Skip to content
2000
image of Association Between Blood Lead Levels and Diabetic Kidney Disease: A Cross-sectional Analysis of NHANES Data (1999-2018)

Abstract

Background

The relationship between heavy metals, particularly lead (Pb), and diabetic kidney disease (DKD) remains unclear, especially regarding exposure thresholds. This study investigates the association between blood Pb levels and DKD risk using data from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018.

Methods

A total of 1,343 participants were included, with 508 diagnosed with DKD. Baseline characteristics were compared between DKD and non-DKD groups. Multivariate generalized linear models (GLMs) and weighted logistic regression were used to assess correlations between blood Pb levels and DKD risk. A nomogram was developed to evaluate the predictive power of significant clinical characteristics.

Results

Key clinical characteristics, including age, marital status, and serum Pb levels, differed significantly between DKD and non-DKD groups. Serum Pb was identified as a significant risk factor (ORs: 1.18–1.39, p < 0.01). The nomogram demonstrated good predictive accuracy (AUC = 0.717).

Conclusion

Elevated blood Pb levels are significantly associated with DKD, with a non-linear relationship and a defined threshold. These findings highlight the potential role of Pb exposure in DKD pathogenesis and suggest the utility of blood Pb monitoring in diabetic patients.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240293441250312133508
2025-04-29
2025-11-04
Loading full text...

Full text loading...

References

  1. Lin Y.C. Chang Y.H. Yang S.Y. Wu K.D. Chu T.S. Update of pathophysiology and management of diabetic kidney disease. J. Formos. Med. Assoc. 2018 117 8 662 675 10.1016/j.jfma.2018.02.007 29486908
    [Google Scholar]
  2. Tamiya H. Tamura Y. Nagashima Y. Tsurumi T. Terashima M. Ochiai K. Ehara K. Furuya T. Banba N. Nakatani Y. Hoshiai M. Ueno A. Tomoe T. Kawabe A. Sugiyama T. Kawamoto S. Yasu T. Long-term tailor-made exercise intervention reduces the risk of developing cardiovascular diseases and all-cause mortality in patients with diabetic kidney disease. J. Clin. Med. 2023 12 2 691 10.3390/jcm12020691 36675619
    [Google Scholar]
  3. Tziomalos K. Athyros V.G. Diabetic nephropathy: New risk factors and improvements in diagnosis. Rev. Diabet. Stud. 2015 12 1-2 110 118 10.1900/RDS.2015.12.110 26676664
    [Google Scholar]
  4. Tsai H.J. Hung C.H. Wang C.W. Tu H.P. Li C.H. Tsai C.C. Lin W.Y. Chen S.C. Kuo C.H. Associations among heavy metals and proteinuria and chronic kidney disease. Diagnostics 2021 11 2 282 10.3390/diagnostics11020282 33670331
    [Google Scholar]
  5. Farag M.R. Alagawany M. Abd El-Hack M.E. El-Sayed S.A.A. Ahmed S.Y.A. Samak D.H. Yucca schidigera extract modulates the lead-induced oxidative damage, nephropathy and altered inflammatory response and glucose homeostasis in Japanese quails. Ecotoxicol. Environ. Saf. 2018 156 311 321 10.1016/j.ecoenv.2018.03.010 29571109
    [Google Scholar]
  6. Mishra M. Nichols L. Dave A.A. Pittman E.H. Cheek J.P. Caroland A.J.V. Lotwala P. Drummond J. Bridges C.C. Molecular mechanisms of cellular injury and role of toxic heavy metals in chronic kidney disease. Int. J. Mol. Sci. 2022 23 19 11105 10.3390/ijms231911105 36232403
    [Google Scholar]
  7. Park K. Han E.J. Ahn G. Kwak I.S. Effects of thermal stress-induced lead (Pb) toxicity on apoptotic cell death, inflammatory response, oxidative defense, and DNA methylation in zebrafish (Danio rerio) embryos. Aquat. Toxicol. 2020 224 105479 10.1016/j.aquatox.2020.105479 32417751
    [Google Scholar]
  8. Guldbrand C. Barregard L. Sallsten G. Forsgard N. Lundh T. Borné Y. Fagerberg B. Engström G. Bergström G. Harari F. Low-level exposure to lead and atherosclerosis in the carotid arteries: Results from the Swedish population-based cohort SCAPIS. Environ. Res. 2024 244 117900 10.1016/j.envres.2023.117900 38092241
    [Google Scholar]
  9. Yun S. Wu Y. Niu R. Feng C. Wang J. Effects of lead exposure on brain glucose metabolism and insulin signaling pathway in the hippocampus of rats. Toxicol. Lett. 2019 310 23 30 10.1016/j.toxlet.2019.04.011 30980912
    [Google Scholar]
  10. Bandaru L.J.M. Murumulla L. C B.L. D K.P. Challa S. Exposure of combination of environmental pollutant, lead (Pb) and β-amyloid peptides causes mitochondrial dysfunction and oxidative stress in human neuronal cells. J. Bioenerg. Biomembr. 2023 55 1 79 89 10.1007/s10863‑023‑09956‑9 36637735
    [Google Scholar]
  11. Zhang Y. Gong X. Li R. Gao W. Hu D. Yi X. Liu Y. Fang J. Shao J. Ma Y. Jin L. Exposure to cadmium and lead is associated with diabetic kidney disease in diabetic patients. Environ. Health 2024 23 1 1 10.1186/s12940‑023‑01045‑z 38166936
    [Google Scholar]
  12. Choudhury T.R. Zaman S.Z. Chowdhury T.I. Begum B.A. Islam M.A. Rahman M.M. Status of metals in serum and urine samples of chronic kidney disease patients in a rural area of Bangladesh: An observational study. Heliyon 2021 7 11 e08382 10.1016/j.heliyon.2021.e08382 34901486
    [Google Scholar]
  13. Balali-Mood M. Naseri K. Tahergorabi Z. Khazdair M.R. Sadeghi M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021 12 643972 10.3389/fphar.2021.643972 33927623
    [Google Scholar]
  14. Lentini P. Zanoli L. Granata A. Signorelli S.S. Castellino P. Dellaquila R. Kidney and heavy metals - The role of environmental exposure. Mol. Med. Rep. 2017 15 5 3413 3419 10.3892/mmr.2017.6389 28339049
    [Google Scholar]
  15. Assi M.A. Hezmee M.N.M. Haron A.W. Sabri M.Y. Rajion M.A. The detrimental effects of lead on human and animal health. Vet. World 2016 9 6 660 671 10.14202/vetworld.2016.660‑671 27397992
    [Google Scholar]
  16. Gambelunghe A. Sallsten G. Borné Y. Forsgard N. Hedblad B. Nilsson P. Fagerberg B. Engström G. Barregard L. Low-level exposure to lead, blood pressure, and hypertension in a population-based cohort. Environ. Res. 2016 149 157 163 10.1016/j.envres.2016.05.015 27208466
    [Google Scholar]
  17. Dórea J.G. Environmental exposure to low-level lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children. Environ. Res. 2019 177 108641 10.1016/j.envres.2019.108641 31421445
    [Google Scholar]
  18. Vaziri N.D. Gonick H.C. Cardiovascular effects of lead exposure. Indian J. Med. Res. 2008 128 4 426 435 19106438
    [Google Scholar]
  19. Chen J. Wang N. Yuan Y. Zhang W. Xia F. Chen B. Dong R. Lu Y. Blood lead, nutrient intake, and renal function among type 2 diabetic patients. Environ. Sci. Pollut. Res. Int. 2021 28 35 49063 49073 10.1007/s11356‑021‑13623‑0 33939087
    [Google Scholar]
  20. Bidanchi R.M. Lalrindika L. Khushboo M. Bhanushree B. Dinata R. Das M. Nisa N. Lalrinzuali S. Manikandan B. Saeed-Ahmed L. Sanjeev S. Murthy M.K. Roy V.K. Gurusubramanian G. Antioxidative, anti-inflammatory and anti-apoptotic action of ellagic acid against lead acetate induced testicular and hepato-renal oxidative damages and pathophysiological changes in male Long Evans rats. Environ. Pollut. 2022 302 119048 10.1016/j.envpol.2022.119048 35219795
    [Google Scholar]
  21. Loghman-Adham M. Renal effects of environmental and occupational lead exposure. Environ. Health Perspect. 1997 105 9 928 939 10.1289/ehp.97105928 9300927
    [Google Scholar]
  22. Keiser J.A. Vander A.J. Germain C.L. Clearance of renin in unanesthetized rats: Effects of chronic lead exposure. Toxicol. Appl. Pharmacol. 1983 69 1 127 137 10.1016/0041‑008X(83)90128‑X 6344331
    [Google Scholar]
  23. Ayodele O.E. Alebiosu C.O. Salako B.L. Diabetic nephropathy--a review of the natural history, burden, risk factors and treatment. J. Natl. Med. Assoc. 2004 96 11 1445 1454 15586648
    [Google Scholar]
  24. Thomas H.Y. Versypt F.A.N. A mathematical model of glomerular fibrosis in diabetic kidney disease to predict therapeutic efficacy. Front. Pharmacol. 2024 15 1481768 10.3389/fphar.2024.1481768 39525640
    [Google Scholar]
  25. Shi L. Wei T. Liang Z. Li C. Liu T. Fan W. A new dawn for Diabetic kidney disease: Interleukin receptor antagonists. J. Transl. Med. 2024 22 1 990 10.1186/s12967‑024‑05798‑0 39516872
    [Google Scholar]
  26. Thipsawat S. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. Diab. Vasc. Dis. Res. 2021 18 6 14791641211058856 10.1177/14791641211058856 34791910
    [Google Scholar]
  27. Dkhil M.A. Al-Khalifa M.S. Al-Quraishy S. Zrieq R. Moneim A.A.E. Indigofera oblongifolia mitigates lead-acetate-induced kidney damage and apoptosis in a rat model. Drug Des. Devel. Ther. 2016 10 1847 1856 27330278
    [Google Scholar]
  28. Vizuete J. Pérez-López M. Míguez-Santiyán M.P. Hernández-Moreno D. Mercury (Hg), lead (Pb), cadmium (Cd), selenium (Se), and arsenic (As) in liver, kidney, and feathers of gulls: A review. Rev. Environ. Contam. Toxicol. 2019 247 85 146 30413976
    [Google Scholar]
  29. Tyrrell J.B. Hafida S. Stemmer P. Adhami A. Leff T. Lead (Pb) exposure promotes diabetes in obese rodents. J. Trace Elem. Med. Biol. 2017 39 221 226 10.1016/j.jtemb.2016.10.007 27908418
    [Google Scholar]
  30. Boskabady M. Marefati N. Farkhondeh T. Shakeri F. Farshbaf A. Boskabady M.H. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environ. Int. 2018 120 404 420 10.1016/j.envint.2018.08.013 30125858
    [Google Scholar]
  31. Aziz F. AlHazmi A. Aljameil N. Mahmood I. Tabassum H. Mushfiq S. Hijazy S. Serum selenium and lead levels: A possible link with diabetes and associated proteinuria. Biol. Trace Elem. Res. 2020 193 2 342 347 10.1007/s12011‑019‑01721‑7 31004272
    [Google Scholar]
  32. Chen X. Zhu G. Wang Z. Zhou H. He P. Liu Y. Jin T. The association between lead and cadmium co-exposure and renal dysfunction. Ecotoxicol. Environ. Saf. 2019 173 429 435 10.1016/j.ecoenv.2019.01.121 30798186
    [Google Scholar]
  33. Yimthiang S. Vesey D.A. Pouyfung P. Khamphaya T. Gobe G.C. Satarug S. Chronic kidney disease induced by cadmium and diabetes: A quantitative case-control study. Int. J. Mol. Sci. 2023 24 10 9050 10.3390/ijms24109050 37240395
    [Google Scholar]
  34. Zhu K. Zhang Y. Lu Q. Geng T. Li R. Wan Z. Zhang X. Liu Y. Li L. Qiu Z. He M. Liu L. Pan A. Liu G. Associations of exposure to lead and cadmium with risk of all-cause and cardiovascular disease mortality among patients with type 2 diabetes. Environ. Sci. Pollut. Res. Int. 2022 29 51 76805 76815 10.1007/s11356‑022‑21273‑z 35670945
    [Google Scholar]
  35. Wang X. Liang H. Wang Y. Cai C. Li J. Li X. Wang M. Chen M. Xu X. Tan H. Risk factors of renal dysfunction and their interaction in level-low lead exposure paint workers. BMC Public Health 2018 18 1 526 10.1186/s12889‑018‑5475‑9 29678135
    [Google Scholar]
  36. Du G. Song X. Zhou F. Ouyang L. Li Q. Ruan S. Yang S. Rao S. Wan X. Xie J. Feng C. Fan G. Association between multiple metal(loid)s exposure and renal function: A cross-sectional study from southeastern China. Environ. Sci. Pollut. Res. Int. 2023 30 41 94552 94564 10.1007/s11356‑023‑29001‑x 37532974
    [Google Scholar]
  37. Hagedoorn I.J.M. Gant C.M. Huizen S. Maatman R.G.H.J. Navis G. Bakker S.J.L. Laverman G.D. Lifestyle-related exposure to cadmium and lead is associated with diabetic kidney disease. J. Clin. Med. 2020 9 8 2432 10.3390/jcm9082432 32751456
    [Google Scholar]
  38. Wang B. Wan H. Cheng J. Chen Y. Wang Y. Chen Y. Chen C. Zhang W. Xia F. Wang N. Wang L. Lu Y. Blood lead, vitamin D status, and albuminuria in patients with type 2 diabetes. Environ. Pollut. 2021 276 116653 10.1016/j.envpol.2021.116653 33607353
    [Google Scholar]
  39. Sedighi O. Makhlough A. Shokrzadeh M. Hoorshad S. Association between plasma selenium and glutathione peroxidase levels and severity of diabetic nephropathy in patients with type two diabetes mellitus. Nephrourol. Mon. 2014 6 5 e21355 10.5812/numonthly.21355 25695036
    [Google Scholar]
  40. Rabbani G. Ahn S.N. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. Int. J. Biol. Macromol. 2019 123 979 990 10.1016/j.ijbiomac.2018.11.053 30439428
    [Google Scholar]
  41. Gerhard I. Waibel S. Daniel V. Runnebaum B. Impact of heavy metals on hormonal and immunological factors in women with repeated miscarriages. Hum. Reprod. Update 1998 4 3 301 309 10.1093/humupd/4.3.301 9741713
    [Google Scholar]
  42. Nampoothiri L.P. Gupta S. Simultaneous effect of lead and cadmium on granulosa cells: A cellular model for ovarian toxicity. Reprod. Toxicol. 2006 21 2 179 185 10.1016/j.reprotox.2005.07.010 16159707
    [Google Scholar]
  43. Djokic J. Ninkov M. Mirkov I. Aleksandrov P.A. Zolotarevski L. Kataranovski D. Kataranovski M. Differential effects of cadmium administration on peripheral blood granulocytes in rats. Environ. Toxicol. Pharmacol. 2014 37 1 210 219 10.1016/j.etap.2013.11.026 24361699
    [Google Scholar]
  44. Matović V. Buha A. Ðukić-Ćosić D. Bulat Z. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem. Toxicol. 2015 78 130 140 10.1016/j.fct.2015.02.011 25681546
    [Google Scholar]
  45. Tinkov A.A. Filippini T. Ajsuvakova O.P. Aaseth J. Gluhcheva Y.G. Ivanova J.M. Bjørklund G. Skalnaya M.G. Gatiatulina E.R. Popova E.V. Nemereshina O.N. Vinceti M. Skalny A.V. The role of cadmium in obesity and diabetes. Sci. Total Environ. 2017 601-602 741 755 10.1016/j.scitotenv.2017.05.224 28577409
    [Google Scholar]
  46. Lee D.H. Lim J.S. Song K. Boo Y. Jacobs D.R. Jr Graded associations of blood lead and urinary cadmium concentrations with oxidative-stress-related markers in the U.S. population: Results from the third National Health and Nutrition Examination Survey. Environ. Health Perspect. 2006 114 3 350 354 10.1289/ehp.8518 16507456
    [Google Scholar]
  47. Zou H. Sun J. Wu B. Yuan Y. Gu J. Bian J. Liu X. Liu Z. Effects of cadmium and/or lead on autophagy and liver injury in rats. Biol. Trace Elem. Res. 2020 198 1 206 215 10.1007/s12011‑020‑02045‑7 32006201
    [Google Scholar]
  48. López-Vanegas N.C. Hernández G. Maldonado-Vega M. Calderón-Salinas J.V. Leukocyte apoptosis, TNF-α concentration and oxidative damage in lead-exposed workers. Toxicol. Appl. Pharmacol. 2020 391 114901 10.1016/j.taap.2020.114901 32004562
    [Google Scholar]
  49. Leff T. Stemmer P. Tyrrell J. Jog R. Diabetes and exposure to environmental lead (Pb). Toxics 2018 6 3 54 10.3390/toxics6030054 30200608
    [Google Scholar]
  50. Sanders A.P. Mazzella M.J. Malin A.J. Hair G.M. Busgang S.A. Saland J.M. Curtin P. Combined exposure to lead, cadmium, mercury, and arsenic and kidney health in adolescents age 12–19 in NHANES 2009–2014. Environ. Int. 2019 131 104993 10.1016/j.envint.2019.104993 31326826
    [Google Scholar]
  51. Barregard L. Sallsten G. Lundh T. Mölne J. Low-level exposure to lead, cadmium and mercury, and histopathological findings in kidney biopsies. Environ. Res. 2022 211 113119 10.1016/j.envres.2022.113119 35288159
    [Google Scholar]
  52. Valcke M. Ouellet N. Dubé M. Sidi L.E.A. LeBlanc A. Normandin L. Balion C. Ayotte P. Biomarkers of cadmium, lead and mercury exposure in relation with early biomarkers of renal dysfunction and diabetes: Results from a pilot study among aging Canadians. Toxicol. Lett. 2019 312 148 156 10.1016/j.toxlet.2019.05.014 31100493
    [Google Scholar]
  53. Ebirim C.G. Esan O. Adetona M.O. Oyagbemi A.A. Omobowale T.O. Oladele O.A. Adedapo A.A. Oguntibeju O.O. Yakubu M.A. Naringin administration mitigates oxidative stress, anemia, and hypertension in lead acetate-induced cardio-renal dysfunction in cockerel chicks. Environ. Sci. Pollut. Res. Int. 2022 30 12 34890 34903 10.1007/s11356‑022‑24656‑4 36520287
    [Google Scholar]
  54. Dursun N. Arifoglu C. Süer C. Keskinol L. Blood pressure relationship to nitric oxide, lipid peroxidation, renal function, and renal blood flow in rats exposed to low lead levels. Biol. Trace Elem. Res. 2005 104 2 141 150 10.1385/BTER:104:2:141 15894814
    [Google Scholar]
  55. Yasunobu S. Masayuki U. Shoji O. Alteration of sodium and potassium mobilization and of adrenal function by long-term ingestion of lead. Biochem. Pharmacol. 1982 31 18 2913 2919 10.1016/0006‑2952(82)90263‑5 6291551
    [Google Scholar]
  56. Shakoor H. Apostolopoulos V. Feehan J. Ali H.I. Ismail L.C. Dhaheri A.A.S.O.S. Stojanovska L. Effect of calorie restriction and exercise on type 2 diabetes. Prilozi (Makedon. Akad. Nauk. Umet. Odd. Med. Nauki) 2021 42 1 109 126 10.2478/prilozi‑2021‑0010 33894117
    [Google Scholar]
  57. Yang L. Shao J. Bian Y. Wu H. Shi L. Zeng L. Li W. Dong J. Prevalence of type 2 diabetes mellitus among inland residents in China (2000–2014): A meta‐analysis. J. Diabetes Investig. 2016 7 6 845 852 10.1111/jdi.12514 27181391
    [Google Scholar]
  58. Tuttle K.R. Agarwal R. Alpers C.E. Bakris G.L. Brosius F.C. Kolkhof P. Uribarri J. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022 102 2 248 260 10.1016/j.kint.2022.05.012 35661785
    [Google Scholar]
  59. Sugahara M. Pak W.L.W. Tanaka T. Tang S.C.W. Nangaku M. Update on diagnosis, pathophysiology, and management of diabetic kidney disease. Nephrology 2021 26 6 491 500 10.1111/nep.13860 33550672
    [Google Scholar]
  60. Rebelo F.M. Caldas E.D. Arsenic, lead, mercury and cadmium: Toxicity, levels in breast milk and the risks for breastfed infants. Environ. Res. 2016 151 671 688 10.1016/j.envres.2016.08.027 27619212
    [Google Scholar]
  61. Wu Y.L. Lin Z.J. Li C.C. Lin X. Shan S.K. Guo B. Zheng M.H. Li F. Yuan L.Q. Li Z. Epigenetic regulation in metabolic diseases: Mechanisms and advances in clinical study. Signal Transduct. Target. Ther. 2023 8 1 98 10.1038/s41392‑023‑01333‑7 36864020
    [Google Scholar]
  62. Samsu N. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment. BioMed Res. Int. 2021 2021 1 1497449 10.1155/2021/1497449 34307650
    [Google Scholar]
  63. Tchounwou P.B. Yedjou C.G. Patlolla A.K. Sutton D.J. Heavy metal toxicity and the environment. Experientia Suppl. 2012 101 133 164 22945569
    [Google Scholar]
  64. Park S. Lee B.K. Body fat percentage and hemoglobin levels are related to blood lead, cadmium, and mercury concentrations in a Korean Adult Population (KNHANES 2008-2010). Biol. Trace Elem. Res. 2013 151 3 315 323 10.1007/s12011‑012‑9566‑7 23238610
    [Google Scholar]
  65. Zhang Y. Liu X. Zhang X. Li L. Li Q. Geng H. Shi L. Wang B. Qiu Q. Yu T. Sang Y. Wang L. Liang J. Xu W. Association between serum heavy metal levels and diabetic retinopathy in NHANES 2011–2020. Sci. Rep. 2024 14 1 1268 10.1038/s41598‑024‑51749‑6 38218955
    [Google Scholar]
  66. Parida L. Patel T.N. Systemic impact of heavy metals and their role in cancer development: A review. Environ. Monit. Assess. 2023 195 6 766 10.1007/s10661‑023‑11399‑z 37249740
    [Google Scholar]
  67. Gong J.H. Lo K. Liu Q. Li J. Lai S. Shadyab A.H. Arcan C. Snetselaar L. Liu S. Dietary manganese, plasma markers of inflammation, and the development of type 2 diabetes in postmenopausal women: Findings from the women’s health initiative. Diabetes Care 2020 43 6 1344 1351 10.2337/dc20‑0243 32295807
    [Google Scholar]
  68. Tan Y. Fu Y. Huang F. Wen L. Weng X. Yao H. Liang H. Kuang M. Jing C. Association between blood metal exposures and hyperuricemia in the U.S. general adult: A subgroup analysis from NHANES. Chemosphere 2023 318 137873 10.1016/j.chemosphere.2023.137873 36681199
    [Google Scholar]
  69. Friis Bryde Nielsen C. Thysen M.S. Kampmann B.F. Hansen T.W. Jørgensen N.R. Tofte N. Winther A.S. Theilade S. Rossing P. Frimodt-Møller M. Linneberg A. The associations between functional vitamin K status and all‐cause mortality, cardiovascular disease and end‐stage kidney disease in persons with type 1 diabetes. Diabetes Obes. Metab. 2025 27 1 348 356 10.1111/dom.16025 39434445
    [Google Scholar]
  70. Brardi S. Cevenini G. Bonadio A.G. A new technique of ultrasound guided percutaneous renal biopsy by perforated probe and perpendicular needle trajectory. Arch. Ital. Urol. Androl. 2018 90 1 29 33 10.4081/aiua.2018.1.29 29633796
    [Google Scholar]
  71. Moriya T. Ohno S. Hirasawa Y. Tanaka K. Fujita Y. Detailed glomerular ultrastructure in Japanese type 2 diabetic patients by the quick-freezing and deep-etching method. Diabetes Res. Clin. Pract. 2008 80 3 424 431 10.1016/j.diabres.2008.01.027 18342978
    [Google Scholar]
  72. Schürmann F. Westmattelmann D. Schewe G. Factors influencing telemedicine adoption among health care professionals: Qualitative interview study. JMIR Form. Res. 2025 9 e54777 10.2196/54777 39869885
    [Google Scholar]
  73. Liao X. Scheidereit E. Kuppe C. New tools to study renal fibrogenesis. Curr. Opin. Nephrol. Hypertens. 2024 33 4 420 426 10.1097/MNH.0000000000000988 38587103
    [Google Scholar]
  74. Al-Hussaini H. Kilarkaje N. Trans-resveratrol mitigates type 1 diabetes-induced oxidative DNA damage and accumulation of advanced glycation end products in glomeruli and tubules of rat kidneys. Toxicol. Appl. Pharmacol. 2018 339 97 109 10.1016/j.taap.2017.11.025 29229234
    [Google Scholar]
  75. Duyan A.G. Vatansev C. Kocabaş R. Koç Y.M. Akbulut M.A. Comparison of renal tubular damage with kidney injury molecule-1 in open and laparoscopic colorectal cancer surgery. Medicina 2024 61 1 42 10.3390/medicina61010042 39859024
    [Google Scholar]
  76. He P. Guo Y. Wang S. Bu S. Innovative insights: ITLN1 modulates renal injury in response to radiation. Int. Immunopharmacol. 2024 133 111987 10.1016/j.intimp.2024.111987 38652961
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240293441250312133508
Loading
/content/journals/cmm/10.2174/0115665240293441250312133508
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test