Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Growth Differentiation Factor 15 (GDF15) has been described as influencing skeletal physiology. Nevertheless, no systematic appraisal of the effect of GDF15 on skeletal muscle tissues has been developed to the present day.

Objective

The aim of the present work was to review the evidence on the topic.

Methods

In this preregistered systematic review (https://osf.io/wa8xr), articles were retrieved from MEDLINE/PubMed, EMBASE, and WebOfScience. Inclusion criteria comprised studies on humans or animal models, assessment of peripheral or local tissue GDF15 concentrations, as well as the direct expression of GDF15 in skeletal muscle, and direct or indirect correlates of GDF15 with physical activity/ sarcopenia/trophism/ function.

Results

A total of 646 studies were retrieved, and 144 finally included. Molecular inducers or inhibitors of GDF15 in skeletal muscle tissues were described. GDF15 was reported to promote skeletal muscle health, metabolic homeostasis, and overall physical conditioning. In pathology, GDF15 seems to be correlated to the degree of muscle impairment and mitochondrial stress. GDF15 has also been described as having the potential to stratify patients based on clinical prognosis and functional outcome.

Conclusion

A hormetic hypothesis for GDF15 on skeletal muscle was proposed. In fact, GDF15 exhibited beneficial effects when expressed at high levels facing acute stressors (i.e., “myoprotection”). Conversely, GDF15 exhibited maladaptive effects, such as chronic low-grade inflammation, when chronically expressed in pathological processes (e.g., obesity, aging). GDF15 may be a potential molecular target for disease-modifying interventions. The current review underscores the need for further research on GDF15 to elucidate its therapeutic potential across different pathological states.

The study protocol, registered before data collection and analysis, can be retrieved at https://osf.io/wa8xr. It should be noted that the study deviated from the protocol after peer review, including other electronic databases beyond MEDLINE/PubMed alone.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240327723241018073535
2025-01-20
2025-12-23
Loading full text...

Full text loading...

References

  1. BootcovM.R. BauskinA.R. ValenzuelaS.M. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-β superfamily.Proc. Natl. Acad. Sci. USA19979421115141151910.1073/pnas.94.21.11514 9326641
    [Google Scholar]
  2. NyárádyB.B. KissL.Z. BagyuraZ. Growth and differentiation factor-15: A link between inflammaging and cardiovascular disease.Biomed. Pharmacother.202417411647510.1016/j.biopha.2024.116475 38522236
    [Google Scholar]
  3. FichtnerK. KalwaH. LinM.M. GFRAL is widely distributed in the brain and peripheral tissues of mice.Nutrients202416573410.3390/nu16050734 38474863
    [Google Scholar]
  4. Yokoyama-KobayashiM. SaekiM. SekineS. KatoS. Human cDNA encoding a novel TGF-beta superfamily protein highly expressed in placenta.J. Biochem.1997122362262610.1093/oxfordjournals.jbchem.a021798 9348093
    [Google Scholar]
  5. UnsickerK. SpittauB. KrieglsteinK. The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1.Cytokine Growth Factor Rev.201324437338410.1016/j.cytogfr.2013.05.003 23787157
    [Google Scholar]
  6. LiJ.J. LiuJ. LupinoK. LiuX. ZhangL. PeiL. Growth differentiation factor 15 maturation requires proteolytic cleavage by PCSK3, -5, and -6.Mol. Cell. Biol.20183821e00249e1810.1128/MCB.00249‑18 30104250
    [Google Scholar]
  7. JohannK. KleinertM. KlausS. The role of GDF15 as a myomitokine.Cells20211011299010.3390/cells10112990 34831213
    [Google Scholar]
  8. PoulsenN.S. MadsenK.L. HornsyldT.M. Growth and differentiation factor 15 as a biomarker for mitochondrial myopathy.Mitochondrion202050354110.1016/j.mito.2019.10.005 31669236
    [Google Scholar]
  9. Al-SawafO. WeissJ. SkrzypskiM. Body composition and lung cancer-associated cachexia in TRACERx.Nat. Med.202329484685810.1038/s41591‑023‑02232‑8 37045997
    [Google Scholar]
  10. KhanN.A. NikkanenJ. YatsugaS. mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression.Cell Metab.2017262419428.e510.1016/j.cmet.2017.07.007 28768179
    [Google Scholar]
  11. BöttnerM. LaaffM. SchechingerB. RappoldG. UnsickerK. Suter-CrazzolaraC. Characterization of the rat, mouse, and human genes of growth/differentiation factor-15/macrophage inhibiting cytokine-1 (GDF-15/MIC-1).Gene1999237110511110.1016/S0378‑1119(99)00309‑1 10524241
    [Google Scholar]
  12. Engström RuudL. Font-GironèsF. ZajdelJ. Activation of GFRAL+ neurons induces hypothermia and glucoregulatory responses associated with nausea and torpor.Cell Rep.202443411396010.1016/j.celrep.2024.113960 38507407
    [Google Scholar]
  13. HuangJ. DingX. DongY. ZhuH. Growth differentiation factor-15 orchestrates inflammation-related diseases via macrophage polarization.Discov. Med.20243618124825510.24976/Discov.Med.202436181.23 38409830
    [Google Scholar]
  14. EmmersonP.J. WangF. DuY. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL.Nat. Med.201723101215121910.1038/nm.4393 28846098
    [Google Scholar]
  15. WangD. TownsendL.K. DesOrmeauxG.J. GDF15 promotes weight loss by enhancing energy expenditure in muscle.Nature2023619796814315010.1038/s41586‑023‑06249‑4 37380764
    [Google Scholar]
  16. DongX.C. XuD.Y. Research progress on the role and mechanism of GDF15 in body weight regulation.Obes. Facts202417111110.1159/000535089 37989122
    [Google Scholar]
  17. AhmadS. KumarR. An update of new/potential cardiovascular markers: A narrative review.Mol. Biol. Rep.202451117910.1007/s11033‑023‑08978‑1 38252393
    [Google Scholar]
  18. Liuizė AbramavičiūtėA. MongirdienėA. TGF-β isoforms and GDF-15 in the development and progression of atherosclerosis.Int. J. Mol. Sci.2024254210410.3390/ijms25042104 38396781
    [Google Scholar]
  19. GuoM. ZhaoH. Growth differentiation factor-15 may be a novel biomarker in pancreatic cancer: A review.Medicine (Baltimore)20241036e3659410.1097/MD.0000000000036594 38335385
    [Google Scholar]
  20. MuruganandamM. Ariza-HutchinsonA. PatelR.A. SibbittW.L.Jr Biomarkers in the pathogenesis, diagnosis, and treatment of systemic sclerosis.J. Inflamm. Res.2023164633466010.2147/JIR.S379815 37868834
    [Google Scholar]
  21. ShayotaB.J. Biomarkers of mitochondrial disorders.Neurotherapeutics2024211e0032510.1016/j.neurot.2024.e00325 38295557
    [Google Scholar]
  22. MagliuloL. BondiD. PiniN. MarramieroL. Di FilippoE.S. The wonder exerkines—novel insights: A critical state-of-the-art review.Mol. Cell. Biochem.2022477110511310.1007/s11010‑021‑04264‑5 34554363
    [Google Scholar]
  23. FieldingR.A. AtkinsonE.J. AversaZ. Biomarkers of cellular senescence predict the onset of mobility disability and are reduced by physical activity in older adults.J. Gerontol. A Biol. Sci. Med. Sci.2024793glad25710.1093/gerona/glad257 37948612
    [Google Scholar]
  24. ZouA. XiaoT. ChiB. Engineered exosomes with growth differentiation factor-15 overexpression enhance cardiac repair after myocardial injury.Int. J. Nanomedicine2024193295331410.2147/IJN.S454277 38606373
    [Google Scholar]
  25. PatsalosA. HalaszL. Medina-SerpasM.A. A growth factor–expressing macrophage subpopulation orchestrates regenerative inflammation via GDF-15.J. Exp. Med.20222191e2021042010.1084/jem.20210420 34846534
    [Google Scholar]
  26. ShibasakiI. OtaniN. OuchiM. Utility of growth differentiation factor-15 as a predictor of cardiovascular surgery outcomes: Current research and future directions.J. Cardiol.202483321121810.1016/j.jjcc.2023.08.013 37648079
    [Google Scholar]
  27. PageM.J. McKenzieJ.E. BossuytP.M. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.BMJ202137271n7110.1136/bmj.n71 33782057
    [Google Scholar]
  28. CampbellM. McKenzieJ.E. SowdenA. Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline.BMJ2020368l689010.1136/bmj.l6890 31948937
    [Google Scholar]
  29. HaddawayN.R. PageM.J. PritchardC.C. McGuinnessL.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020‐compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis.Campbell Syst. Rev.2022182e123010.1002/cl2.1230 36911350
    [Google Scholar]
  30. LaurensC. ParmarA. MurphyE. Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans.JCI Insight202056e13187010.1172/jci.insight.131870 32106110
    [Google Scholar]
  31. PlomgaardP. HansenJ.S. TownsendL.K. GDF15 is an exercise-induced hepatokine regulated by glucagon and insulin in humans.Front. Endocrinol. (Lausanne)202213103794810.3389/fendo.2022.1037948 36545337
    [Google Scholar]
  32. ChiarielloA. ConteG. RossettiL. TrofarelloL. SalvioliS. ConteM. Different roles of circulating and intramuscular GDF15 as markers of skeletal muscle health.Front. Endocrinol. (Lausanne)202415140404710.3389/fendo.2024.1404047 38808117
    [Google Scholar]
  33. Aguilar-RecarteD. BarrosoE. ZhangM. A positive feedback loop between AMPK and GDF15 promotes metformin antidiabetic effects.Pharmacol. Res.202318710657810.1016/j.phrs.2022.106578 36435271
    [Google Scholar]
  34. KobayashiM. KasamatsuS. ShinozakiS. YasuharaS. KanekiM. Myostatin deficiency not only prevents muscle wasting but also improves survival in septic mice.Am. J. Physiol. Endocrinol. Metab.20213201E150E15910.1152/ajpendo.00161.2020 33284091
    [Google Scholar]
  35. TangH. InokiK. BrooksS.V. mTORC1 underlies age‐related muscle fiber damage and loss by inducing oxidative stress and catabolism.Aging Cell2019183e1294310.1111/acel.12943 30924297
    [Google Scholar]
  36. JonesJ.E. CadenaS.M. GongC. Supraphysiologic administration of GDF11 induces cachexia in part by upregulating GDF15.Cell Rep.20182261522153010.1016/j.celrep.2018.01.044 29425507
    [Google Scholar]
  37. ChungH.K. RyuD. KimK.S. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis.J. Cell Biol.2017216114916510.1083/jcb.201607110 27986797
    [Google Scholar]
  38. KarakuyuN. BelviranliM. OkudanN. Association between pentraxin 3 and growth differentiation factor-15 in adolescent male swimmers.Bratisl. Med. J.2017118635536010.4149/BLL_2017_067 28664745
    [Google Scholar]
  39. GilC.I. OstM. KaschJ. SchumannS. HeiderS. KlausS. Role of GDF15 in active lifestyle induced metabolic adaptations and acute exercise response in mice.Sci. Rep.2019912012010.1038/s41598‑019‑56922‑w 31882966
    [Google Scholar]
  40. KleinertM. ClemmensenC. SjøbergK.A. Exercise increases circulating GDF15 in humans.Mol. Metab.2018918719110.1016/j.molmet.2017.12.016 29398617
    [Google Scholar]
  41. Sanchis-GomarF. BonaguriC. AloeR. Effects of acute exercise and xanthine oxidase inhibition on novel cardiovascular biomarkers.Transl. Res.2013162210210910.1016/j.trsl.2013.02.006 23507375
    [Google Scholar]
  42. MunkP.S. ValborglandT. ButtN. LarsenA.I. Response of growth differentiation factor-15 to percutaneous coronary intervention and regular exercise training.Scand. Cardiovasc. J.2011451273210.3109/14017431.2010.516368 20836754
    [Google Scholar]
  43. TchouI. MargeliA. TsironiM. Growth-differentiation factor-15, endoglin and N-terminal pro-brain natriuretic peptide induction in athletes participating in an ultramarathon foot race.Biomarkers200914641842210.1080/13547500903062976 19563304
    [Google Scholar]
  44. MiyaueN. YabeH. NagaiM. Serum GDF-15 levels in patients with parkinson’s disease, progressive supranuclear palsy, and multiple system atrophy.Neurol. Int.20231531044105110.3390/neurolint15030066 37755357
    [Google Scholar]
  45. HongS.W. KangJ.H. Growth differentiation factor-15 as a modulator of bone and muscle metabolism.Front. Endocrinol. (Lausanne)20221394817610.3389/fendo.2022.948176 36325442
    [Google Scholar]
  46. AlcazarJ. FrandsenU. ProkhorovaT. Changes in systemic GDF15 across the adult lifespan and their impact on maximal muscle power: The copenhagen sarcopenia study.J. Cachexia Sarcopenia Muscle20211261418142710.1002/jcsm.12823 34617415
    [Google Scholar]
  47. YazawaH. FukudaT. KanedaH. Association of serum growth differentiation factor-15 with eGFR and hemoglobin in healthy older females.Int. J. Cardiol. Heart Vasc.20203110065110.1016/j.ijcha.2020.100651 33134478
    [Google Scholar]
  48. KimH. KimK.M. KangM.J. LimS. Growth differentiation factor-15 as a biomarker for sarcopenia in aging humans and mice.Exp. Gerontol.202014211111510.1016/j.exger.2020.111115 33069782
    [Google Scholar]
  49. ConteM. MartucciM. MosconiG. GDF15 plasma level is inversely associated with level of physical activity and correlates with markers of inflammation and muscle weakness.Front. Immunol.20201191510.3389/fimmu.2020.00915 32477368
    [Google Scholar]
  50. Enríquez-SchmidtJ. Mautner MolinaC. Kalazich RosalesM. Moderate-intensity constant or high-intensity interval training? Metabolic effects on candidates to undergo bariatric surgery.Nutr. Metab. Cardiovasc. Dis.20243471681169110.1016/j.numecd.2024.03.001 38553359
    [Google Scholar]
  51. OrtoláR. García-EsquinasE. Buño-SotoA. Associations of device‐measured sleep, sedentariness and physical activity with growth differentiation factor 15 in older adults.J. Cachexia Sarcopenia Muscle20221321003101210.1002/jcsm.12924 35132822
    [Google Scholar]
  52. YasudaT. IshiharaT. IchimuraA. IshiharaN. Mitochondrial dynamics define muscle fiber type by modulating cellular metabolic pathways.Cell Rep.202342511243410.1016/j.celrep.2023.112434 37097817
    [Google Scholar]
  53. KleinA.B. NicolaisenT.S. ØrtenbladN. Pharmacological but not physiological GDF15 suppresses feeding and the motivation to exercise.Nat. Commun.2021121104110.1038/s41467‑021‑21309‑x 33589633
    [Google Scholar]
  54. LabourA. LacM. FrassinL. GDF15 is dispensable for the insulin-sensitizing effects of chronic exercise.Cell Rep.202443811457710.1016/j.celrep.2024.114577 39096490
    [Google Scholar]
  55. ObaK. IshikawaJ. TamuraY. Serum growth differentiation factor 15 level is associated with muscle strength and lower extremity function in older patients with cardiometabolic disease.Geriatr. Gerontol. Int.2020201098098710.1111/ggi.14021 32886834
    [Google Scholar]
  56. RezaeiS. EslamiR. TartibianB. The effects of TRX suspension training on sarcopenic biomarkers and functional abilities in elderlies with sarcopenia: A controlled clinical trial.BMC Sports Sci. Med. Rehabil.20241615810.1186/s13102‑024‑00849‑x 38409184
    [Google Scholar]
  57. DengM. BianY. ZhangQ. ZhouX. HouG. Growth differentiation factor-15 as a biomarker for sarcopenia in patients with chronic obstructive pulmonary disease.Front. Nutr.2022989709710.3389/fnut.2022.897097 35845807
    [Google Scholar]
  58. FukudaT. NakajimaT. YazawaH. Relationship between the serum GDF-15 concentration and muscle function in female patients receiving aortic valve replacement (TAVR, SAVR): Comparison with healthy elderly female subjects.Int. J. Cardiol. Heart Vasc.20224010103210.1016/j.ijcha.2022.101032 35495578
    [Google Scholar]
  59. BekfaniT. Bekhite ElsaiedM. DerlienS. Skeletal muscle function, structure, and metabolism in patients with heart failure with reduced ejection fraction and heart failure with preserved ejection fraction.Circ. Heart Fail.20201312e00719810.1161/CIRCHEARTFAILURE.120.007198 33302709
    [Google Scholar]
  60. HerpichC. FranzK. OstM. Associations between serum GDF15 concentrations, muscle mass, and strength show sex-specific differences in older hospital patients.Rejuvenation Res.2021241141910.1089/rej.2020.2308 32475214
    [Google Scholar]
  61. PatelM.S. LeeJ. BazM. Growth differentiation factor‐15 is associated with muscle mass in chronic obstructive pulmonary disease and promotes muscle wasting in vivo.J. Cachexia Sarcopenia Muscle20167443644810.1002/jcsm.12096 27239406
    [Google Scholar]
  62. OstM. Igual GilC. ColemanV. Muscle-derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress.EMBO Rep.2020213e4880410.15252/embr.201948804 32026535
    [Google Scholar]
  63. YamamotoH. TakeshimaF. HaraguchiM. High serum concentrations of growth differentiation factor-15 and their association with Crohn’s disease and a low skeletal muscle index.Sci. Rep.2022121659110.1038/s41598‑022‑10587‑0 35449185
    [Google Scholar]
  64. DengM. ZhouX. LiY. Ultrasonic elastography of the rectus femoris, a potential tool to predict sarcopenia in patients with chronic obstructive pulmonary disease.Front. Physiol.20221278342110.3389/fphys.2021.783421 35069243
    [Google Scholar]
  65. LeeS.H. LeeJ.Y. LimK.H. LeeY.S. KohJ.M. Associations between plasma growth and differentiation factor-15 with aging phenotypes in muscle, adipose tissue, and bone.Calcif. Tissue Int.2022110223624310.1007/s00223‑021‑00912‑6 34499185
    [Google Scholar]
  66. SeoM.W. JungS.W. KimS.W. LeeJ.M. JungH.C. SongJ.K. Effects of 16 weeks of resistance training on muscle quality and muscle growth factors in older adult women with sarcopenia: A randomized controlled trial.Int. J. Environ. Res. Public Health20211813676210.3390/ijerph18136762 34201810
    [Google Scholar]
  67. GarfieldB.E. CrosbyA. ShaoD. Growth/differentiation factor 15 causes TGFβ-activated kinase 1-dependent muscle atrophy in pulmonary arterial hypertension.Thorax201974216417610.1136/thoraxjnl‑2017‑211440 30554141
    [Google Scholar]
  68. AlyamiR.M. AlhowikanA.M. Effect of supervised exercise training on exercise capacity, pulmonary function and growth differentiation factor 15 levels in patients with interstitial lung disease: A preliminary study.Isokinet. Exerc. Sci.202230322122910.3233/IES‑210123
    [Google Scholar]
  69. Igual GilC. LöserA. LossowK. Temporal dynamics of muscle mitochondrial uncoupling-induced integrated stress response and ferroptosis defense.Front. Endocrinol. (Lausanne)202314127786610.3389/fendo.2023.1277866 37941910
    [Google Scholar]
  70. EnarssonM. FeldreichT. BybergL. NowakC. LindL. ÄrnlövJ. Association between cardiorespiratory fitness and circulating proteins in 50-year-old Swedish men and women: A cross-sectional study.Sports Med. Open2021715210.1186/s40798‑021‑00343‑5 34312731
    [Google Scholar]
  71. ZhangH. MulyaA. NieuwoudtS. GDF15 mediates the effect of skeletal muscle contraction on glucose-stimulated insulin secretion.Diabetes20237281070108210.2337/db22‑0019 37224335
    [Google Scholar]
  72. DorianD. GustafsonD. QuinnR. Exercise-dependent modulation of immunological response pathways in endurance athletes with and without atrial fibrillation.J. Am. Heart Assoc.2024136e03364010.1161/JAHA.123.033640 38497478
    [Google Scholar]
  73. ShiomitsuS. HansenC.M. LenfestM.I. FryeC.W. WakshlagJ.J. Serum myostatin decreases in exercising and aging Alaskan sled dogs, while growth and differentiation factor 15 remains unaltered.J. Am. Vet. Med. Assoc.2022260S3S77S8210.2460/javma.22.07.0323 36173760
    [Google Scholar]
  74. TownsendL.K. MedakK. WeberA.J. DibeH. ShamshoumH. WrightD.C. CHOP is dispensable for exercise-induced increases in GDF15.J. Appl. Physiol.2022132241342210.1152/japplphysiol.00698.2021 34913737
    [Google Scholar]
  75. BagheriR. Hooshmand MoghadamB. CandowD.G. Effects of Icelandic yogurt consumption and resistance training in healthy untrained older males.Br. J. Nutr.202212791334134210.1017/S0007114521002166 34121642
    [Google Scholar]
  76. Kaleta-DussA.M. Lewicka-PotockaZ. Dąbrowska-KugackaA. RaczakG. LewickaE. Myocardial injury and overload among amateur marathoners as indicated by changes in concentrations of cardiovascular biomarkers.Int. J. Environ. Res. Public Health20201717619110.3390/ijerph17176191 32859020
    [Google Scholar]
  77. PofféC. RamaekersM. Van ThienenR. HespelP. Ketone ester supplementation blunts overreaching symptoms during endurance training overload.J. Physiol.2019597123009302710.1113/JP277831 31039280
    [Google Scholar]
  78. ZhangH. FealyC.E. KirwanJ.P. Exercise training promotes a GDF15-associated reduction in fat mass in older adults with obesity.Am. J. Physiol. Endocrinol. Metab.20193165E829E83610.1152/ajpendo.00439.2018 30860878
    [Google Scholar]
  79. CampderrósL. Sánchez-InfantesD. VillarroyaJ. Altered GDF15 and FGF21 levels in response to strenuous exercise: A study in marathon runners.Front. Physiol.20201155010210.3389/fphys.2020.550102 33329017
    [Google Scholar]
  80. FiorenzaM. ChecaA. SandsdalR.M. Weight-loss maintenance is accompanied by interconnected alterations in circulating FGF21-adiponectin-leptin and bioactive sphingolipids.Cell Rep. Med.20245710162910.1016/j.xcrm.2024.101629 38959886
    [Google Scholar]
  81. MoghaddasiY. GhazalianF. AbediankenariS. EbrahimK. AbednatanziH. Effect of aerobic and resistance training on GDF-15 levels in patients with type 1 diabetes.J. Mazandaran Univ. Med. Sci.202030186123132
    [Google Scholar]
  82. YardleyM. UelandT. AukrustP. Immediate response in markers of inflammation and angiogenesis during exercise: A randomised cross-over study in heart transplant recipients.Open Heart201742e00063510.1136/openhrt‑2017‑000635 29225901
    [Google Scholar]
  83. RostamiN. Fabre-EstremeraB. Buño-SotoA. BanegasJ.R. Rodríguez-ArtalejoF. OrtoláR. Growth differentiation factor 15 and malnutrition in older adults.J. Nutr. Health Aging202428610023010.1016/j.jnha.2024.100230 38593633
    [Google Scholar]
  84. RangrazE. MirzaeiB. Rahmani NiaF. The effect of resistance training on serum levels of NT-proBNP, GDF-15, and markers of cardiac damage in the elderly males.Int J Appl Exerc Physiol2019813814810.30472/ijaep.v8i1.329
    [Google Scholar]
  85. HofmannM. Schober-HalperB. OesenS. Effects of elastic band resistance training and nutritional supplementation on muscle quality and circulating muscle growth and degradation factors of institutionalized elderly women: The Vienna Active Ageing Study (VAAS).Eur. J. Appl. Physiol.2016116588589710.1007/s00421‑016‑3344‑8 26931422
    [Google Scholar]
  86. HechtS. BoxhammerE. KaufmannR. CT-Diagnosed sarcopenia and cardiovascular biomarkers in patients undergoing transcatheter aortic valve replacement: is it possible to predict muscle loss based on laboratory tests?-A multicentric retrospective analysis.J. Pers. Med.2022129145310.3390/jpm12091453 36143238
    [Google Scholar]
  87. Sanchez-SánchezJ.L. HeL. Virecoulon GiudiciK. Circulating levels of apelin, GDF-15 and sarcopenia: lack of association in the MAPT study.J. Nutr. Health Aging202226656457010.1007/s12603‑022‑1800‑1 35718864
    [Google Scholar]
  88. KimM. WalstonJ.D. WonC.W. Associations between elevated growth differentiation factor-15 and sarcopenia among community-dwelling older adults.J. Gerontol. A Biol. Sci. Med. Sci.202277477078010.1093/gerona/glab201
    [Google Scholar]
  89. SeoM.W. JungS.W. KimS.W. JungH.C. KimD.Y. SongJ.K. Comparisons of muscle quality and muscle growth factor between sarcopenic and non-sarcopenic older women.Int. J. Environ. Res. Public Health20201718658110.3390/ijerph17186581 32927586
    [Google Scholar]
  90. ParkK. AhnC.W. KimY. NamJ.S. The effect of Korean red ginseng on sarcopenia biomarkers in type 2 diabetes patients.Arch. Gerontol. Geriatr.20209010410810.1016/j.archger.2020.104108 32470863
    [Google Scholar]
  91. OsawaY. SembaR.D. FantoniG. Plasma proteomic signature of the risk of developing mobility disability: A 9‐year follow‐up.Aging Cell2020194e1313210.1111/acel.13132 32157804
    [Google Scholar]
  92. SembaR.D. Gonzalez-FreireM. TanakaT. Elevated plasma growth and differentiation factor 15 is associated with slower gait speed and lower physical performance in healthy community-dwelling adults.J. Gerontol. A Biol. Sci. Med. Sci.202075117518010.1093/gerona/glz071 30874790
    [Google Scholar]
  93. HofmannM. HalperB. OesenS. Serum concentrations of insulin-like growth factor-1, members of the TGF-beta superfamily and follistatin do not reflect different stages of dynapenia and sarcopenia in elderly women.Exp. Gerontol.201564354510.1016/j.exger.2015.02.008 25681638
    [Google Scholar]
  94. Hooshmand-MoghadamB. JohneM. GolestaniF. Effects of soy milk ingestion immediately after resistance training on muscular-related biomarkers in older males: A randomized controlled trial.Biol. Sport20234041207121710.5114/biolsport.2023.123894 37867735
    [Google Scholar]
  95. RaffinJ. RollandY. PariniA. Association between physical activity, growth differentiation factor 15 and bodyweight in older adults: A longitudinal mediation analysis.J. Cachexia Sarcopenia Muscle202314277178010.1002/jcsm.13152 36999490
    [Google Scholar]
  96. ItoT. NakanishiY. YamajiN. MurakamiS. SchafferS.W. Induction of growth differentiation factor 15 in skeletal muscle of old taurine transporter knockout mouse.Biol. Pharm. Bull.201841343543910.1248/bpb.b17‑00969 29491220
    [Google Scholar]
  97. SnokeD.B. BellefleurE. RehmanH.T. Skeletal muscle adaptations in patients with lung cancer: Longitudinal observations from the whole body to cellular level.J. Cachexia Sarcopenia Muscle20231462579259010.1002/jcsm.13332 37727010
    [Google Scholar]
  98. ZhangW. SunW. GuX. GDF-15 in tumor-derived exosomes promotes muscle atrophy via Bcl-2/caspase-3 pathway.Cell Death Discov.20228116210.1038/s41420‑022‑00972‑z 35379793
    [Google Scholar]
  99. NarasimhanA. ShahdaS. KaysJ.K. Identification of potential serum protein biomarkers and pathways for pancreatic cancer cachexia using an aptamer-based discovery platform.Cancers (Basel)20201212378710.3390/cancers12123787 33334063
    [Google Scholar]
  100. GeppertJ. WalthA. Terrón ExpósitoR. Aging aggravates cachexia in tumor-bearing mice.Cancers (Basel)20211419010.3390/cancers14010090 35008253
    [Google Scholar]
  101. RuncoD.V. DiMeglioL.A. VanderpoolC.P. Growth differentiation factor 15 (GDF15) elevation in children with newly diagnosed cancer.Front. Oncol.202313129522810.3389/fonc.2023.1295228 38146512
    [Google Scholar]
  102. LeeC.W. KimI. KohY. Monitoring energy balance through clinical and serum biomarkers in patients with hematologic malignancies undergoing chemotherapy.Ann. Hematol.2022101122759276910.1007/s00277‑022‑04984‑8 36136099
    [Google Scholar]
  103. LuanY. ZhangY. YuS.Y. Development of ovarian tumour causes significant loss of muscle and adipose tissue: A novel mouse model for cancer cachexia study.J. Cachexia Sarcopenia Muscle20221321289130110.1002/jcsm.12864 35044098
    [Google Scholar]
  104. MolfinoA. AmabileM.I. ImbimboG. Association between growth differentiation factor-15 (GDF-15) serum levels, anorexia and low muscle mass among cancer patients.Cancers (Basel)20201319910.3390/cancers13010099 33396237
    [Google Scholar]
  105. BernardoB. JoaquimS. GarrenJ. Characterization of cachexia in the human fibrosarcoma HT-1080 mouse tumour model.J. Cachexia Sarcopenia Muscle20201161813182910.1002/jcsm.12618 32924335
    [Google Scholar]
  106. LernerL. TaoJ. LiuQ. MAP3K11/GDF15 axis is a critical driver of cancer cachexia.J. Cachexia Sarcopenia Muscle20167446748210.1002/jcsm.12077 27239403
    [Google Scholar]
  107. LernerL. HayesT.G. TaoN. Plasma growth differentiation factor 15 is associated with weight loss and mortality in cancer patients.J. Cachexia Sarcopenia Muscle20156431732410.1002/jcsm.12033 26672741
    [Google Scholar]
  108. TsaiV.W.W. MaciaL. JohnenH. TGF-b superfamily cytokine MIC-1/GDF15 is a physiological appetite and body weight regulator.PLoS One201382e5517410.1371/journal.pone.0055174 23468844
    [Google Scholar]
  109. LehtonenJ.M. ForsströmS. BottaniE. FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders.Neurology201687222290229910.1212/WNL.0000000000003374 27794108
    [Google Scholar]
  110. VarhaugK.N. HikmatO. NakkestadH.L. VedelerC.A. BindoffL.A. Serum biomarkers in primary mitochondrial disorders.Brain Commun.202131fcaa22210.1093/braincomms/fcaa222 33501425
    [Google Scholar]
  111. HuddarA. GovindarajP. ChiplunkarS. Serum fibroblast growth factor 21 and growth differentiation factor 15: Two sensitive biomarkers in the diagnosis of mitochondrial disorders.Mitochondrion20216017017710.1016/j.mito.2021.08.011 34419687
    [Google Scholar]
  112. LehtonenJ.M. AuranenM. DarinN. Diagnostic value of serum biomarkers FGF21 and GDF15 compared to muscle sample in mitochondrial disease.J. Inherit. Metab. Dis.202144246948010.1002/jimd.12307 32857451
    [Google Scholar]
  113. JiX. ZhaoL. JiK. Growth differentiation factor 15 is a novel diagnostic biomarker of mitochondrial diseases.Mol. Neurobiol.201754108110811610.1007/s12035‑016‑0283‑7 27889897
    [Google Scholar]
  114. MonteroR. YuberoD. VillarroyaJ. GDF-15 is elevated in children with mitochondrial diseases and is induced by mitochondrial dysfunction.PLoS One20161112e014870910.1371/journal.pone.0148709
    [Google Scholar]
  115. PeñasA. Fernández-De la TorreM. Laine-MenéndezS. Plasma gelsolin reinforces the diagnostic value of FGF-21 and GDF-15 for mitochondrial disorders.Int. J. Mol. Sci.20212212639610.3390/ijms22126396 34203775
    [Google Scholar]
  116. CaiL. LiC. WangY. MoY. YinJ. MaX. Increased serum GDF15 related to improvement in metabolism by lifestyle intervention among young overweight and obese adults.Diabetes Metab. Syndr. Obes.2021141195120210.2147/DMSO.S302033 33762836
    [Google Scholar]
  117. SaeidiA. Nouri-HabashiA. RaziO. Astaxanthin supplemented with high-intensity functional training decreases adipokines levels and cardiovascular risk factors in men with obesity.Nutrients202315228610.3390/nu15020286 36678157
    [Google Scholar]
  118. QuistJ.S. KleinA.B. FærchK. Effects of acute exercise and exercise training on plasma GDF15 concentrations and associations with appetite and cardiometabolic health in individuals with overweight or obesity – A secondary analysis of a randomized controlled trial.Appetite202318210642310.1016/j.appet.2022.106423 36563967
    [Google Scholar]
  119. ChangJ.S. NamkungJ. Effects of exercise intervention on mitochondrial stress biomarkers in metabolic syndrome patients: A randomized controlled trial.Int. J. Environ. Res. Public Health2021185224210.3390/ijerph18052242 33668309
    [Google Scholar]
  120. NgaH.T. JangI.Y. KimD.A. Serum GDF15 level is independent of sarcopenia in older Asian adults.Gerontology202167552553110.1159/000513600
    [Google Scholar]
  121. MerchantR.A. ChanY.H. AnbarasanD. VellasB. Association of intrinsic capacity with functional ability, sarcopenia and systemic inflammation in pre-frail older adults.Front. Med. (Lausanne)202411137419710.3389/fmed.2024.1374197 38510450
    [Google Scholar]
  122. PiccaA. CalvaniR. Coelho-JúniorH.J. MariniF. LandiF. MarzettiE. Circulating inflammatory, mitochondrial dysfunction, and senescence-related markers in older adults with physical frailty and sarcopenia: A BIOSPHERE exploratory study.Int. J. Mol. Sci.202223221400610.3390/ijms232214006 36430485
    [Google Scholar]
  123. TsaiJ.S. WangS.Y. ChangC.H. Identification of traumatic acid as a potential plasma biomarker for sarcopenia using a metabolomics‐based approach.J. Cachexia Sarcopenia Muscle202213127628610.1002/jcsm.12895 34939349
    [Google Scholar]
  124. NishikawaR. FukudaT. HaruyamaA. Association between serum GDF-15, myostatin, and sarcopenia in cardiovascular surgery patients.Int. J. Cardiol. Heart Vasc.20224210111410.1016/j.ijcha.2022.101114 36071948
    [Google Scholar]
  125. NakajimaT. ShibasakiI. SawaguchiT. Growth differentiation factor-15 (GDF-15) is a biomarker of muscle wasting and renal dysfunction in preoperative cardiovascular surgery patients.J. Clin. Med.2019810157610.3390/jcm8101576 31581569
    [Google Scholar]
  126. RobachP. RecalcatiS. GirelliD. Alterations of systemic and muscle iron metabolism in human subjects treated with low-dose recombinant erythropoietin.Blood2009113266707671510.1182/blood‑2008‑09‑178095 19264680
    [Google Scholar]
  127. TannoT. BhanuN.V. OnealP.A. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin.Nat. Med.20071391096110110.1038/nm1629 17721544
    [Google Scholar]
  128. WenB. TangR. TangS. A comparative study on riboflavin responsive multiple acyl-CoA dehydrogenation deficiency due to variants in FLAD1 and ETFDH gene.J. Hum. Genet.2024693-412513110.1038/s10038‑023‑01216‑3 38228875
    [Google Scholar]
  129. DuvvuriB. Gonzalez-ChapaJ.A. PachmanL.M. The emerging role of growth differentiation factor 15 as a potential disease biomarker in juvenile dermatomyositis.Rheumatology (Oxford)2023kead65410.1093/rheumatology/kead654 38058222
    [Google Scholar]
  130. De PaepeB. BrackeK.R. De BleeckerJ.L. Retrospective study shows that serum levels of chemokine CXCL10 and cytokine GDF15 support a diagnosis of sporadic inclusion body myositis and immune-mediated necrotizing myopathy.Brain Sci.20231310136910.3390/brainsci13101369 37891738
    [Google Scholar]
  131. LinY. WangJ. RenH. Mitochondrial myopathy without extraocular muscle involvement: A unique clinicopathologic profile.J. Neurol.2024271286487610.1007/s00415‑023‑12005‑5 37847292
    [Google Scholar]
  132. JoelM.M. PontifexC. MartensK. ChhibberS. de KoningJ. PfefferG. Transcriptome analysis from muscle biopsy tissues in late-onset myopathies identifies potential biomarkers correlating to muscle pathology.Neuromuscul. Disord.202232864365310.1016/j.nmd.2022.04.009 35850946
    [Google Scholar]
  133. KalkoS.G. PacoS. JouC. Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies.BMC Genomics20141519110.1186/1471‑2164‑15‑91 24484525
    [Google Scholar]
  134. Dominguez-GonzalezC. BadosaC. Madruga-GarridoM. Growth differentiation factor 15 is a potential biomarker of therapeutic response for TK2 deficient myopathy.Sci. Rep.20201011011110.1038/s41598‑020‑66940‑8 32572108
    [Google Scholar]
  135. De PaepeB. VerhammeF. De BleeckerJ.L. The myokine GDF-15 is a potential biomarker for myositis and associates with the protein aggregates of sporadic inclusion body myositis.Cytokine202012715496610.1016/j.cyto.2019.154966 31901761
    [Google Scholar]
  136. WuQ. WangW. QiuL. Activity prediction modeling based on a combination of growth differentiation factor 15 and serum biomarker levels in dermatomyositis and polymyositis.Arch. Med. Res.202455710305810.1016/j.arcmed.2024.103058
    [Google Scholar]
  137. NichterwitzS. NijssenJ. StorvallH. LCM-seq reveals unique transcriptional adaptation mechanisms of resistant neurons and identifies protective pathways in spinal muscular atrophy.Genome Res.20203081083109610.1101/gr.265017.120 32820007
    [Google Scholar]
  138. JärvilehtoJ. HarjuhaahtoS. PaluE. Serum creatine, not neurofilament light, is elevated in CHCHD10-linked spinal muscular atrophy.Front. Neurol.20221379393710.3389/fneur.2022.793937 35250809
    [Google Scholar]
  139. JenningsM.J. KagiavaA. VendredyL. NCAM1 and GDF15 are biomarkers of Charcot-Marie-Tooth disease in patients and mice.Brain2022145113999401510.1093/brain/awac055 35148379
    [Google Scholar]
  140. HiranoT. DoiK. MatsunagaK. A novel role of growth differentiation factor (GDF)-15 in overlap with sedentary lifestyle and cognitive risk in COPD.J. Clin. Med.202099273710.3390/jcm9092737 32847145
    [Google Scholar]
  141. MerchantR.A. ChanY.H. AnbarasanD. AprahamianI. Association of motoric cognitive risk syndrome with sarcopenia and systemic inflammation in pre-frail older Adults.Brain Sci.202313693610.3390/brainsci13060936 37371414
    [Google Scholar]
  142. SabaratnamR. KristensenJ.M. PedersenA.J.T. Acute exercise increases GDF15 and unfolded potein response/integrated stress response in muscle in type 2 diabetes.J. Clin. Endocrinol. Metab.202410971754176410.1210/clinem/dgae032 38242693
    [Google Scholar]
  143. PerroneM.A. PomiatoE. PalmieriR. The effects of exercise training on cardiopulmonary exercise testing and cardiac biomarkers in adult patients with hypoplastic left heart syndrome and Fontan circulation.J. Cardiovasc. Dev. Dis.20229617110.3390/jcdd9060171 35735800
    [Google Scholar]
  144. BarmaM. KhanF. PriceR.J.G. Association between GDF-15 levels and changes in vascular and physical function in older patients with hypertension.Aging Clin. Exp. Res.20172951055105910.1007/s40520‑016‑0636‑0 27734214
    [Google Scholar]
  145. RullmanE. MelinM. MandićM. GononA. Fernandez-GonzaloR. GustafssonT. Circulatory factors associated with function and prognosis in patients with severe heart failure.Clin. Res. Cardiol.2020109665567210.1007/s00392‑019‑01554‑3 31562542
    [Google Scholar]
  146. MirnaM. LichtenauerM. WernlyB. Novel cardiovascular biomarkers in patients with cardiovascular diseases undergoing intensive physical exercise.Panminerva Med.202062313514210.23736/S0031‑0808.20.03838‑0 32309918
    [Google Scholar]
  147. FukudaT. YazawaH. NishikawaR. Physiological role of serum growth differentiation factor-15 (GDF-15) level and iron metabolism in community-dwelling older adults.Cureus2024165e6042210.7759/cureus.60422
    [Google Scholar]
  148. KamperR.S. NygaardH. Praeger-JahnsenL. GDF‐15 is associated with sarcopenia and frailty in acutely admitted older medical patients.J. Cachexia Sarcopenia Muscle20241541549155710.1002/jcsm.13513 38890783
    [Google Scholar]
  149. LiY. XieY.P. LiX.M. LuT. Effects of early standardized enteral nutrition on preventing acute muscle loss in the acute exacerbation of chronic obstructive pulmonary disease patients with mechanical ventilation.World J. Emerg. Med.202314319319710.5847/wjem.j.1920‑8642.2023.046 37152533
    [Google Scholar]
  150. KempP.R. PaulR. HinkenA.C. NeilD. RussellA. GriffithsM.J. Metabolic profiling shows pre-existing mitochondrial dysfunction contributes to muscle loss in a model of ICU-acquired weakness.J. Cachexia Sarcopenia Muscle20201151321133510.1002/jcsm.12597 32677363
    [Google Scholar]
  151. XieY. LiuS. ZhengH. CaoL. LiuK. LiX. Utility of plasma GDF-15 for diagnosis and prognosis assessment of ICU-acquired weakness in mechanically ventilated patients: Prospective observational study.BioMed Res. Int.202020201910.1155/2020/3630568 32104689
    [Google Scholar]
  152. RosenbergB.J. HiranoM. QuinziiC.M. Growth differentiation factor-15 as a biomarker of strength and recovery in survivors of acute respiratory failure.Thorax201974111099110110.1136/thoraxjnl‑2019‑213621 31534031
    [Google Scholar]
  153. BlochS.A.A. LeeJ.Y. SyburraT. Increased expression of GDF-15 may mediate ICU-acquired weakness by down-regulating muscle microRNAs.Thorax201570321922810.1136/thoraxjnl‑2014‑206225 25516419
    [Google Scholar]
  154. BlochS.A.A. LeeJ.Y. WortS.J. PolkeyM.I. KempP.R. GriffithsM.J.D. Sustained elevation of circulating growth and differentiation factor-15 and a dynamic imbalance in mediators of muscle homeostasis are associated with the development of acute muscle wasting following cardiac surgery.Crit. Care Med.201341498298910.1097/CCM.0b013e318274671b 23328263
    [Google Scholar]
  155. KooB.K. UmS.H. SeoD.S. Growth differentiation factor 15 predicts advanced fibrosis in biopsy-proven non-alcoholic fatty liver disease.Liver Int.201838469570510.1111/liv.13587 28898507
    [Google Scholar]
  156. TarabeihN. ShalataA. TrofimovS. KalinkovichA. LivshitsG. Growth and differentiation factor 15 is a biomarker for low back pain-associated disability.Cytokine201911781410.1016/j.cyto.2019.01.011 30776685
    [Google Scholar]
  157. SingerJ.P. CalfeeC.S. DelucchiK. Subphenotypes of frailty in lung transplant candidates.Am. J. Transplant.202323453153910.1016/j.ajt.2023.01.020 36740192
    [Google Scholar]
  158. XiongY. WalkerK. MinX. Long-acting MIC-1/GDF15 molecules to treat obesity: Evidence from mice to monkeys.Sci. Transl. Med.20179412eaan873210.1126/scitranslmed.aan8732 29046435
    [Google Scholar]
  159. StolinaM. LuoX. DwyerD. The evolving systemic biomarker milieu in obese ZSF1 rat model of human cardiometabolic syndrome: Characterization of the model and cardioprotective effect of GDF15.PLoS One2020158e023123410.1371/journal.pone.0231234
    [Google Scholar]
  160. DayE.A. FordR.J. SmithB.K. Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss.Nat. Metab.20191121202120810.1038/s42255‑019‑0146‑4 32694673
    [Google Scholar]
  161. GersteinH.C. PareG. HessS. Growth differentiation factor 15 as a novel biomarker for Metformin.Diabetes Care201740228028310.2337/dc16‑1682 27974345
    [Google Scholar]
  162. LertpatipanpongP. LeeJ. KimI. The anti-diabetic effects of NAG-1/GDF15 on HFD/STZ-induced mice.Sci. Rep.20211111502710.1038/s41598‑021‑94581‑y 34294853
    [Google Scholar]
  163. CrawfordJ. CalleR.A. CollinsS.M. A Phase Ib first-in-patient study assessing the safety, tolerability, pharmacokinetics, and pharmacodynamics of Ponsegromab in participants with cancer and cachexia.Clin. Cancer Res.2024303OF1OF910.1158/1078‑0432.CCR‑23‑1631 37982848
    [Google Scholar]
  164. Kim-MullerJ.Y. SongL. LaCarubba PaulhusB. GDF15 neutralization restores muscle function and physical performance in a mouse model of cancer cachexia.Cell Rep.202342111194710.1016/j.celrep.2022.111947 36640326
    [Google Scholar]
  165. AlbuquerqueB. ChenX. Hirenallur-ShanthappaD. Neutralization of GDF15 prevents anorexia and weight loss in the monocrotaline-induced cardiac cachexia rat model.Cells2022117107310.3390/cells11071073 35406637
    [Google Scholar]
  166. LeeB.Y. JeongJ. JungI. GDNF family receptor alpha-like antagonist antibody alleviates chemotherapy-induced cachexia in melanoma-bearing mice.J. Cachexia Sarcopenia Muscle20231431441145310.1002/jcsm.13219 37017344
    [Google Scholar]
  167. SuribenR. ChenM. HigbeeJ. Antibody-mediated inhibition of GDF15–GFRAL activity reverses cancer cachexia in mice.Nat. Med.20202681264127010.1038/s41591‑020‑0945‑x 32661391
    [Google Scholar]
  168. OikawaY. IzumiR. KoideM. Mitochondrial dysfunction underlying sporadic inclusion body myositis is ameliorated by the mitochondrial homing drug MA-5.PLoS One20201512e023106410.1371/journal.pone.0231064
    [Google Scholar]
  169. ShimbaA. EjimaA. IkutaK. Pleiotropic effects of glucocorticoids on the immune system in circadian rhythm and stress.Front. Immunol.20211270695110.3389/fimmu.2021.706951 34691020
    [Google Scholar]
  170. GopiI.K. RattanS.I.S. Biphasic dose–response and hormetic effects of stress hormone hydrocortisone on telomerase-immortalized human bone marrow stem cells in vitro.Dose Response201917410.1177/1559325819889819 31798356
    [Google Scholar]
  171. CalabreseV. ScapagniniG. DavinelliS. Sex hormonal regulation and hormesis in aging and longevity: Role of vitagenes.J. Cell Commun. Signal.20148436938410.1007/s12079‑014‑0253‑7 25381162
    [Google Scholar]
  172. CiminoI. KimH. TungY.C.L. Activation of the hypothalamic–pituitary–adrenal axis by exogenous and endogenous GDF15.Proc. Natl. Acad. Sci. USA202111827e210686811810.1073/pnas.2106868118 34187898
    [Google Scholar]
  173. DíazM. CampderrósL. GuimaraesM.P. Circulating growth-and-differentiation factor-15 in early life: Relation to prenatal and postnatal growth and adiposity measurements.Pediatr. Res.202087589790210.1038/s41390‑019‑0633‑z 31645058
    [Google Scholar]
  174. StratosI. BehrendtA.K. AnselmC. GonzalezA. MittlmeierT. VollmarB. Inhibition of TNF-α restores muscle force, inhibits inflammation, and reduces apoptosis of traumatized skeletal mMuscles.Cells20221115239710.3390/cells11152397 35954240
    [Google Scholar]
  175. ReidM.B. LiY.P. Tumor necrosis factor-α and muscle wasting: A cellular perspective.Respir. Res.20012526927210.1186/rr67 11686894
    [Google Scholar]
  176. WuJ. LinS. ChenW. TNF-α contributes to sarcopenia through caspase-8/caspase-3/GSDME-mediated pyroptosis.Cell Death Discov.2023917610.1038/s41420‑023‑01365‑6 36823174
    [Google Scholar]
  177. ChenS.E. JinB. LiY.P. TNF-α regulates myogenesis and muscle regeneration by activating p38 MAPK.Am. J. Physiol. Cell Physiol.20072925C1660C167110.1152/ajpcell.00486.2006 17151142
    [Google Scholar]
  178. MoonJ.S. GoeminneL.J.E. KimJ.T. Growth differentiation factor 15 protects against the aging-mediated systemic inflammatory response in humans and mice.Aging Cell2020198e1319510.1111/acel.13195 32691494
    [Google Scholar]
  179. ShapiroL. SchererP.E. The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor.Curr. Biol.19988633534010.1016/S0960‑9822(98)70133‑2 9512423
    [Google Scholar]
  180. MartinF.J. AmodeM.R. AnejaA. Ensembl 2023.Nucleic Acids Res.202351D1D933D94110.1093/nar/gkac958 36318249
    [Google Scholar]
  181. KarushevaY. RatcliffM. MörseburgA. The common H202D variant in GDF-15 does not affect its bioactivity but can significantly interfere with measurement of its circulating levels.J. Appl. Lab. Med.2022761388140010.1093/jalm/jfac055 35796717
    [Google Scholar]
  182. ChowC.F.W. GuoX. AsthanaP. Body weight regulation via MT1-MMP-mediated cleavage of GFRAL.Nat. Metab.20224220321210.1038/s42255‑022‑00529‑5 35177851
    [Google Scholar]
  183. BulikC.M. From awareness to action: An urgent call to address the inadequacy of treatment for anorexia nervosa.Am. J. Psychiatry20211789786788
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240327723241018073535
Loading
/content/journals/cmm/10.2174/0115665240327723241018073535
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article. PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test