines.KingsburyAvailable from: https://kingsburyuk.com/how-rolls-royce-is-embracing-additive-manufacturing-in-its-aircraft-engines/ 2019
  91. Safran.Manufacturing 4.0: Transforming our factoriesAvailable from: https://www.safran-group.com/news/manufacturing-40-transforming-our-factories-2021-11-16 2021
    [Google Scholar]
  92. RodriguesD. CarvalhoP. Rito LimaS. LimaE. LopesN.V. An IoT platform for production monitoring in the aerospace manufacturing industry.J. Clean. Prod.202236813326410.1016/j.jclepro.2022.133264
    [Google Scholar]
  93. BhatiaV. KumawatS. JaglanV. Overview of the role of the internet of things and cyber-physical systems in various applications.In: Handbook of Research of Internet of Things and Cyber-Physical Systems.Apple Academic Press202210.1201/9781003277323‑2
    [Google Scholar]
  94. YounanM. HousseinE.H. ElhosenyM. AliA.A. Challenges and recommended technologies for the industrial internet of things: A comprehensive review.Measurement202015110719810.1016/j.measurement.2019.107198
    [Google Scholar]
  95. BhatiaV. JaglanV. KumawatS. KaswanK.S. Real-life applications of soft computing in cyber-physical system: A compressive review.Soft Computing: Theories and Applications. SharmaT.K. AhnC.W. VermaO.P. PanigrahiB.K. SingaporeSpringer202250151410.1007/978‑981‑16‑1740‑9_41
    [Google Scholar]
  96. Siemens Resource Center.Leverage IoT-based solutions for aerospaceAvailable from: https://resources.sw.siemens.com/en-US/e-book-aerospace-defense-leverage-iot-solutions
    [Google Scholar]
  97. Shukla B., Fan I.-S., Jennions I. Opportunities for explainable artificial intelligence in aerospace predictive maintenance.PHM Society European Conference2020511110.36001/phme.2020.v5i1.1231
    [Google Scholar]
  98. LimitedI. Predictive maintenance with IoT: The road to real returns.Infosys BPMAvailable from: https://www.infosysbpm.com/blogs/business-transformation/predictive-maintenance-with-iot-the-road-to-real-returns.html 2020
    [Google Scholar]
  99. StantonI. MunirK. IkramA. El-BakryM. Predictive maintenance analytics and implementation for aircraft: Challenges and opportunities.Syst. Eng.202326221623710.1002/sys.21651
    [Google Scholar]
  100. KeivanpourS. KadiD.A. The effect of “internet of things” on aircraft spare parts inventory management.IFAC-PapersOnLine201952132343234710.1016/j.ifacol.2019.11.556
    [Google Scholar]
  101. MashayekhyY. BabaeiA. YuanX.M. XueA. Impact of internet of things (IoT) on inventory management: A literature survey.Logistics2022623310.3390/logistics6020033
    [Google Scholar]
  102. AndelJ. ŠimákV. ŠkultétyF. NemecD. IoT-based data acquisition unit for aircraft and road vehicle.Transp. Res. Procedia20215596997610.1016/j.trpro.2021.07.066
    [Google Scholar]
  103. JonesE.C. The internet of things (IoT) technologies and the tracking of supply chain assets.In: Supply Chain Engineering and LogisticsHandbook. CRC Press201910.1201/9781315159096‑13
    [Google Scholar]
  104. MalikS. RoufR. MazurK. KontsosA. The industry internet of things (IIoT) as a methodology for autonomous diagnostics in aerospace structural health monitoring.Aerospace2020756410.3390/aerospace7050064
    [Google Scholar]
  105. Energy5Integrating Internet of Things IoT for Energy Efficiency in Aerospace Operations.Available from: https://energy5.com/integrating-internet-of-things-iot-for-energy-efficiency-in-aerospace-operations
  106. WuggetzerI. IoT: Aerospace’s great new connector.AirbusAvailable from: https://www.airbus.com/en/newsroom/stories/2019-07-iot-aerospaces-great-new-connector 2021
    [Google Scholar]
  107. ChristieD. Internet of Things meets the connected aircraft.In: Proceedings of the 2018 Integrated Communications, Navigation, Surveillance Conference (ICNS 2018);2018 Apr 10–12; Herndon, VA. U.S.A. IEEE; 2018. p. 1–310.1109/ICNSURV.2018.8384910
    [Google Scholar]
  108. Aerospace IoT asset tracking aerospace supply chain management.Radiant.Available from: https://radiantrfid.com/industries/aerospace/
    [Google Scholar]
  109. Peter deJ. IoT-based Material & Asset Tracking for Aerospace & Composites in the new nowAvailable from: https://www.linkedin.com/pulse/iot-based-material-asset-tracking-aerospace-new-now-peter-de-jong 2021
  110. Boeing: Digital thread for aerospace manufacturing: Smart factories.Available from: https://www.boeing.com/features/innovation-quarterly/2022/10/digital-thread-advances-manufacturing.page
  111. IoT streamlines aircraft production.Available from: https://www.fujitsu.com/global/imagesgig5/CS_2020Dec_Mitsubishi-Heavy-Industries.pdf
  112. Delivering better engine performance with IoT.Available from: https://www.rolls-royce.com/country-sites/sea/discover/2019/delivering-better-engine-performance-with-iot.aspx
  113. LiL AslamS WilemanAJ PerinpanayagamS Digital twin in aerospace industry: A gentle introduction.IEEE Access2021109543956210.1109/ACCESS.2021.3136458
    [Google Scholar]
  114. WangX. BaoC. SunZ. WangX. Research on the application of digital twin in aerospace manufacturing based on 3D point cloud.In: Proceedings of the 2022 International Conference on Electronics and Devices, Computational Science (ICEDCS);2022 Sep 20– 22; Marseille, France. IEEE; 2022. p. 308-31310.1109/ICEDCS57360.2022.00076
    [Google Scholar]
  115. SrivastavaS. The role of digital twin in aerospace to enhance safety and efficiency.AppinventivAvailable from: https://appinventiv.com/blog/digital-twin-in-aerospace/ 2023
    [Google Scholar]
  116. Digital Twins in Aerospace Industry.Available from: https://www.linkedin.com/pulse/digital-twins-aerospace-industry-the-location-lab-pvt-ltd-
  117. Digital Twin.Available from: https://www.rolls-royce.com/innovation/digital/digital-twin.aspx
  118. SinghS. Digital twins in aerospace – A paradigm shift.IEEE Access2021PP991110.1109/ACCESS.2021.3136458
    [Google Scholar]
  119. BadeaV. AlinZ. BonceaR. Big data in the aerospace industry.Inf. Econ.2018221724
    [Google Scholar]
  120. NagornyK. Lima-MonteiroP. BarataJ. ColomboA.W. Big data analysis in smart manufacturing: A review.Int. J. Commun. Netw. Syst. Sci.2017103315810.4236/ijcns.2017.103003
    [Google Scholar]
  121. CrespinoA.M. Di BiccariC. LazoiM. LezziM. Fault prediction in aerospace product manufacturing: A model-based big data analytics service.In: Enterprise Interoperability.John Wiley & Sons, Ltd201819320010.1002/9781119564034.ch24
    [Google Scholar]
  122. Digitalisation.AirbusAvailable from: https://www.airbus.com/en/who-we-are/our-worldwide-presence/airbus-in-europe/germany/welcome-to-airbus-hubberlin/public-affairs-berlin-digitalisation 2021
    [Google Scholar]
  123. Data Science for ManufacturingBoeing Advanced Research Center.Available from: https://depts.washington.edu/barc/projects/data-science-manufacturing
  124. SaeedR. Rolls Royce’s Big Data transformed manufacturing.InfoliticalAvailable from: https://infolitical.com/rolls-royces-big-data-transformed-manufacturing/ 2022
    [Google Scholar]
  125. KabashkinI. MisnevsB. ZervinaO. Artificial intelligence in aviation: New professionals for new technologies.Appl. Sci202313211166010.3390/app132111660
    [Google Scholar]
  126. ArinezJ.F. ChangQ. GaoR.X. XuC. ZhangJ. Artificial intelligence in advanced manufacturing: Current status and future outlook.J. Manuf. Sci. Eng.20201421111080410.1115/1.4047855
    [Google Scholar]
  127. Artificial intelligenceAirbusAvailable from: https://www.airbus.com/en/innovation/industry-4-0/artificial-intelligence 2021
    [Google Scholar]
  128. Aerospace Manufacturing and Design.The good, the bad, and the awful of AI in aerospace.Available from: https://www.aerospacemanufacturinganddesign.com/article/the-good-the-bad-and-the-awful-of-ai-in-aerospace/ 2023
    [Google Scholar]
  129. BruntonSL KutzJN ManoharK AravkinAY MorgansenK KlemischJ Data-driven aerospace engineering: Reframing the industry with machine learning.AIAA ARC logo202059810.2514/1.J060131
    [Google Scholar]
  130. Industrial Equipment News.Pratt & Whitney, Start-up Launch AI-Based Aircraft Engine Inspection ToolAvailable from: https://www.ien.com/product-development/news/22865362/pratt-whitney-startup-launch-aibased-aircraft-engine-inspection-tool 2023
    [Google Scholar]
  131. Robotic applications in the aerospace industry.Available from: https://www.genesis-systems.com/blog/5-robotic-applications-in-the-aerospace-industry 2020
  132. Pioneering a robust robotics strategy.Available from: https://www.airbus.com/en/newsroom/stories/2023-10-pioneering-a-robust-robotics-strategy 2023
  133. Perez-GrauF.J. Martinez-de DiosJ.R. PanequeJ.L. AcevedoJ.J. Torres-GonzálezA. ViguriaA. AstorgaJ.R. OlleroA. Introducing autonomous aerial robots in industrial manufacturing.J. Manuf. Syst.20216031232410.1016/j.jmsy.2021.06.008
    [Google Scholar]
  134. Martínez-deD.J.R. Torres-GonzálezA. PanequeJ.L. Fuego-GarcíaD. RamírezJ.R.A. OlleroA. Aerial robot coworkers for autonomous localization of missing tools in manufacturing plants.In: Proceedings of the 2018 International Conference on Unmanned Aircraft Systems (ICUAS);2018 May 8-11; Dallas, TX. USA: IEEE; 2018. p. 1063-106910.1109/ICUAS.2018.8453291
    [Google Scholar]
  135. JohnP. Boeing's manufacturing facilities increasingly utilise robotics.Available from: https://www.gulf-times.com/article/665548/business/boeings-manufacturing-facilities-increasingly-utilise-robotics 2023
  136. GE Aviation Ramps Up Robotics for MRO.Available from: https://aviationweek.com/mro/emerging-technologies/ge-aviation-ramps-robotics-mro
  137. FrigoMA da SilvaECC BarbosaGF Augmented reality in aerospace manufacturing: A review.J. Ind. Intell. Inf.20161312513010.1016/j.softx.2015.06.001
    [Google Scholar]
  138. Virtual realityAvailable from: https://www.airbus.com/en/newsroom/news/2016-12-virtual-reality 2021
  139. CuretonD. Cureton D. Airbus Leverages XR to Tackle Industry Challenges. XR TodayAvailable from: https://www.xrtoday.com/mixed-reality/airbus-leverages-xr-to-tackle-industry-challenges/ 2023
  140. 3D interactive tech talk – airbus, honeywell deploy ar, vr, mixed reality.Available from: https://hwd3d.com/blog/3d-interactive-tech-talk-airbus-honeywell-ar-vr-mr/ 2018
  141. Transforming the Aviation Industry Through Cutting-Edge Technology.Available from: https://www.linkedin.com/pulse/transforming-aviation-industry-through-tzg8f 2018
  142. Employees use virtual reality to figure out best way to build 737 MAX 10.Available from: https://www.boeing.com/company/about-bca/washington/737-max10-virtual-reality-01-28-19.page
  143. Augmented and virtual reality in the aerospace industry case studies of innovation and efficiency.Available from: https://www.linkedin.com/pulse/augmented-virtual-reality-aerospace-industry-case-studies-
  144. ChenQ. ZhaoZ. LuoH. HuangG.G.Q. IoT-Enabled MRO Intralogistics Management: A Case Study in Hong Kong.In: Proceedings of the 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE);2023 Aug 26–29; Hong Kong. Piscataway (NJ): IEEE; 2023. p. 1-610.1109/CASE56687.2023.10260376
    [Google Scholar]
  145. Innovation in MROAmsterdam: Royal Netherlands Aerospace Centre (NLR);Available from: https://www.nlr.org/wp-content/uploads/2019/10/Innovation-in-MRO.pdf 2019
  146. TeamR. How new augmented reality technology is transforming MRO.Available from: https://revolutionized.com/augmented-reality-in-mro/ 2023
  147. EschenH. KötterT. RodeckR. HarnischM. SchüppstuhlT. Augmented and virtual reality for inspection and maintenance processes in the aviation industry.Procedia Manuf.20181915616310.1016/j.promfg.2018.01.022
    [Google Scholar]
  148. BisantiG.M. MainettiL. MontanaroT. PatronoL. SergiI. Digital twins for aircraft maintenance and operation: A systematic literature review and an IoT-enabled modular architecture.Internet of Things20232410099110.1016/j.iot.2023.100991
    [Google Scholar]
  149. ApostolidisA. StamoulisK.P. An AI-based digital twin case study in the MRO sector.Transp. Res. Procedia202156556210.1016/j.trpro.2021.09.007
    [Google Scholar]
  150. SchygaJ HinckeldeynJ KreutzfeldtJ Prototype for a permissioned blockchain in aircraft MRO. In: Proceedings of the Hamburg International Conference of Logistics: Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains. Vol. 27.Hamburg: Universitätsbibliothek der Technischen Universität Hamburg-Harburg;2019. p. 469-50510.15480/882.2480
    [Google Scholar]
  151. EfthymiouM. McCarthyK. MarkouC. O’ConnellJ.F. An exploratory research on blockchain in aviation: The case of maintenance, repair and overhaul (MRO) organizations.Sustainability2022145264310.3390/su14052643
    [Google Scholar]
  152. NovákA. SedláčkováA.N. BugajM. KanderaB. LusiakT. Use of unmanned aerial vehicles in aircraft maintenance.Transp. Res. Procedia20205116017010.1016/j.trpro.2020.11.018
    [Google Scholar]
  153. HassanAA SivasubramaniamB. AI advancements and future of MRO industry.2020
    [Google Scholar]
  154. PeltM. ApostolidisA. de BoerR.J. BorstM. BroodbakkerJ. JansenR. Data mining in MRO. Amsterdam: Aviation Academy Research Programme, Amsterdam University of Applied Sciences;2019
    [Google Scholar]
  155. Infosys limited3D printing – the new age alternative for MRO supplies? Bengaluru (India): Infosys Limited;Available from: https://www.infosysbpm.com/spendbytes-issue04/documents/3d-printing.pdf 2018
  156. CanadayH. Paperless MRO picks up the pace. Aviation Week Network.2023Available from: https://aviationweek.com/mro/emerging-technologies/paperless-mro-picks-pace
  157. GrantE. Van den HofM. GoldE.R. Patent landscape analysis: A methodology in need of harmonized standards of disclosure.World Pat. Inf.20143931010.1016/j.wpi.2014.09.005
    [Google Scholar]
  158. SayemA. BiswasP.K. KhanM.M.A. RomoliL. DalleM.M. Critical Barriers to Industry 4.0 adoption in manufacturing organizations and their mitigation strategies.J Manufac Mater Proc20226613610.3390/jmmp6060136
    [Google Scholar]
  159. MaisiriW DarwishH van DykL. An investigation of Industry 4.0 skills requirements.S Afr J Ind Eng.20193039010510.7166/30‑3‑2230
    [Google Scholar]
  160. RasE. WildF. StahlC. BaudetA. Bridging the skills gap of workers in Industry 4.0 by human performance augmentation tools: challenges and roadmap.In: Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments (PETRA '17);2017 Jun 21-23; Rhodes, Greece. New York: ACM; 2017. p. 428-43210.1145/3056540.307619
    [Google Scholar]
  161. ZawraL. Migration of legacy industrial automation systems in the context of industry 4.0- A comparative study.In: 2019 International Conference on Fourth Industrial Revolution (ICFIR)ManamaBahrain20191710.1109/ICFIR.2019.8894776
    [Google Scholar]
  162. PessoaM.A.O. PischingM.A. YaoL. JunqueiraF. MiyagiP.E. BenatallahB. Industry 4.0, how to integrate legacy devices: A cloud IoT approach.In: Proceedings of the 44th Annual Conference of the IEEE Industrial Electronics Society (IECON 2018);2018 Oct 21-23; Washington, DC, USA. IEEE; 2018. p. 2902-710.1109/IECON.2018.8592774
    [Google Scholar]
  163. PereiraT. BarretoL. AmaralA. Network and information security challenges within industry 4.0 paradigm.Procedia Manuf.2017131253126010.1016/j.promfg.2017.09.047
    [Google Scholar]
  164. MentsievA.U. GuzuevaE.R. MagomaevT.R. Security challenges of the industry 4.0.J. Phys. Conf. Ser.20201515303207410.1088/1742‑6596/1515/3/032074
    [Google Scholar]
  165. WatsonV TellabiA SassmannahausenJ LouX. Interoperability and security challenges of industry 4.0.Semantic Scholar201710.18420/in2017_100
    [Google Scholar]
  166. AlbouqS.S. SenA.A.A. AlmashfN. YaminM. AlshanqitiA. BahbouhN.M. A survey of interoperability challenges and solutions for dealing with them in IoT environment.IEEE Access202210364163642810.1109/ACCESS.2022.3162219
    [Google Scholar]
  167. Home secondary navigation.Available from: https://www.faa.gov/sites/faa.gov/files/2022_FAA_EASA_AM_Workshop_Full_Proceedings.pdf
  168. PlataineA.B.B. Adopting Industry 4.0 in Aerospace and Automotive composites manufacturing: 5 challenges & practical tipsAvailable from: https://www.plataine.com/blog/adopting-industry-4-0-in-aerospace-and-automotive-composites-manufacturing-5-challenges-practical-tips/ 2021
  169. WangL ChouJ ZhouX TienA BaumgartnerDM AviationGPT: A large language model for the aviation domain.ArXiv, abs/2311.17686.202310.48550/arXiv.2311.17686
    [Google Scholar]
  170. Arguello M, Ephraim CP, Dunsdon JM, Davis SJ, Schanche KM. Network digital twin of airline operations.US Patent 2023118644A1.2023
    [Google Scholar]
/content/journals/meng/10.2174/0122127976321914240823092031
Loading
/content/journals/meng/10.2174/0122127976321914240823092031
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test