Skip to content
2000
image of Prognostic Value and Immunological Role of CBX7 in Lung Adenocarcinoma

Abstract

Background

Chromobox 7 (CBX7) has been implicated in the progression of various malignant tumors, but its clinical relevance in lung adenocarcinoma (LUAD) remains poorly understood. This study aimed to investigate the expression, prognostic value, biological functions, and immunological role of CBX7 in LUAD.

Methods

CBX7 expression in LUAD and adjacent normal tissues was analyzed using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Kaplan-Meier curves and Cox risk regression evaluated prognostic significance. Various algorithms assessed the correlation between CBX7 and immune micro-environment. The expression of CBX7 in LUAD tissues was detected by RT-qPCR, western blotting, and immunohistochemistry. The function of CBX7 in LUAD was further investigated by and experiments.

Results

CBX7 expression significantly downregulated LUAD, which was associated with aberrant DNA methylation. Decreased CBX7 expression correlated with advanced tumor stage and poor prognosis. Notably, CBX7 is associated with immune cell infiltration and immune checkpoints, highlighting its potential role in guiding immunotherapy. Functional experiments demonstrated that CBX7 overexpression suppressed the malignant phenotype of LUAD cells, while CBX7 knockdown promoted tumor progression.

Conclusion

We conducted a systematic analysis of the diagnostic, prognostic, and immunological significance of CBX7 in LUAD, and found that it might serve as a diagnostic marker and therapeutic target in the future.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240374044250416021616
2025-04-24
2025-09-14
Loading full text...

Full text loading...

References

  1. Cao W. Qin K. Li F. Chen W. Comparative study of cancer profiles between 2020 and 2022 using global cancer statistics (GLOBOCAN). J. National. Cancer. Center 2024 4 2 128 134 10.1016/j.jncc.2024.05.001 39282581
    [Google Scholar]
  2. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  3. Parreno V. Martinez A.M. Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res. 2022 32 3 231 253 10.1038/s41422‑021‑00606‑6 35046519
    [Google Scholar]
  4. Zhen C.Y. Tatavosian R. Huynh T.N. Duc H.N. Das R. Kokotovic M. Grimm J.B. Lavis L.D. Lee J. Mejia F.J. Li Y. Yao T. Ren X. Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin. eLife 2016 5 e17667 10.7554/eLife.17667 27723458
    [Google Scholar]
  5. Matsuwaka M. Kumon M. Inoue A. H3K27 dimethylation dynamics reveal stepwise establishment of facultative heterochromatin in early mouse embryos. Nat. Cell Biol. 2025 27 1 28 38 10.1038/s41556‑024‑01553‑1 39482357
    [Google Scholar]
  6. Dai T. Liu Y. Cao R. Cao J. CBX7 regulates metastasis of basal-like breast cancer through Twist1/EphA2 pathway. Transl. Oncol. 2022 24 101468 10.1016/j.tranon.2022.101468 35843065
    [Google Scholar]
  7. Huang Z. Yan Y. Zhu Z. Liu J. He X. Dalangood S. Li M. Tan M. Cai J. Tang P. Huang R. Shen B. Yan J. CBX7 suppresses urinary bladder cancer progression via modulating AKR1B10–ERK signaling. Cell Death Dis. 2021 12 6 537 10.1038/s41419‑021‑03819‑0 34035231
    [Google Scholar]
  8. Liu W. Wang H. Jian C. Li W. Ye K. Ren J. Zhu L. Wang Y. Jin X. Yi L. The RNF26/CBX7 axis modulates the TNF pathway to promote cell proliferation and regulate sensitivity to TKIs in ccRCC. Int. J. Biol. Sci. 2022 18 5 2132 2145 10.7150/ijbs.69325 35342353
    [Google Scholar]
  9. Ren W. Ren J. Zhang N. Liu X. Deng Y. Jiang Y. Yan B. Xiao X. Yu H. CBX7 represses the POU2F2 to inhibit the PD-L1 expression and regulate the immune response in bladder cancer. Biochem. Biophys. Res. Commun. 2022 613 12 18 10.1016/j.bbrc.2022.04.114 35526483
    [Google Scholar]
  10. Ni S.J. Zhao L.Q. Wang X.F. Wu Z.H. Hua R.X. Wan C.H. Zhang J.Y. Zhang X.W. Huang M.Z. Gan L. Sun H.L. Dimri G.P. Guo W.J. CBX7 regulates stem cell-like properties of gastric cancer cells via p16 and AKT-NF-κB-miR-21 pathways. J. Hematol. Oncol. 2018 11 1 17 10.1186/s13045‑018‑0562‑z 29422082
    [Google Scholar]
  11. Qiu C.J. Hu L.Y. Yang J. Cao J. Pei B. Dai R. Pan S.J. A novel nanoplatform-based circCSNK1G3 affects CBX7 protein and promotes glioma cell growth. Int. J. Biol. Macromol. 2024 276 Pt 2 134025 10.1016/j.ijbiomac.2024.134025 39033888
    [Google Scholar]
  12. Chen D. Liu P. Lu X. Li J. Qi D. Zang L. Lin J. Liu Y. Zhai S. Fu D. Weng Y. Li H. Shen B. Pan-cancer analysis implicates novel insights of lactate metabolism into immunotherapy response prediction and survival prognostication. J. Exp. Clin. Cancer Res. 2024 43 1 125 10.1186/s13046‑024‑03042‑7 38664705
    [Google Scholar]
  13. Chandrashekar D.S. Karthikeyan S.K. Korla P.K. Patel H. Shovon A.R. Athar M. Netto G.J. Qin Z.S. Kumar S. Manne U. Creighton C.J. Varambally S. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia 2022 25 18 27 10.1016/j.neo.2022.01.001 35078134
    [Google Scholar]
  14. Modhukur V. Iljasenko T. Metsalu T. Lokk K. Laisk-Podar T. Vilo J. MethSurv: A web tool to perform multivariable survival analysis using DNA methylation data. Epigenomics 2018 10 3 277 288 10.2217/epi‑2017‑0118 29264942
    [Google Scholar]
  15. Yang C. Ni B. Shen L. Li Z. Zhou L. Wu H. Zhang Y. Liu L. Liu J. Tian L. Yan L. Jin X. Systematic pan‐cancer analysis insights into ICAM1 as an immunological and prognostic biomarker. FASEB J. 2024 38 13 e23802 10.1096/fj.202302176R 38979944
    [Google Scholar]
  16. Chen Y. Feng Y. Yan F. Zhao Y. Zhao H. Guo Y. A novel immune-related gene signature to identify the tumor microenvironment and prognose disease among patients with oral squamous cell carcinoma patients using ssGSEA: A bioinformatics and biological validation study. Front. Immunol. 2022 13 922195 10.3389/fimmu.2022.922195 35935989
    [Google Scholar]
  17. Fu J. Li K. Zhang W. Wan C. Zhang J. Jiang P. Liu X.S. Large-scale public data reuse to model immunotherapy response and resistance. Genome Med. 2020 12 1 21 10.1186/s13073‑020‑0721‑z 32102694
    [Google Scholar]
  18. Huang Y. Dai Y. Wen C. He S. Shi J. Zhao D. Wu L. Zhou H. circSETD3 contributes to acquired resistance to gefitinib in non-small-cell lung cancer by targeting the miR-520h/ABCG2 pathway. Mol. Ther. Nucleic Acids 2020 21 885 899 10.1016/j.omtn.2020.07.027 32805491
    [Google Scholar]
  19. Ezegbogu M. Wilkinson E. Reid G. Rodger E.J. Brockway B. Russell-Camp T. Kumar R. Chatterjee A. Cell-free DNA methylation in the clinical management of lung cancer. Trends Mol. Med. 2024 30 5 499 515 10.1016/j.molmed.2024.03.007 38582623
    [Google Scholar]
  20. Zhao Y. Huang S. Tan X. Long L. He Q. Liang X. Bai J. Li Q. Lin J. Li Y. Liu N. Ma J. Chen Y. N 6 ‐methyladenosine‐modified CBX1 regulates nasopharyngeal carcinoma progression through heterochromatin formation and STAT1 activation. Adv. Sci. (Weinh.) 2022 9 36 2205091 10.1002/advs.202205091 36310139
    [Google Scholar]
  21. Gao G. Wang L. Li C. Circ_0006790 carried by bone marrow mesenchymal stem cell-derived exosomes regulates S100A11 DNA methylation through binding to CBX7 in pancreatic ductal adenocarcinoma. Am. J. Cancer Res. 2022 12 5 1934 1959 35693076
    [Google Scholar]
  22. Chen Y. Li Z.Y. Zhou G.Q. Sun Y. An immune-related gene prognostic index for head and neck squamous cell carcinoma. Clin. Cancer Res. 2021 27 1 330 341 10.1158/1078‑0432.CCR‑20‑2166 33097495
    [Google Scholar]
  23. Sengupta D. Zeng L. Li Y. Hausmann S. Ghosh D. Yuan G. Nguyen T.N. Lyu R. Caporicci M. Morales Benitez A. Coles G.L. Kharchenko V. Czaban I. Azhibek D. Fischle W. Jaremko M. Wistuba I.I. Sage J. Jaremko Ł. Li W. Mazur P.K. Gozani O. NSD2 dimethylation at H3K36 promotes lung adenocarcinoma pathogenesis. Mol. Cell 2021 81 21 4481 4492.e9 10.1016/j.molcel.2021.08.034 34555356
    [Google Scholar]
  24. Déléris A. Berger F. Duharcourt S. Role of Polycomb in the control of transposable nlms. Trends Genet. 2021 37 10 882 889 10.1016/j.tig.2021.06.003 34210514
    [Google Scholar]
  25. Ren J. Yu H. Li W. Jin X. Yan B. Downregulation of CBX7 induced by EZH2 upregulates FGFR3 expression to reduce sensitivity to cisplatin in bladder cancer. Br. J. Cancer 2023 128 2 232 244 10.1038/s41416‑022‑02058‑0 36396821
    [Google Scholar]
  26. Peng X. Guan L. Gao B. miRNA-19 promotes non-small-cell lung cancer cell proliferation via inhibiting CBX7 expression. OncoTargets Ther. 2018 11 8865 8874 10.2147/OTT.S181433 30584339
    [Google Scholar]
  27. Pei Y. He Y. Hu L. Zhou B. Xu H. Liu X. The crosstalk between lncRNA-SNHG7/miRNA-181/cbx7 modulates malignant character in lung adenocarcinoma. Am. J. Pathol. 2020 190 6 1343 1354 10.1016/j.ajpath.2020.02.011 32201260
    [Google Scholar]
  28. Nawaz Z. Patil V. Arora A. Hegde A.S. Arivazhagan A. Santosh V. Somasundaram K. Cbx7 is epigenetically silenced in glioblastoma and inhibits cell migration by targeting YAP/TAZ-dependent transcription. Sci. Rep. 2016 6 1 27753 10.1038/srep27753 27291091
    [Google Scholar]
  29. Cheng H. Hua L. Tang H. Bao Z. Xu X. Zhu H. Wang S. Jiapaer Z. Bhatia R. Dunn I.F. Deng J. Wang D. Sun S. Luan S. Ji J. Xie Q. Yang X. Lei J. Li G. Wang X. Gong Y. CBX7 reprograms metabolic flux to protect against meningioma progression by modulating the USP44/c-MYC/LDHA axis. J. Mol. Cell Biol. 2024 15 10 mjad057 10.1093/jmcb/mjad057 37791390
    [Google Scholar]
  30. Wang Z. Zhao P. Tian K. Qiao Z. Dong H. Li J. Guan Z. Su H. Song Y. Ma X. TMEM9 promotes lung adenocarcinoma progression via activating the MEK/ERK/STAT3 pathway to induce VEGF expression. Cell Death Dis. 2024 15 4 295 10.1038/s41419‑024‑06669‑8 38664392
    [Google Scholar]
  31. Wang J. Yang Y. Shao F. Meng Y. Guo D. He J. Lu Z. Acetate reprogrammes tumour metabolism and promotes PD-L1 expression and immune evasion by upregulating c-Myc. Nat. Metab. 2024 6 5 914 932 10.1038/s42255‑024‑01037‑4 38702440
    [Google Scholar]
  32. Li T. Zhang W. Niu M. Wu Y. Deng X. Zhou J. STING agonist inflames the cervical cancer immune microenvironment and overcomes anti-PD-1 therapy resistance. Front. Immunol. 2024 15 1342647 10.3389/fimmu.2024.1342647 38550593
    [Google Scholar]
  33. Zhao B. Zhao H. Zhao J. Efficacy of PD-1/PD-L1 blockade monotherapy in clinical trials. Ther. Adv. Med. Oncol. 2020 12 1758835920937612 10.1177/1758835920937612 32728392
    [Google Scholar]
  34. Kaiser A.M. Gatto A. Hanson K.J. Zhao R.L. Raj N. Ozawa M.G. Seoane J.A. Bieging-Rolett K.T. Wang M. Li I. Trope W.L. Liou D.Z. Shrager J.B. Plevritis S.K. Newman A.M. Van Rechem C. Attardi L.D. p53 governs an AT1 differentiation programme in lung cancer suppression. Nature 2023 619 7971 851 859 10.1038/s41586‑023‑06253‑8 37468633
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240374044250416021616
Loading
/content/journals/cmm/10.2174/0115665240374044250416021616
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: immune infiltration ; tumorigenesis ; Lung adenocarcinoma ; CBX7 ; tumor prognosis ; immunotherapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test