Current Molecular Medicine - Online First
Description text for Online First listing goes here...
41 - 60 of 72 results
-
-
The Molecular Mechanism of a Complex1-Induced Apoptosis in Cancer Cells of the Esophagus
Authors: Zhi-Qiang Liu, Jun-rui Luo, Xin Yao, Zhen-hui Wang, Shuang-ying Hao, Ming-Xue Li and Hong ZhangAvailable online: 18 February 2025More LessBackgroundEsophageal Cancer (EC) is a commonly occurring cancer of the digestive tract. The bismuth compounds from thiosemicarbazones have been observed to be active against cancer cells. However, a synthetic nine-coordinate bismuth (III) complex (complex 1) has never been assessed so far for its anticancer in the esophageal squamous cell carcinoma cell line (EC109).
ObjectiveThis study aimed to investigate the apoptosis effect of a complex1 in the EC109 cells.
MethodsEC109 cells were treated with complex1. The MTT assay was employed to assess the viability of EC109 cells; the changes in apoptotic and morphological characteristics, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP) were examined. The expression levels of proteins associated with apoptosis were assessed using western blotting.
ResultsComplex1 was found to inhibit the growth of EC109 cells, exhibiting an IC50 of 0.654 μM through apoptosis depends upon complexation with bismuth(III). In addition, cells exposed to complex1 exhibited a significant increase in the level of intracellular ROS through the suppression of the antioxidant system and caused a reduction in mitochondrial membrane potential(MMP). Co-treatment with N-acetyl-L-cysteine(NAC), an antioxidant agent prevented accumulation of ROS and cell death. Complex1 also led to enhanced Bax expression, and reduced Bcl-2 expression in EC109 cells, thereby enhancing caspase-3/9 activity.
ConclusionOur study confirmed that complex1 induced apoptosis via enhancing the generation of ROS along with a decline in levels of antioxidant enzymes, subsequently causing MMP loss.
-
-
-
Exploring the Gut Microbiota as a Promising Target for Breast Cancer Treatment
Available online: 14 February 2025More LessBreast cancer is a heterogeneous disease and highly prevalent malignancy affecting women globally. Breast cancer treatments have been demonstrated to elicit significant and long-lasting effects on various aspects of a patient's life, including physical, emotional, social, and financial, highlighting the need for comprehensive cancer care. Recent research suggests that the composition and activity of the gut microbiota may play a crucial role in anticancer responses. Various compositional features of the gut microbial population have been found to influence both the clinical and biological aspects of breast cancer. Notably, the dominance of specific microbial populations in the human intestine may significantly impact the effectiveness of cancer treatment strategies. Therefore, the manipulation of the microbiota to improve the anticancer effects of conventional tumor treatments represents a promising strategy for enhancing the efficacy of cancer therapy. Emerging evidence indicates that alterations in the gut microbiota composition and activity have the potential to impact breast cancer risk and treatment outcomes. In this paper, we conduct a comprehensive investigation of various databases and published articles to explore the impact of gut microbial composition on both the molecular and clinical aspects of breast cancer. We also discuss the implications of our findings for future research directions and clinical strategies.
-
-
-
Role of Immune Cells in Mediating the Causal Effect of Gut Microbiota on Type 2 Diabetes
Authors: Liu Ruifang, Chai Ruiting, Yang Zhaoyang and Li CandongAvailable online: 30 January 2025More LessBackgroundPrevious studies have suggested that gut microbiota and immune system regulation have potential links with type 2 diabetes (T2D). However, the causal association between gut microbiota and T2D and whether immune cells mediate this interaction is unclear.
MethodsA two-sample, two-step Mendelian randomization (MR) study utilizing an initial inverse-variance weighted (IVW) method was performed to explore the causal impact of gut microbiota on T2D and the intermediary role of immune cells.
ResultsThe MR analysis assigned 4 gut microbiota and metabolic pathways that increase the risk of T2D (G_Prevotella, g_Anaerotruncus, g_Streptococcus.s_Streptococcus_parasanguinis, and the pathway of PANTO-PWY) and other 4 gut microbiota and metabolic pathways that have a protective effect against T2D (PWY-5667, PWY-6892, PWY-7221, and the bacterial g_Paraprevotella.s_Paraprevotella_clara). Furthermore, 17 immune cell traits were identified as associated with T2D. The finding from mediation MR analysis revealed that PANTO-PWY increases T2D risk via CD3 on HLA DR+ CD4+, whereas PWY-7221 reduces T2D risk through CD4 on CD4 Treg.
ConclusionThe research reveals a mediated causal link between the gut microbiota and T2D via immune cells.
-
-
-
The Hormetic Potential of GDF15 in Skeletal Muscle Health and Regeneration: A Comprehensive Systematic Review
Available online: 20 January 2025More LessBackgroundGrowth Differentiation Factor 15 (GDF15) has been described as influencing skeletal physiology. Nevertheless, no systematic appraisal of the effect of GDF15 on skeletal muscle tissues has been developed to the present day.
ObjectiveThe aim of the present work was to review the evidence on the topic.
MethodsIn this preregistered systematic review (https://osf.io/wa8xr), articles were retrieved from MEDLINE/PubMed, EMBASE, and WebOfScience. Inclusion criteria comprised studies on humans or animal models, assessment of peripheral or local tissue GDF15 concentrations, as well as the direct expression of GDF15 in skeletal muscle, and direct or indirect correlates of GDF15 with physical activity/ sarcopenia/trophism/ function.
ResultsA total of 646 studies were retrieved, and 144 finally included. Molecular inducers or inhibitors of GDF15 in skeletal muscle tissues were described. GDF15 was reported to promote skeletal muscle health, metabolic homeostasis, and overall physical conditioning. In pathology, GDF15 seems to be correlated to the degree of muscle impairment and mitochondrial stress. GDF15 has also been described as having the potential to stratify patients based on clinical prognosis and functional outcome.
ConclusionA hormetic hypothesis for GDF15 on skeletal muscle was proposed. In fact, GDF15 exhibited beneficial effects when expressed at high levels facing acute stressors (i.e., “myoprotection”). Conversely, GDF15 exhibited maladaptive effects, such as chronic low-grade inflammation, when chronically expressed in pathological processes (e.g., obesity, aging). GDF15 may be a potential molecular target for disease-modifying interventions. The current review underscores the need for further research on GDF15 to elucidate its therapeutic potential across different pathological states.
The study protocol, registered before data collection and analysis, can be retrieved at https://osf.io/wa8xr. It should be noted that the study deviated from the protocol after peer review, including other electronic databases beyond MEDLINE/PubMed alone.
-
-
-
Elucidating the Causal Dynamics between Inflammatory Proteins and Atrial Fibrillation Risk Through Bidirectional Mendelian Randomization
Authors: Yuan Lv, Bin Huang, Liyin Xu and Xianjun WuAvailable online: 20 January 2025More LessBackgroundAtrial fibrillation (AF), the most common cardiac arrhythmia, is associated with significant morbidity and mortality. Inflammation has been implicated in the pathogenesis of AF, but the causal relationship between specific inflammatory proteins and AF risk is not well established. This study aims to clarify this relationship using a bidirectional two-sample Mendelian Randomization (TSMR) approach.
MethodsEmploying a bidirectional Mendelian Randomization (MR) method, we analyzed genetic variants as instrumental variables (IVs) to investigate the influence of 91 circulating inflammatory proteins on AF risk. This approach allowed us to assess the potential causal effects of inflammatory proteins on AF and vice versa, thus providing a comprehensive understanding of the bidirectional nature of their relationship.
ResultsSeven inflammatory proteins were significantly associated with AF risk. Three proteins increased the risk: Fibroblast Growth Factor 5 (FGF-5) with an odds ratio (OR) of 1.0743 (95% CI: 1.0466-1.1027, p=7.41E-08), Tumor Necrosis Factor (TNF) with an OR of 1.0832 (95% CI: 1.0261-1.1434, p=0.0038), and Interleukin-2 Receptor Subunit Beta (IL-2RB) with an OR of 1.0814 (95% CI: 1.0151-1.1519, p=0.0153). Four proteins showed a protective effect: CD40 Ligand Receptor (CD40) with an OR of 0.9671 (95% CI: 0.9392-0.9959, p=0.0254), Fms-related Tyrosine Kinase 3 Ligand (FIt3L) with an OR of 0.9553 (95% CI: 0.9173-0.9949, p=0.0274), Leukemia Inhibitory Factor Receptor (LIF-R) with an OR of 0.9254 (95% CI: 0.8678-0.9868, p=0.0181), and Sulfotransferase 1A1 (ST1A1) with an OR of 0.9461 (95% CI: 0.9097-0.9839, p=0.0056). The reverse MR analysis revealed no significant effects of AF on the levels of these inflammatory proteins, suggesting a unidirectional causality from proteins to AF.
ConclusionThis bidirectional MR study provides robust evidence for a causal relationship between specific inflammatory proteins and AF risk. The identified proteins could serve as potential biomarkers for AF risk stratification and targets for therapeutic intervention, offering new insights into the pathophysiology of AF and avenues for future research.
-
-
-
MicroRNA-130b Is a Unique Autophagy-Related Epigenetic Predictor of FLOT-Chemotherapy in Gastric Cancers
Available online: 16 January 2025More LessIntroductionLiquid biopsies have great potential for precision medicine as they provide information about primary and metastatic tumors using minimally invasive techniques. MicroRNAs (miRNAs) are promising biomarkers for detecting gastric cancer (GC). The aim of the study was to identify miR molecules associated with autophagy in gastric cancer (GC) cells, determine their expression levels in GC and FLOT-treated patients, and assess the efficacy of FLOT therapy in GC patients.
MethodsKyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathways were used to analyze cellular pathways. MicroRNAs were isolated from the tissues.
ResultsThe study found a connection between the expression of the let-7a-5p gene and the size of primary tumors. Bioinformatics analysis identified multiple targets and signaling pathways associated with this phenomenon. We observed an increase in the levels of miR-21-3p and hsa-miR-130b-3p with lymph node involvement. miR-21-3p is associated with the activation of molecular pathways induced by H. pylori in cases of coinfection. Patients with complete regression had higher levels of expression of hsa-mir-130b-3p.
ConclusionThe bioinformatics analysis allowed us to identify the most significant targets among microRNAs. Based on the presented data, it becomes clear that GC is heterogeneous and that the process of autophagy is complex. The association between hsa-miR-130b-3p and tumor response to therapy is particularly interesting.
-
-
-
Ag85B-Induced M1 Macrophage Polarization via the TLR4/TRAF6/NF-κB Axis Leading to Bronchial Epithelial Cell Damage and TH17/Treg Imbalance
Authors: Lei Zhou, Li Luo, Linzi Luo, Hailong Luo, Yan Ding, Zhibin Lu and Yangbao XiaoAvailable online: 15 January 2025More LessBackgroundAntigen 85B (Ag85B) is a signature antigen of Mycobacterium tuberculosis (MTB). In this study, we aimed to investigate the impact of macrophages stimulated with Ag85B on bronchial epithelial cells and T cells, as well as the underlying mechanisms involved.
MethodsWe used Ag85B to stimulate macrophage and investigated the impact of Ag85B on macrophage polarization. We assessed the impact of TLR4 on Ag85B-mediated macrophage polarization by silencing TLR4. Additionally, the regulatory role of TLR4 on the TRAF6/NF-κB pathway was evaluated through immunoblotting. Activated macrophages with Ag85B were co-cultured with bronchial epithelial cells and T cells, respectively. Through immunoblotting quantification, biochemical methods, and flow cytometry, we explored the effects and molecular mechanisms of Ag85B-induced macrophage activation on bronchial epithelial cell damage and T-cell transformation.
ResultsIn macrophages stimulated with Ag85B, levels of M1 polarization-related genes (CXCL9, CXCL10, and iNOS) and cytokines (IL-6, TNF-α, IL-1β, and IL-12) were increased, and the M1/M2 ratio was elevated. TLR4 silence inhibited the effects of Ag85B on macrophages and decreased TRAF6 and p-NF-κB/NF-κB levels. TRAF6 overexpression reversed the inhibitory effect of TLR4 on macrophage stimulation with Ag85B. After co-culturing with macrophages induced by Ag85B, MBEC cell proliferation was inhibited, apoptosis was promoted, and the TH17/Treg ratio of T cells was increased. Silencing TLR4 reversed the impact of Ag85B-induced macrophage polarization on bronchial epithelial cells and T cells, which was further reversed by TRAF6 overexpression.
ConclusionAg85B promoted M1 polarization in macrophages through the TLR4/TRAF6/NF-κB axis, resulting in bronchial epithelial cell damage and an imbalance in TH17/Treg cells.
-
-
-
A Comprehensive Analysis of the Role of PAX9 in Head and Neck Squamous Cell Carcinoma
Authors: Lang Zeng, Wenjing Yun and Wen-long LuoAvailable online: 15 January 2025More LessBackgroundPaired box 9 (PAX9) has been linked to several human disorders; however, its relevance in Head And Neck Squamous Cell Carcinoma (HNSCC) remains unknown.
MethodsThe difference in PAX9 mRNA expression in pan-cancer was analyzed utilizing The Cancer Genome Atlas (TCGA), and the level of PAX9 protein expression across various types of cancer was assessed utilizing the Human Protein Atlas (HPA) and UALCAN databases, as well as the cellular localization of PAX9. UALCAN studied the methylation levels of PAX9 in pan-cancer. The predictive significance of PAX9 in pan-cancer was assessed utilizing the Kaplan-Meier Plotter website. Functional enrichment analysis was carried out with the “cluster Profiler” program. By employing CCK8 and colony formation methods, the influence of PAX9 on the growth of HNSCC cells was evaluated. By conducting a transwell experiment, we assessed the influence of PAX9 on the migration of HNSCC cells. Western blotting was used to determine the levels of Bax and Bcl-2, two proteins involved in the regulation of apoptosis. A nude mouse model was established to study the impact of PAX9 overexpression on the growth of subcutaneous HNSCC tumors.
ResultsIn HNSCC, the expression of PAX9 was found to be low, while levels of promoter methylation rose considerably. Low PAX9 expression has been linked to a decrease in overall survival (OS) rates among individuals with HNSCC. Furthermore, overexpressing the PAX9 gene decreased HNSCC cell proliferation, migration, and invasion while boosting apoptosis rates.
ConclusionThe abnormal expression of PAX9 is linked to various cancers. In HNSCC, PAX9 is a potential tumor suppressor, inhibiting tumor invasion and migration. The results reveal a potentially significant new therapeutic target for HNSCC.
-
-
-
Reversal of Mucin 1 Reduction-Induced Enterocyte Apoptosis by Retinoic Acid through the PI3K/AKT Signaling Pathway in an In vitro Model of Necrotizing Enterocolitis
Authors: Qian Su, Li Chen, Yanzhen Xu, Jinxing Feng, Jialin Yu, Zhaoxia Zhang, Zhangbin Yu and Dong LiuAvailable online: 15 January 2025More LessObjectiveThis study aimed to investigate the roles of Mucin 1 (MUC1), the PI3K/AKT pathway, and enterocyte apoptosis in Necrotizing Enterocolitis (NEC).
MethodsUsing an NEC Caco-2 cell model, retinoic acid treatment and MUC1 gene silencing were employed. Flow cytometry was used to assess apoptosis, while quantitative PCR and western blot analyses were conducted to evaluate the gene and protein expressions of MUC1, PI3K, Akt, and factors related to apoptotic modulation.
ResultsIn comparison to the control group, NEC induction resulted in a significant reduction in MUC1 expression, accompanied by an elevation in enterocyte apoptosis. In NEC and Si-MUC1 Caco-2 cells, downregulation of PI3K/AKT signals and Bcl-2 was observed, while upregulation of Bax, CytoC, and Caspase 3 at both mRNA and protein levels was prominent. Retinoic acid supplementation exhibited a noteworthy increase in MUC1, AKT, and Bcl-2 mRNA and protein expressions, coupled with a decrease in Bax, CytoC, and Caspase 3, thereby mitigating apoptosis in NEC.
ConclusionOur findings suggested that reduced MUC1 expression in NEC contributes to the upregulation of enterocyte mitochondrial apoptosis through the PI3K/AKT signaling pathway. Retinoic acid supplementation emerges as a potential therapeutic strategy for NEC, demonstrating its ability to upregulate MUC1 expression and attenuate apoptosis via the PI3K/AKT signaling pathway.
-
-
-
Mechanisms Underlying the Anti-Atherosclerotic Effects of EGCG
Authors: Lili Wang, Qun Pan and Chunlian TangAvailable online: 09 January 2025More LessAtherosclerosis (AS) is a chronic inflammatory vascular disease and the primary pathological basis of cardiovascular diseases. Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol compound in green tea, has garnered significant attention in recent years for its protective effects against AS. EGCG possesses properties that lower lipid levels, exhibit antioxidant and anti-inflammatory activities, enhance plaque stability, and promote the recovery of endothelial function. The regulatory mechanisms of EGCG in AS primarily involve inhibiting apoptosis, modulating autophagy, improving gut microbiota, and regulating the Nrf2 and inflammatory signaling pathways. This review summarizes the role of EGCG in the prevention and treatment of AS and its potential mechanisms, providing a scientific basis for future research directions and therapeutic applications.
-
-
-
Cancer Stem Cell and Tumor Immune Microenvironment (TIME): Dangerous Crosstalk
By Salim MoussaAvailable online: 07 January 2025More LessCancer stem cells (CSCs) are the key drivers of tumorigenesis and relapse. A growing body of evidence reveals the tremendous power of CSCs to directly resist innate and adaptive anti-tumor immune responses. The immunomodulatory property gives CSCs the ability to control the tumor immune microenvironment (TIME). CSCs hijack the anti-tumor capacity of immune cells to provide self-protection from immune attack and enhance the pro-tumor immune cell infiltration and activity. To date, cancer immunotherapy strategies have largely been designed without taking into account the immunosuppressive properties of CSCs. As a result, the clinical efficacy of cancer immunotherapy is altered, perpetuating tumor progression and relapse. Therefore, targeting the signals underlying CSC immune evasion is essential to improve immunotherapy efficacy and reduce tumor relapse. The aim of this mini-view is to comprehensively summarize the key immune escape mechanisms adopted by CSCs. This will provide necessary clues for the development of more effective cancer immunotherapy strategies.
-
-
-
Predictive Value and Potential of Targeting Complement Factor C3 in Patients with Renal Injury in Preeclampsia
Authors: Chengxiang Ni, Sen Zhang and Wenpei BaiAvailable online: 06 January 2025More LessAimThe activation of the complement system is accompanied by the occurrence and development of preeclampsia, as well as kidney diseases. Here, the role of complement C3 [C3] in renal injury in preeclampsia was explored, and its potential application as an early diagnostic biomarker or drug target to ameliorate kidney injury induced by preeclampsia was preliminarily evaluated.
MethodA total of 48 subjects were included in the present study, and the complement C3 levels and renal function were analyzed.
ResultsPatients with preeclampsia with severe features [sPe] had poorer renal function compared with the patients with preeclampsia. Urinary C3 levels could be used to distinguish between healthy controls, patients with preeclampsia, and patients with sPe. Increased renal inflammation and oxidative stress were notably increased in the preeclampsia mice with impaired renal function and attenuation of C3 activity using a C3 receptor antagonist, which reduced Pe-like symptoms and renal impairment, decreased serum blood urea nitrogen, creatinine, and urinary albumin levels, and decreased expression of the oxidative stress marker malondialdehyde, whilst increasing superoxide dismutase activity. In addition, activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 ([HO-1) pathway was involved in the inhibition of complement C3 in the kidney.
ConclusionHigher urinary C3 levels could be used to predict kidney damage in preeclampsia, and inhibition of C3 activity might ameliorate the renal impairment in preeclampsia through activation of Nrf2/HO-1 pathway.
-
-
-
The Diverse Roles of Long Non-Coding RNA HOTTIP in Breast and Gynecological Cancer Progression
Available online: 06 January 2025More LessLong non-coding RNAs (lncRNAs) play vital roles in the development and progression of various tumors through multiple mechanisms. Among these, HOTTIP (HOXA transcript at the distal tip) stands out as an intriguing candidate with diverse functions in several malignancies, including breast cancer and gynecologic cancers such as ovarian, cervical, and endometrial cancers, which are significant global health concerns. HOTTIP interacts with key signaling pathways associated with these cancers, including Wnt/β-catenin, PI3K/AKT, and MEK/ERK pathways, enhancing their activation and downstream effects. Its influence extends to crucial aspects of cancer biology, such as cell proliferation, apoptosis, migration, invasion, angiogenesis, and epithelial-mesenchymal transition (EMT). Additionally, HOTTIP plays a pivotal role in the pathogenesis of breast and gynecologic tumors by sponging various microRNAs (miRNAs) and regulating the expression of mRNAs involved in critical molecular processes. This dysregulation is often associated with poor clinical outcomes, advanced disease stages, and distant metastases. Understanding the functional roles of HOTTIP in these cancers is essential for developing targeted therapeutic strategies. This review aims to explore the emerging roles of HOTTIP in breast and gynecologic cancers.
-
-
-
A Comprehensive Analysis of the Clinical Significance and Underlying Oncogenic Roles of Specific MMPs in Gastric Carcinoma Reveals their Potential Roles in Prognosis and Therapy
Authors: Shiyang Jin, Jing Wang and Kuan WangAvailable online: 03 January 2025More LessBackgroundGastric cancer is a major global cause of cancer-related deaths, necessitating investigation into Matrix Metalloproteinases’ (MMPs) diagnostic and prognostic value. Our study aimed to analyze their significance in gastric cancer.
MethodsWe evaluated MMP family genes' mRNA and protein expression using the University of Alabama at Birmingham (UALCAN) and Human Protein Atlas (HPA) databases. Then, we analyzed the relationship between their mRNA expression and gastric cancer staging and survival using Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan–Meier plotter. Furthermore, we assessed this family’s gene mutation rates in gastric cancer patients using Search Tool for the Retrieval of Interaction Genes/Proteins (STRING) and explored potential pathways and mechanisms via Database for Annotation, Visualization, and Integrated Discovery (DAVID), cBioPortal, and R. Finally, we established a predictive model for gastric cancer based on these analyses to understand these genes’ roles in cancer.
ResultsOur findings revealed significantly upregulated mRNA expression of MMP1/2/3/7/9/10/11/12/13/14 in gastric cancer tissues (p<0.05). Higher levels of MMP2/7/10-encoded proteins (middle or high) were observed in tumor tissues, with MMP2/11/14 closely associated with different cancer stages (p<0.05). Additionally, MMP2/7/11/14/20 mRNA levels correlated with short-term overall survival (about 20 months), while MMP1/3/9/12/13 expression was associated with favorable overall survival (about 30 months). Gastric cancer patients exhibited a 21% mutation rate of MMP family genes, which correlated with favorable overall survival. Enrichment analysis and protein-protein interaction results underscored the close association of MMPs with gastric cancer development. The MMP2 model demonstrated a significant decline in survival rates for the high expression group, with a Hazard Ratio (HR) of 1.78 (95% CI 1.47-2.16) and a log-rank P value of 2.9e-09. Statistical significance was set at p < 0.05. Univariate Cox regression identified MMP2 as a risk factor for gastric cancer patients.
ConclusionOur findings highlighted MMPs' essential role in gastric cancer progression, impacting patient survival. MMP2 emerged as a promising target for gastric carcinoma detection and treatment.
-
-
-
miR-34 as a Critical Regulator in Ovarian Cancer
Available online: 03 January 2025More LessOvarian cancer (OC) is a gynecologic disease characterized by the uncontrolled growth and proliferation of abnormal cells in the ovaries, fallopian tubes, or peritoneum. Emerging evidence has shown the pivotal role of non-coding RNAs (ncRNAs), such as miRNAs, in driving the pathogenesis of OC. miRNAs are recognized as small ncRNAs that play critical roles in regulating gene expression in normal development and in disease states, including OC. Among miRNAs, the expression of miR-34a was found to be downregulated in OC. Elevated levels of this miRNA are associated with the induction of apoptosis and the inhibition of OC cell proliferation by targeting various signaling pathways, including NOTCH1, P21/P53, STAT3, and BCL2 in OC. Therefore, miR-34a can be a therapeutic target in the management of OC. In this review, we summarized the functional significance of this miRNA in the treatment of OC.
-
-
-
Benzopyrene Aggravates Nonalcoholic Liver Fatty Diseases in Female Mice Via the AHR/ERα Axis
Authors: Yongkang Wu, Jing Xie, Qing Tao, Lina Tan, Xiangyu Zhu and Jin YongAvailable online: 02 January 2025More LessObjectiveNonalcoholic fatty liver disease (NAFLD) is a prevalent liver condition worldwide, and the statistics show that men have a higher incidence and prevalence than women, but its toxicological mechanism is not completely clear. This research is intended to explore the role of BaP in NAFLD and to study how the environmental pollutant BaP influences the AHR/ERα axis to mediate the progression of NAFLD.
MethodsIn this study, we established NAFLD models in vivo and in vitro by treating HepG2 cells with a high-fat diet and Oleic acid (OA) in C57BL/6J mice. Liver injury indexes ALT, AST, and lipid metabolism indexes TG and TC were evaluated to verify the success of modeling. Then, the model was treated with BaP, and the mRNA and protein expressions of CYP1A1, ERα, and SREBP-1c were evaluated by RT-PCR and WB, and the changes of liver fat were evaluated by HE and oil red O staining. Next, BaP was added into the cells treated with or without estradiol (E2), and the lipid metabolism in the cells was evaluated by oil red O staining, and whether the above levels of CYP1A1, ERα and SREBP-1c were changed.
ResultsOur results show that after exposure to BaP, ERα protein levels in mice and cells are inhibited, mRNA and protein levels of SREBP-1c are reduced, and lipid metabolism processes are obstructed. The addition of E2 can reduce the increase of SREBP-1c mRNA and protein expression induced by OA, and reduce the deposition of lipids in cells. However, BaP treatment can weaken the action of E2 and destroy the protection of E2 in cells.
ConclusionThe results showed that E2 could reduce SREBP-1c mRNA and protein levels. BaP can stimulate AHR, leading to the degradation of ERα protein, reducing the binding of E2 to ERα, and aggravating the progression of NAFLD. This reveals the toxicological mechanism by which environmental pollutant BaP influences E2 to mediate NAFLD, and provides strong evidence for differences in NAFLD between the sexes.
-
-
-
SUMOylation Inhibitors Exert a Protective Effect on Oxidative Damage in Retinal Pigment Epithelial Cells Through the Keap1/Nrf2/ARE Signaling Pathway
Authors: Yilei Liang, Xin Jia, Fangyuan Zheng, Yifan Wang, Yijia Fan, Haiyu Zhang, Ziyao Dang and Lifei WangAvailable online: 02 January 2025More LessPurposeTo investigate the effect of the SUMOylation inhibitor TAK981 on hydrogen peroxide (H2O2)-induced oxidative damage in human retinal pigment epithelial cells (ARPE-19) and its regulatory mechanism.
MethodsAn oxidative damage model of ARPE-19 cells induced by H2O2 was established, and 1, 2, and 5 μM TAK981 solutions were administered for intervention respectively. Normal cells were used as the control group. The viability of the cells in each group was detected by the methyl thiazolyl tetrazolium (MTT) method. The levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in each group of cells were detected by biochemical methods. The levels of IL-1β and TNF-α produced by each group of cells were detected by enzyme-linked immunosorbent assay (ELISA). The protein expression levels of Nrf2, HO-1, NQO-1, Keap1, and Sumo1 in each group of cells were detected by Western blotting. In addition, 2 μM TAK981 and 2 μM TAK981 combined with 10 μM ML385 (an Nrf2 inhibitor) were administered to H2O2-induced ARPE-19 cells, and the levels of SOD and MDA, IL-1β and TNF-αwere detected again.
ResultsThe viability of the ARPE-19 cells decreased with increasing H2O2 concentration (F=19.158, P<0.001). H2O2 treatment at 350 μM was the concentration at which the cells essentially reached half inhibition (IC50), and the cell oxidative damage model was successfully established. After intervention with TAK981, cell survival increased significantly (F=0.098, P<0.001). The differences between the 2 μM and 5 μM TAK981 groups and the model group were statistically significant (all P<0.01). Compared with those in the normal group, the MDA content in the model group increased, the SOD activity decreased, and the release levels of IL-1β and TNF-α increased (all P<0.01). Compared with those in the model group, the MDA content in the TAK981 group decreased, the SOD activity increased, and the release levels of IL-1β and TNF-α decreased. The differences between the 2 μM and 5 μM TAK981 groups were statistically significant (P<0.05). Compared with those in the normal group, the protein expression levels of Nrf2, HO-1 and NQO-1 in the model group were greater, whereas the protein expression levels of Keap1 and Sumo1 were lower (all P<0.05). Compared with those in the model group, the protein expression levels of Nrf2, HO-1 and NQO-1 in the TAK981-treated group continued to increase, whereas the protein expression levels of Keap1 and Sumo1 continued to decrease. The differences in the 5 μM TAK981 group were statistically significant (P<0.05). In addition, after the combined intervention of TAK981 and ML385 on H2O2-induced cells, compared with the TAK981-only intervention on H2O2-induced cells, the cell viability increased, the MDA content increased, the SOD activity decreased, and the IL-1β and TNF-α release levels increased. The differences were statistically significant (P<0.05).
ConclusionThe SUMOylation inhibitor TAK981 activates the Keap1/Nrf2/ARE signaling pathway, enhances the activity of antioxidant enzymes, and reduces the production of oxidative stress products and inflammatory factors, thereby exerting a protective effect on H2O2-induced oxidative damage in ARPE-19 cells. Therefore, it is suggested that intervention in SUMO regulation can be used as a new therapeutic target in the AMD disease model, in order to delay the development of AMD by reducing the oxidative damage of RPE.
-
-
-
KIAA1429 Promotes Keloid Formation Through the TGF-Β1/Smad Pathway
Authors: Shuai Ren, Yingchang Ji, Mengmeng Wang, Maodong Ye, Lvdong Huang and Xiangna CaiAvailable online: 07 November 2024More LessBackgroundKeloid formation is characterized by excessive production of extracellular matrix, leading to dysregulated fibroproliferative collagen response. N6-methyl-adenosine (m6A) modification plays an essential role in this process.
ObjectiveOur objective in this study was to explore the mechanism of m6A methyltransferase KIAA1429 in keloid formation.
MethodsWe examined the impact of m6A methyltransferase KIAA1429 on keloid formation using qRT-PCR, Western blot, immunofluorescence, Transwell migration assay, and MeRIP-qPCR.
ResultsKIAA1429 was downregulated in keloid tissue. Overexpression of KIAA1429 suppressed fibroblast migration and reduced COL1A1 and α-SMA levels. Conversely, the knockdown of KIAA1429 promoted fibroblast migration and COL1A1 and α-SMA levels. Additionally, overexpression of KIAA1429 inhibited the TGF-β1/Smad pathway. Mechanistic experiments suggested that KIAA1429 regulated TGF-β1 m6A modification, maintained TGF-β1 mRNA stability, and participated in the regulation of keloid formation. Furthermore, TGF-β1 could reverse the effects of KIAA1429 overexpression on fibroblast migration and collagen deposition.
ConclusionTaken together, our study suggested that KIAA1429 promoted keloid formation through the TGF-β1/Smad pathway, providing new insights for the treatment of keloid.
-
-
-
miR-144/451: A Regulatory Role in Inflammation
Authors: Jiahao Zhu, Yanhua Feng, Lingxiao Zhang, Xialing Pang, Sheng He and Lei FangAvailable online: 05 November 2024More LessBackgroundInflammation is the natural defense mechanism of the body in response to injury, infection, or other stimuli. Excessive or persistent inflammatory responses can lead to the development of inflammatory diseases. Therefore, elucidating the regulatory mechanisms of inflammatory cells is crucial for understanding the pathogenesis of such diseases and devising novel therapeutic approaches. Moreover, miR-144/451 plays an important role in erythroid maturity and tumour development. Herein, we have reviewed the regulatory role of miR-144/451 in inflammation.
MethodsPapers on miR-144, miR-451, and inflammation were retrieved from PubMed and Web of Science to be analysed and summarised.
ResultsmiR-144/451 plays a significant role in modulating inflammatory responses. Pro- and anti-inflammatory gene transcription is regulated by miR-144/451 binding to the 3′ untranslated regions. Studies have shown that miR-451 inhibits the activation of various inflammatory cells, including macrophages, neutrophils, and T lymphocytes, thereby reducing the release of inflammatory mediators. However, miR-144 expression varies in different inflammatory diseases. miR-144 expression is downregulated in macrophages after induction by lipopolysaccharide, cysteine, or Mycobacterium tuberculosis, which promotes the secretion of inflammatory mediators; nonetheless, miR-144-3p overexpression in macrophages can aggravate atherosclerosis. Meanwhile, miR-144 overexpression prevents disruption of the lung endothelial cell barrier, whereas it exacerbates endothelial cell injury in Crohn’s disease.
ConclusionmiR-144/451 may serve as a potential target for the treatment of inflammatory diseases.
-
-
-
Emerging Applications of Medical Nanorobots in Health Care: Current Trends and Future Prospects
Authors: Surya Kanta Swain, Prafulla Kumar Sahu, Bikash Ranjan Jena and Biswajeet AcharyaAvailable online: 04 November 2024More LessMedical nanorobots and nanobots are at the forefront of therapy and diagnostics, potentially improving human health by enabling previously inaccessible treatments. This review explores critical issues concerning the design, components, signaling, structure, and roles of nanorobots and nanobots while elucidating the distinctions between microrobots and nanorobots or microrobotics and nanorobotics as well. By complementing traditional medical procedures, nanorobotic technology offers a rapid, safe, and potentially beneficial pathway toward early clinical applications. It finds numerous applications in both current and future pharmacological and medical advancements. The current and future applications of various nanorobots, such as DNA origami nanorobots, nucleic acid robots, microbivore nanorobots, respirocyte nanorobots, and orthodontic nanorobots, are briefly discussed. In the future, nanobots will likely be prominently featured in hospitals and pharmacies for individuals or specialized groups with specific needs. Continuous innovation and improvement of these technologies, addressing these technical challenges, will broadly advance research in micro/nanorobotics for medical diagnosis and treatment.
-