Skip to content
2000
image of Exercise Alleviates Atherosclerosis Through the Modulation of the NLRP3 Inflammasome

Abstract

Atherosclerosis (AS) is a chronic inflammatory disease closely associated with endothelial dysfunction and oxidative stress. The NOD-like receptor protein 3 (NLRP3) inflammasome, a key regulator of inflammatory responses, can exacerbate the progression of AS when activated. Growing evidence suggests that exercise, as a non-pharmacological intervention, can alleviate the progression of AS by modulating the activity of NLRP3 inflammasome. This review discusses how exercise influences the development of AS through the regulation of NLRP3 inflammasome and the underlying molecular mechanism. This study introduces the structure and activation mechanisms of NLRP3 inflammasome, as well as its role in AS. And summarizes how exercise can ameliorate endothelial dysfunction, regulate lipid metabolism, and suppress oxidative stress and inflammation by affecting the expression and activity of NLRP3 inflammasome, thereby exerting a beneficial impact on AS. Additionally, we explore the effects of exercise on the downstream inflammatory cytokines of NLRP3 inflammasome and how this regulation could help to slow the progression of AS. These findings underscore the therapeutic relevance of exercise in the prevention and treatment of AS. It provides new insights into the role of exercise interventions in the management of AS and lays a theoretical foundation for the development of innovative treatment strategies for cardiovascular disease. Given that the NLRP3 inflammatome plays an important role in the pathogenesis and treatment of AS, exercise therapy strategies targeting the NLRP3 inflammatome will help promote the development of precision medicine for AS.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240368171250419113225
2025-04-25
2025-12-17
Loading full text...

Full text loading...

References

  1. Libby P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc. Res. 2021 117 13 cvab303 10.1093/cvr/cvab303 34550337
    [Google Scholar]
  2. Libby P. The changing landscape of atherosclerosis. Nature 2021 592 7855 524 533 10.1038/s41586‑021‑03392‑8 33883728
    [Google Scholar]
  3. Babaniamansour P. Mohammadi M. Babaniamansour S. Aliniagerdroudbari E. The relation between atherosclerosis plaque composition and plaque rupture. J. Med. Signals Sens. 2020 10 4 267 273 10.4103/jmss.JMSS_48_19 33575199
    [Google Scholar]
  4. Davies M.J. Woolf N. Atherosclerosis: What is it and why does it occur? Br. Heart J. 1993 69 1 S3 S11 (Suppl.) 10.1136/hrt.69.1.3 8427761
    [Google Scholar]
  5. Ikonomidis I. Lekakis J.P. Nikolaou M. Paraskevaidis I. Andreadou I. Kaplanoglou T. Katsimbri P. Skarantavos G. Soucacos P.N. Kremastinos D.T. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation 2008 117 20 2662 2669 10.1161/CIRCULATIONAHA.107.731877 18474811
    [Google Scholar]
  6. Tanase D.M. Valasciuc E. Gosav E.M. Ouatu A. Buliga-Finis O.N. Floria M. Maranduca M.A. Serban I.L. Portrayal of NLRP3 inflammasome in atherosclerosis: Current knowledge and therapeutic targets. Int. J. Mol. Sci. 2023 24 9 8162 10.3390/ijms24098162 37175869
    [Google Scholar]
  7. Bizuti M.R. Meneghel D. Schwede E.C. Jost L.N. Silva D.T.R. Physical Exercise as a modulator of oxidative stress and inflammation in atherosclerotic plaque. J. Adv. Med. Med. Res. 2020 32 19 36 44 10.9734/jammr/2020/v32i1930666
    [Google Scholar]
  8. Hu S. Wan X. Li X. Wang X. Aerobic exercise alleviates pyroptosis-related diseases by regulating NLRP3 inflammasome. Front. Physiol. 2022 13 965366 10.3389/fphys.2022.965366 36187801
    [Google Scholar]
  9. Li X.H. Liu L.Z. Chen L. Pan Q.N. Ouyang Z.Y. Fan D.J. Pan X. Lu S.Y. Luo Q.H. Tao P.Y. Huang H.Q. Aerobic exercise regulates FGF21 and NLRP3 inflammasome-mediated pyroptosis and inhibits atherosclerosis in mice. PLoS One 2022 17 8 e0273527 10.1371/journal.pone.0273527 36006939
    [Google Scholar]
  10. Zhou M. Hu Q. Research progress of NLRP3 inflammasome in the treatment of uveitis. Int. Eye Sci. 2024 24 04 572 576
    [Google Scholar]
  11. Zhou Y. Tong Z. Jiang S. Zheng W. Zhao J. Zhou X. The roles of endoplasmic reticulum in NLRP3 inflammasome activation. Cells 2020 9 5 1219 10.3390/cells9051219 32423023
    [Google Scholar]
  12. Swanson K.V. Deng M. Ting J.P.Y. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 2019 19 8 477 489 10.1038/s41577‑019‑0165‑0 31036962
    [Google Scholar]
  13. Paik S. Kim J.K. Silwal P. Sasakawa C. Jo E.K. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell. Mol. Immunol. 2021 18 5 1141 1160 10.1038/s41423‑021‑00670‑3 33850310
    [Google Scholar]
  14. Sharma M. de Alba E. Structure, activation and regulation of NLRP3 and AIM2 inflammasomes. Int. J. Mol. Sci. 2021 22 2 872 10.3390/ijms22020872 33467177
    [Google Scholar]
  15. Zhang Y Lv X Hu Z Protection of Mcc950 against high-glucose-induced human retinal endothelial cell dysfunction. Cell Death Dis 2017 8 7 e2941 10.1038/cddis.2017.308 28726778
    [Google Scholar]
  16. Chen S. Chen S. Zeng Y. Lin L. Wu C. Ke Y. Liu G. Size‐dependent superparamagnetic iron oxide nanoparticles dictate interleukin‐1β release from mouse bone marrow‐derived macrophages. J. Appl. Toxicol. 2018 38 7 978 986 10.1002/jat.3606 29492987
    [Google Scholar]
  17. Broz P. Dixit V.M. Inflammasomes: Mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 2016 16 7 407 420 10.1038/nri.2016.58 27291964
    [Google Scholar]
  18. He Y. Hara H. Núñez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 2016 41 12 1012 1021 10.1016/j.tibs.2016.09.002 27669650
    [Google Scholar]
  19. Yang M. Lv H. Liu Q. Zhang L. Zhang R. Huang X. Wang X. Han B. Hou S. Liu D. Wang G. Hou J. Yu B. Colchicine alleviates cholesterol crystal-induced endothelial cell pyroptosis through activating AMPK/SIRT1 pathway. Oxid. Med. Cell. Longev. 2020 2020 1 18 10.1155/2020/9173530 32733639
    [Google Scholar]
  20. Hoseini Z. Sepahvand F. Rashidi B. Sahebkar A. Masoudifar A. Mirzaei H. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J. Cell. Physiol. 2018 233 3 2116 2132 10.1002/jcp.25930 28345767
    [Google Scholar]
  21. Duewell P. Kono H. Rayner K.J. Sirois C.M. Vladimer G. Bauernfeind F.G. Abela G.S. Franchi L. Nuñez G. Schnurr M. Espevik T. Lien E. Fitzgerald K.A. Rock K.L. Moore K.J. Wright S.D. Hornung V. Latz E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010 464 7293 1357 1361 10.1038/nature08938 20428172
    [Google Scholar]
  22. Zheng F. Xing S. Gong Z. Mu W. Xing Q. Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice. Mediators Inflamm. 2014 2014 1 8 10.1155/2014/507208 24999295
    [Google Scholar]
  23. Zhang X. Wang Z. Li X. Chen J. Yu Z. Li X. Sun C. Hu L. Wu M. Liu L. Polydatin protects against atherosclerosis by activating autophagy and inhibiting pyroptosis mediated by the NLRP3 inflammasome. J. Ethnopharmacol. 2023 309 116304 10.1016/j.jep.2023.116304 36870461
    [Google Scholar]
  24. Ho C.M. Ho S.L. Jeng Y.M. Lai Y.S. Chen Y.H. Lu S.C. Chen H.L. Chang P.Y. Hu R.H. Lee P.H. Accumulation of free cholesterol and oxidized low-density lipoprotein is associated with portal inflammation and fibrosis in nonalcoholic fatty liver disease. J. Inflamm. 2019 16 1 7 10.1186/s12950‑019‑0211‑5 30983887
    [Google Scholar]
  25. Zeng W. Wu D. Sun Y. Suo Y. Yu Q. Zeng M. Gao Q. Yu B. Jiang X. Wang Y. The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages. Sci. Rep. 2021 11 1 19305 10.1038/s41598‑021‑98437‑3 34588488
    [Google Scholar]
  26. Barrett T.J. Macrophages in atherosclerosis regression. Arterioscler. Thromb. Vasc. Biol. 2020 40 1 20 33 10.1161/ATVBAHA.119.312802 31722535
    [Google Scholar]
  27. Chen Y. Huang Q. Feng Y. Exercise improves cardiac function in the aged rats with myocardial infarction. Physiol. Res. 2023 72 1 27 35 10.33549/physiolres.934966 36545879
    [Google Scholar]
  28. Soori R. Amini A.A. Choobineh S. Eskandari A. Behjat A. Ghram A. Voltarelli F.A. Exercise attenuates myocardial fibrosis and increases angiogenesis-related molecules in the myocardium of aged rats. Arch. Physiol. Biochem. 2022 128 1 1 6 10.1080/13813455.2019.1660370 31475581
    [Google Scholar]
  29. Xi Y. Li Y. Ren W. Bo W. Ma Y. Pan S. Gong D.W. Tian Z. ELABELA-APJ-Akt/YAP signaling axis: A novel mechanism of aerobic exercise in cardioprotection of myocardial infarction rats. Med. Sci. Sports Exerc. 2023 55 7 1172 1183 10.1249/MSS.0000000000003143 36878020
    [Google Scholar]
  30. Huang X Qian J Chen F Impact of aerobic exercise on serum inflammatory factors and cardiopulmonary function in patients with stable chronic obstructive pulmonary disease. CGP 2021 24 28 3615 3628
    [Google Scholar]
  31. Wang Y. Chen L. Zhang M. Li X. Yang X. Huang T. Ban Y. Li Y. Li Q. Zheng Y. Sun Y. Wu J. Yu B. Exercise-induced endothelial Mecp2 lactylation suppresses atherosclerosis via the Ereg/MAPK signalling pathway. Atherosclerosis 2023 375 45 58 10.1016/j.atherosclerosis.2023.05.009 37245426
    [Google Scholar]
  32. Qin F. Ma T. Yu Z. Study on mechanism of myocardial fibrosis in ApoE-/- atherosclerotic mice inhibited by aerobic exercise. Chinese General Practice 2024 27 05 557 562
    [Google Scholar]
  33. Li Y. Sun D. Zheng Y. Effect of swimming exercise induced autophagy activation on atherosclerosis formation. Zhongguo Yundong Yixue Zazhi 2020 39 04 295 301
    [Google Scholar]
  34. Zhang R. Zhang L. Lin Q. Effects of aerobic exercise on blood glucose and insulin levels in chronic intermittent hypoxic rats and mechanism of oxidative stress. Chin. J. Geriatr. 2021 40 05 650 653
    [Google Scholar]
  35. Sun Y. Wu Y. Jiang Y. Liu H. Aerobic exercise inhibits inflammatory response in atherosclerosis via Sestrin1 protein. Exp. Gerontol. 2021 155 111581 10.1016/j.exger.2021.111581 34634412
    [Google Scholar]
  36. Wang Y. Jessica L. Hua W. Six-week aerobic exercise improves oxidative damage of skeletal muscles and promotes myokine production in atherosclerotic mice. Chin. J. Biochem. Mol. Biol. 2023 39 06 857 869
    [Google Scholar]
  37. Gao P. Zhang X. Yin S. Tuo H. Lin Q. Tang F. Liu W. Meta-analysis of the effect of different exercise mode on carotid atherosclerosis. Int. J. Environ. Res. Public Health 2023 20 3 2189 10.3390/ijerph20032189 36767556
    [Google Scholar]
  38. TaheriChadorneshin H. Neyebi-Far S. Effect of resistance exercise training on biochemical markers and anthropometric characteristics involved in atherosclerosis in obese women. J. Basic Res. Med. Sci. 2017 4 4 36 43 10.29252/jbrms.4.4.36
    [Google Scholar]
  39. Wang Y. Ma J. Yang F. Effect of resistance exercise on atherosclerotic vulnerable plaque in exhausted swimming mice. J. Pract. Med. 2019 35 22 3436 3440
    [Google Scholar]
  40. Bachi A.L.L. Barros M.P. Vieira R.P. Rocha G.A. de Andrade P.B.M. Victorino A.B. Ramos L.R. Gravina C.F. Lopes J.D. Vaisberg M. Maranhão R.C. Combined exercise training performed by elderly women reduces redox indexes and proinflammatory cytokines related to atherogenesis. Oxid. Med. Cell. Longev. 2019 2019 1 1 9 10.1155/2019/6469213 31482005
    [Google Scholar]
  41. Patten R.K. McIlvenna L.C. Levinger I. Garnham A.P. Shorakae S. Parker A.G. McAinch A.J. Rodgers R.J. Hiam D. Moreno-Asso A. Stepto N.K. High-intensity training elicits greater improvements in cardio-metabolic and reproductive outcomes than moderate-intensity training in women with polycystic ovary syndrome: A randomized clinical trial. Hum. Reprod. 2022 37 5 1018 1029 10.1093/humrep/deac047 35325125
    [Google Scholar]
  42. Vesterbekkmo E.K. Aksetøy I.L.A. Follestad T. Nilsen H.O. Hegbom K. Wisløff U. Wiseth R. Madssen E. High-intensity interval training induces beneficial effects on coronary atheromatous plaques: A randomized trial. Eur. J. Prev. Cardiol. 2023 30 5 384 392 10.1093/eurjpc/zwac309 36562212
    [Google Scholar]
  43. Paahoo A. Tadibi V. Behpoor N. Effectiveness of continuous aerobic versus high-intensity interval training on atherosclerotic and inflammatory markers in boys with overweight/obesity. Pediatr. Exerc. Sci. 2021 33 3 132 138 10.1123/pes.2020‑0138 33761458
    [Google Scholar]
  44. In het Panhuis W Kooijman S Brouwers B Mild exercise does not prevent atherosclerosis in APOE*3-Leiden.CETP mice or improve lipoprotein profile of men with obesity. Obesity 2020 28 Suppl 1 S93 S103 10.1002/oby.22799 32645256
    [Google Scholar]
  45. Chinese guidelines for risk assessment and management of cardiovascular diseases. hin. Circ. J. 2019 34 01 4 28 10.1097/CD9.0000000000000025
    [Google Scholar]
  46. Cai R. Effect of Taijiquan practice on the size of carotid atherosclerotic plaque in middle-aged adults. SRE 2014 29 2 124 126
    [Google Scholar]
  47. Hu S. Zhang X. Ding Y. Liu X. Xia R. Wang X. Inhibition of SPARC signal by aerobic exercise to ameliorate atherosclerosis. Int. Immunopharmacol. 2024 132 111856 10.1016/j.intimp.2024.111856 38537537
    [Google Scholar]
  48. Gao Y. Qiu H. Chen D. Application of elastic band resistance exercise in patients with coronary heart disease. J. Nantong Univ. 2019 39 3 174 177
    [Google Scholar]
  49. Pedralli M.L. Marschner R.A. Kollet D.P. Neto S.G. Eibel B. Tanaka H. Lehnen A.M. Different exercise training modalities produce similar endothelial function improvements in individuals with prehypertension or hypertension: A randomized clinical trial. Sci. Rep. 2020 10 1 7628 10.1038/s41598‑020‑64365‑x 32376984
    [Google Scholar]
  50. Rahmati-Ahmadabad S. Azarbayjani M.A. Farzanegi P. Moradi L. High-intensity interval training has a greater effect on reverse cholesterol transport elements compared with moderate-intensity continuous training in obese male rats. Eur. J. Prev. Cardiol. 2021 28 7 692 701 10.1177/2047487319887828 33611472
    [Google Scholar]
  51. Attarzadeh Hosseini S.R. Farahati S. Moazzami M. Daloee M. Daloee S. The impact of high-intensity interval training versus moderate-intensity continuous training on carotid intima-media thickness and ankle-brachial index in middle-aged women. Int. J. Prev. Med. 2020 11 1 62 10.4103/ijpvm.IJPVM_524_18 32577192
    [Google Scholar]
  52. Nazari M. Minasian V. Hovsepian S. Effects of two types of moderate- and high-intensity interval training on serum salusin-α and salusin-β levels and lipid profile in women with overweight/obesity. Diabetes Metab. Syndr. Obes. 2020 13 1385 1390 10.2147/DMSO.S248476 32425570
    [Google Scholar]
  53. Aengevaeren V.L. Mosterd A. Braber T.L. Prakken N.H.J. Doevendans P.A. Grobbee D.E. Thompson P.D. Eijsvogels T.M.H. Velthuis B.K. Relationship between lifelong exercise volume and coronary atherosclerosis in athletes. Circulation 2017 136 2 138 148 10.1161/CIRCULATIONAHA.117.027834 28450347
    [Google Scholar]
  54. De Bosscher R. Dausin C. Claus P. Bogaert J. Dymarkowski S. Goetschalckx K. Ghekiere O. Van De Heyning C.M. Van Herck P. Paelinck B. Addouli H.E. La Gerche A. Herbots L. Willems R. Heidbuchel H. Claessen G. Lifelong endurance exercise and its relation with coronary atherosclerosis. Eur. Heart J. 2023 44 26 2388 2399 10.1093/eurheartj/ehad152 36881712
    [Google Scholar]
  55. Claessen G. Eijsvogels T.M.H. Albert C.M. Baggish A.L. Levine B.D. Marijon E. Michos E.D. La Gerche A. Coronary atherosclerosis in athletes: Emerging concepts and preventive strategies. Eur. Heart J. 2025 ehae927 10.1093/eurheartj/ehae927 39791533
    [Google Scholar]
  56. Zhu D. Cao Y. Research progress of anti-inflammatory therapy for atherosclerosis. Chin. J. Mod. Med. 2023 33 05 50 55
    [Google Scholar]
  57. Li D. Yao X. Yue J. Fang Y. Cao G. Midgley A.C. Nishinari K. Yang Y. Advances in bioactivity of microRNAs of plant-derived exosome-like nanoparticles and milk-derived extracellular vesicles. J. Agric. Food Chem. 2022 70 21 6285 6299 10.1021/acs.jafc.2c00631 35583385
    [Google Scholar]
  58. Aengevaeren V.L. Mosterd A. Sharma S. Prakken N.H.J. Möhlenkamp S. Thompson P.D. Velthuis B.K. Eijsvogels T.M.H. Exercise and coronary atherosclerosis: Observations, explanations, relevance, and clinical management. Circulation 2020 141 16 1338 1350 10.1161/CIRCULATIONAHA.119.044467 32310695
    [Google Scholar]
  59. Ding P. Song Y. Yang Y. Zeng C. NLRP3 inflammasome and pyroptosis in cardiovascular diseases and exercise intervention. Front. Pharmacol. 2024 15 1368835 10.3389/fphar.2024.1368835 38681198
    [Google Scholar]
  60. Amersfoort J. Eelen G. Carmeliet P. Immunomodulation by endothelial cells — Partnering up with the immune system? Nat. Rev. Immunol. 2022 22 9 576 588 10.1038/s41577‑022‑00694‑4 35288707
    [Google Scholar]
  61. Ye J. Li L. Wang M. Ma Q. Tian Y. Zhang Q. Liu J. Li B. Zhang B. Liu H. Sun G. Diabetes mellitus promotes the development of atherosclerosis: The role of NLRP3. Front. Immunol. 2022 13 900254 10.3389/fimmu.2022.900254 35844498
    [Google Scholar]
  62. Liu X. Ma J. Ma L. Liu F. Zhang C. Zhang Y. Ni M. Overexpression of tissue factor induced atherothrombosis in apolipoprotein E−/− mice via both enhanced plaque thrombogenicity and plaque instability. J. Mol. Cell. Cardiol. 2019 127 1 10 10.1016/j.yjmcc.2018.11.018 30500376
    [Google Scholar]
  63. Zhang Y. Li X. Pitzer A.L. Chen Y. Wang L. Li P.L. Coronary endothelial dysfunction induced by nucleotide oligomerization domain-like receptor protein with pyrin domain containing 3 inflammasome activation during hypercholesterolemia: Beyond inflammation. Antioxid. Redox Signal. 2015 22 13 1084 1096 10.1089/ars.2014.5978 25739025
    [Google Scholar]
  64. Fan J. Guo R. Gao J. Regulation of Ca2+/NLRP3/Caspase-1 signaling pathway in atherosclerotic endothelial dysfunction. Zhongguo Shengwuzhipinxue Zazhi 2024 37 04 401 408
    [Google Scholar]
  65. Liu X. Zhang R. Shi D. Inhibition of nitric oxide on activation of NLRP3 inflammasome of myoblast/myotubes stimulated by IFN-γ in vitro. Basic & Clinical Medicine 2016 36 3 331
    [Google Scholar]
  66. Xing J. Li R. Gao Y. Wang M. Liu Y. Hong J. Dong J. Gu H. Li L. NLRP3 inflammasome mediate palmitate-induced endothelial dysfunction. Life Sci. 2019 239 116882 10.1016/j.lfs.2019.116882 31705915
    [Google Scholar]
  67. Kim Y.M. Talanian R.V. Li J. Billiar T.R. Nitric oxide prevents IL-1β and IFN-γ-inducing factor (IL-18) release from macrophages by inhibiting caspase-1 (IL-1β-converting enzyme). J. Immunol. 1998 161 8 4122 4128 10.4049/jimmunol.161.8.4122 9780184
    [Google Scholar]
  68. Hernandez C E Cutting edge: Nitric oxide inhibits the NLRP3 inflammasome. J Immunol. 2012 189 11 5113 5117 10.4049/jimmunol.1202479 23100513
    [Google Scholar]
  69. Liu M. Chen X. Ma J. Hassan W. Wu H. Ling J. Shang J. β-Elemene attenuates atherosclerosis in apolipoprotein E-deficient mice via restoring NO levels and alleviating oxidative stress. Biomed. Pharmacother. 2017 95 1789 1798 10.1016/j.biopha.2017.08.092 28962084
    [Google Scholar]
  70. Yu L. Yin M. Yang X. Lu M. Tang F. Wang H. Calpain inhibitor I attenuates atherosclerosis and inflammation in atherosclerotic rats through eNOS/NO/NF-κB pathway. Can. J. Physiol. Pharmacol. 2018 96 1 60 67 10.1139/cjpp‑2016‑0652 28758430
    [Google Scholar]
  71. Silver A.E. Beske S.D. Christou D.D. Donato A.J. Moreau K.L. Eskurza I. Gates P.E. Seals D.R. Overweight and obese humans demonstrate increased vascular endothelial NAD(P)H oxidase-p47(phox) expression and evidence of endothelial oxidative stress. Circulation 2007 115 5 627 637 10.1161/CIRCULATIONAHA.106.657486 17242275
    [Google Scholar]
  72. Xia M. Boini K.M. Abais J.M. Xu M. Zhang Y. Li P.L. Endothelial NLRP3 inflammasome activation and enhanced neointima formation in mice by adipokine visfatin. Am. J. Pathol. 2014 184 5 1617 1628 10.1016/j.ajpath.2014.01.032 24631027
    [Google Scholar]
  73. Liu S. Tao J. Duan F. Li H. Tan H. HHcy induces pyroptosis and atherosclerosis via the lipid raft-mediated NOX-ROS-NLRP3 inflammasome pathway in apoE−/− mice. Cells 2022 11 15 2438 10.3390/cells11152438 35954287
    [Google Scholar]
  74. He B. Nie Q. Wang F. Wang X. Zhou Y. Wang C. Guo J. Fan X. Ye Z. Liu P. Wen J. Hyperuricemia promotes the progression of atherosclerosis by activating endothelial cell pyroptosis via the ROS/NLRP3 pathway. J. Cell. Physiol. 2023 238 8 1808 1822 10.1002/jcp.31038 37475193
    [Google Scholar]
  75. Jiang X. Ma C. Gao Y. Cui H. Zheng Y. Li J. Zong W. Zhang Q. Tongxinluo attenuates atherosclerosis by inhibiting ROS/NLRP3/caspase-1-mediated endothelial cell pyroptosis. J. Ethnopharmacol. 2023 304 116011 10.1016/j.jep.2022.116011 36529253
    [Google Scholar]
  76. Yang Q. Chen S. Wang X. Yang X. Chen L. Huang T. Zheng Y. Zheng X. Wu X. Sun Y. Wu J. Exercise mitigates endothelial pyroptosis and atherosclerosis by downregulating NEAT1 through N6-Methyladenosine modifications. Arterioscler. Thromb. Vasc. Biol. 2023 43 6 910 926 10.1161/ATVBAHA.123.319251 37078289
    [Google Scholar]
  77. Chen N. Chen P. Zhou Y. Chen S. Gong S. Fu M. Geng L. HuNoV non-structural protein P22 induces maturation of IL-1β and IL-18 and N-GSDMD-dependent pyroptosis through activating NLRP3 inflammasome. Vaccines 2023 11 5 993 10.3390/vaccines11050993 37243097
    [Google Scholar]
  78. Kenichiro I Shumpei F Natsuki H Aerobic exercise training-induced irisin secretion is associated with the reduction of arterial stiffness via nitric oxide production in adults with obesity. Appl Physiol Nutr Metab 2020 45 7 715 722 10.1139/apnm‑2019‑0602 31860334
    [Google Scholar]
  79. Gao J. Pan X. Li G. Chatterjee E. Xiao J. Physical exercise protects against endothelial dysfunction in cardiovascular and metabolic diseases. J. Cardiovasc. Transl. Res. 2022 15 3 604 620 10.1007/s12265‑021‑10171‑3 34533746
    [Google Scholar]
  80. Lee J. Hong J. Umetani M. Lavoy E.C. Kim J.H. Park Y. Vascular protection by exercise in obesity: Inflammasome-associated mechanisms. Med. Sci. Sports Exerc. 2020 52 12 2538 2545 10.1249/MSS.0000000000002419 32555019
    [Google Scholar]
  81. Lee S. Park Y. Zhang C. Exercise training prevents coronary endothelial dysfunction in type 2 diabetic mice. Am. J. Biomed. Sci. 2011 3 4 241 252 10.5099/aj110400241 22384308
    [Google Scholar]
  82. Chen H. Montagnani M. Funahashi T. Shimomura I. Quon M.J. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J. Biol. Chem. 2003 278 45 45021 45026 10.1074/jbc.M307878200 12944390
    [Google Scholar]
  83. Wang M. Zhang H. High-intensity intermittent exercise regulates oxidative stress and inflammatory response in obese rats by regulating Nrf2/ARE and NF-κB signaling pathways in a high-fat diet. Jiyinzuxue Yu Yingyong Shengwuxue 2020 39 05 2324 2331
    [Google Scholar]
  84. Zhou Z. Ying C. Zhou X. Shi Y. Xu J. Zhu Y. Wang M. Li Y. Li X. Xiang J. Aerobic exercise training alleviates renal injury in db/db mice through inhibiting Nox4-mediated NLRP3 inflammasome activation. Exp. Gerontol. 2022 168 111934 10.1016/j.exger.2022.111934 36007721
    [Google Scholar]
  85. Laufs U. Wassmann S. Czech T. Münzel T. Eisenhauer M. Böhm M. Nickenig G. Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2005 25 4 809 814 10.1161/01.ATV.0000158311.24443.af 15692095
    [Google Scholar]
  86. Bleda S. de Haro J. Varela C. Ferruelo A. Acin F. Elevated levels of triglycerides and vldl-cholesterol provoke activation of nlrp1 inflammasome in endothelial cells. Int. J. Cardiol. 2016 220 52 55 10.1016/j.ijcard.2016.06.193 27372042
    [Google Scholar]
  87. Sandesara P.B. Virani S.S. Fazio S. Shapiro M.D. The forgotten lipids: Triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocr. Rev. 2019 40 2 537 557 10.1210/er.2018‑00184 30312399
    [Google Scholar]
  88. Zhu J. Gao R. Zhao S. Guidelines for the prevention and treatment of dyslipidemia in adults in China (2016 Revision). Chin. Circ. J. 2016 31 10 937 953
    [Google Scholar]
  89. Qin S. LDL and HDL oxidative modification and atherosclerosis. Adv. Exp. Med. Biol. 2020 1276 157 169 10.1007/978‑981‑15‑6082‑8_10 32705599
    [Google Scholar]
  90. Wen J. Sun H. Yang B. Song E. Song Y. Long-term polystyrene nanoplastic exposure disrupt hepatic lipid metabolism and cause atherosclerosis in ApoE-/- mice. J. Hazard. Mater. 2024 466 133583 10.1016/j.jhazmat.2024.133583 38306833
    [Google Scholar]
  91. He R. Huang Z. Feng Q. Research progress on the role of NLRP3 inflammasome in lipid metabolism. Zhongguo Yaolixue Yu Dulixue Zazhi 2021 35 10 784 785
    [Google Scholar]
  92. Jing M. Wang M. Zhang Y. Celastrol regulates NLRP3 inflammasome signal pathway to improve metabolic dysfunction-associated fatty liver disease in rats. Yaowu Pingjia Yanjiu 2022 45 04 624 632
    [Google Scholar]
  93. Hong N. Lin Y. Ye Z. Yang C. Huang Y. Duan Q. Xie S. The relationship between dyslipidemia and inflammation among adults in east coast China: A cross-sectional study. Front. Immunol. 2022 13 937201 10.3389/fimmu.2022.937201 36032093
    [Google Scholar]
  94. Rajamäki K. Lappalainen J. Öörni K. Välimäki E. Matikainen S. Kovanen P.T. Eklund K.K. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One 2010 5 7 e11765 10.1371/journal.pone.0011765 20668705
    [Google Scholar]
  95. Bissonnette S. Lamantia V. Ouimet B. Cyr Y. Devaux M. Rabasa-Lhoret R. Chrétien M. Saleh M. Faraj M. Native low-density lipoproteins are priming signals of the NLRP3 inflammasome/interleukin-1β pathway in human adipose tissue and macrophages. Sci. Rep. 2023 13 1 18848 10.1038/s41598‑023‑45870‑1 37914804
    [Google Scholar]
  96. Zhang T. Wang R. Ding S. Research progress on the regulation of NLRP3 inflammasome activation by glucose and lipid metabolism. Chin. Bull. Life Sci 2022 34 04 385 391
    [Google Scholar]
  97. Hang L. Peng Y. Xiang R. Li X. Li Z. Ox-LDL causes endothelial cell injury through ASK1/NLRP3-mediated inflammasome activation via endoplasmic reticulum stress. Drug Des. Devel. Ther. 2020 14 731 744 10.2147/DDDT.S231916 32158192
    [Google Scholar]
  98. Wang X. Li X. Wu Y. Song Y. Upregulation of miR-223 abrogates NLRP3 inflammasome-mediated pyroptosis to attenuate oxidized low-density lipoprotein (ox-LDL)-induced cell death in human vascular endothelial cells (ECs). In Vitro Cell. Dev. Biol. Anim. 2020 56 8 670 679 10.1007/s11626‑020‑00496‑9 32914384
    [Google Scholar]
  99. Thacker S.G. Zarzour A. Chen Y. Alcicek M.S. Freeman L.A. Sviridov D.O. Demosky S.J. Jr Remaley A.T. High‐density lipoprotein reduces inflammation from cholesterol crystals by inhibiting inflammasome activation. Immunology 2016 149 3 306 319 10.1111/imm.12638 27329564
    [Google Scholar]
  100. Carmo H.R.P. Bonilha I. Barreto J. Tognolini M. Zanotti I. Sposito A.C. High-density lipoproteins at the interface between the NLRP3 inflammasome and myocardial infarction. Int. J. Mol. Sci. 2024 25 2 1290 10.3390/ijms25021290 38279290
    [Google Scholar]
  101. Hurtubise J. McLellan K. Durr K. Onasanya O. Nwabuko D. Ndisang J.F. The different facets of dyslipidemia and hypertension in atherosclerosis. Curr. Atheroscler. Rep. 2016 18 12 82 10.1007/s11883‑016‑0632‑z 27822682
    [Google Scholar]
  102. Zhao R. Huang S. Xiao N. Effectiveness of moderate aerobic exercise on prevention of atherosclerotic cardiovascular diseases in patients with hypercholesterolemia. J. Prev. Med. 2022 34 01 58 62
    [Google Scholar]
  103. Cao L. Xu L. Effects of aerobic exercise training of different intensities on lipid metabolism in rats. Sichuan Dong Wu 2008 05 933 934
    [Google Scholar]
  104. Cui T. Fu Y. Ge C. Effects of folk sports on high and low density lipoprotein in elderly men. Zhongguo Laonianxue Zazhi 2019 39 11 2685 2687
    [Google Scholar]
  105. Cheng J. Sun D. Wang Q. Effect of aerobic exercise on the expression of Cry1 in ApoE-/- mice and its anti-atherosclerotic mechanism. Int. Med. Health Guid. News. 2023 29 19 2776 2781
    [Google Scholar]
  106. Semadhi M.P. Barliana M.I. Muliaty D. Wijaya A. Correlation of moderate-intensity physical exercise on Irisin, Oxidized-LDL and HDL level in ≥50 years old obese men. Indones. Biomed. J. 2019 11 3 257 261 10.18585/inabj.v11i3.619
    [Google Scholar]
  107. Sun G. Qin M. Ye J. Pan R. Meng X. Wang M. Luo Y. Li Z. Wang H. Sun X. Inhibitory effects of myricitrin on oxidative stress-induced endothelial damage and early atherosclerosis in ApoE−/− mice. Toxicol. Appl. Pharmacol. 2013 271 1 114 126 10.1016/j.taap.2013.04.015 23639522
    [Google Scholar]
  108. Yan Q. Liu S. Sun Y. Chen C. Yang S. Lin M. Long J. Yao J. Lin Y. Yi F. Meng L. Tan Y. Ai Q. Chen N. Yang Y. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J. Transl. Med. 2023 21 1 519 10.1186/s12967‑023‑04361‑7 37533007
    [Google Scholar]
  109. Cui G. Yang Y. Yang H. Effects of methionine restriction and leucine restriction on hepatic fat deposition and oxidative stress in atherosclerotic mice. J. Henan Univ. Technol. 2024 45 02 31 40
    [Google Scholar]
  110. Wang L. Xie H. Chen Q. Advances on pathogenesis and drugs of atherosclerosis. J. Guangdong Med. Coll. 2023 41 05 589 594
    [Google Scholar]
  111. Ji T. Wu J. Yan C. Research progress on the effects of NADPH oxidase on ROS and iron death in bone homeostasis. Zhongguo Guzhi Shusong Zazhi 2024 30 04 595 599
    [Google Scholar]
  112. Luo M. Tian R. Lu N. Quercetin inhibited endothelial dysfunction and atherosclerosis in apolipoprotein E-deficient mice: Critical roles for NADPH oxidase and heme oxygenase-1. J. Agric. Food Chem. 2020 68 39 10875 10883 10.1021/acs.jafc.0c03907 32880455
    [Google Scholar]
  113. Manea S.A. Vlad M.L. Fenyo I.M. Lazar A.G. Raicu M. Muresian H. Simionescu M. Manea A. Pharmacological inhibition of histone deacetylase reduces NADPH oxidase expression, oxidative stress and the progression of atherosclerotic lesions in hypercholesterolemic apolipoprotein E-deficient mice; potential implications for human atherosclerosis. Redox Biol. 2020 28 101338 10.1016/j.redox.2019.101338 31634818
    [Google Scholar]
  114. Nunes P.R. Mattioli S.V. Sandrim V.C. NLRP3 activation and its relationship to endothelial dysfunction and oxidative stress: Implications for preeclampsia and pharmacological interventions. Cells 2021 10 11 2828 10.3390/cells10112828 34831052
    [Google Scholar]
  115. Kehui Z. Liubing L. Yingying Z. Saikosaponin d alleviates liver fibrosis by negatively regulating the ROS/NLRP3 inflammasome through activating the ERβ pathway. Front. Pharmacol. 2022 13
    [Google Scholar]
  116. Rovira-Llopis S. Apostolova N. Bañuls C. Muntané J. Rocha M. Victor V.M. Mitochondria, the NLRP3 Inflammasome, and Sirtuins in Type 2 Diabetes: New Therapeutic TargetsReviewing Editors: Markus Bachschmid, Dylan Burger, Vittorio Calabrese, Amadou Camara, Lukas Kubala, Giuseppe Poli, and Chandan K. Sen. Antioxid. Redox Signal. 2018 29 8 749 791 10.1089/ars.2017.7313 29256638
    [Google Scholar]
  117. Xiaohan G. Xiaoxia Z. Yaxuan S. Mechanism of NLRP3 inflammasome activation and its role in Alzheimer’s disease. Explor. Immunol. 2022 2 3 229 244
    [Google Scholar]
  118. Minutoli L. Puzzolo D. Rinaldi M. Irrera N. Marini H. Arcoraci V. Bitto A. Crea G. Pisani A. Squadrito F. Trichilo V. Bruschetta D. Micali A. Altavilla D. ROS‐mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxid. Med. Cell. Longev. 2016 2016 1 2183026 10.1155/2016/2183026 27127546
    [Google Scholar]
  119. Zhang N. Yan N. Zhou M. Effects of saikosaponin d on ROS formation and NLRP3 inflammasome expression after oxidative stress-induced activation of human hepatic stellate cells. Lishizhen Medicine and Materia Medica Research 2020 31 04 805 809
    [Google Scholar]
  120. Zhou R. Yazdi A.S. Menu P. Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011 469 7329 221 225 10.1038/nature09663 21124315
    [Google Scholar]
  121. Dan Dunn J. Alvarez L.A.J. Zhang X. Soldati T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 2015 6 472 485 10.1016/j.redox.2015.09.005 26432659
    [Google Scholar]
  122. Zhou R. Tardivel A. Thorens B. Choi I. Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 2010 11 2 136 140 10.1038/ni.1831 20023662
    [Google Scholar]
  123. Geng Y.W. Lin Q.Q. Wang X.Y. Li R.M. Tian Z.J. Effects of aerobic interval training on myocardial oxidative stress and inflammation in rats with myocardial infarction and its mechanism. Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih 2021 37 4 439 444 10.12047/j.cjap.6094.2021.043 34374267
    [Google Scholar]
  124. Liberale L. Montecucco F. Schwarz L. Lüscher T.F. Camici G.G. Inflammation and cardiovascular diseases: Lessons from seminal clinical trials. Cardiovasc. Res. 2021 117 2 411 422 10.1093/cvr/cvaa211 32666079
    [Google Scholar]
  125. Ross R. Atherosclerosis--An inflammatory disease. N. Engl. J. Med. 1999 340 2 115 126 10.1056/NEJM199901143400207 9887164
    [Google Scholar]
  126. Melnikov I.S. Kozlov S.G. Pogorelova O.A. Tripoten M.I. Saburova O.S. Khamchieva L.S. Avtaeva Y.N. Zvereva M.D. Prokofieva L.V. Kuznetsova T.V. Guseva O.A. Balakhonova T.V. Gabbasov Z.A. Monomeric form of C-reactive protein in the assessment of the residual inflammatory cardiovascular risk in patients with subclinical carotid atherosclerosis. Kardiologiia 2022 62 7 24 30 10.18087/cardio.2022.7.n2137 35989626
    [Google Scholar]
  127. Zhu K. Li X. Research progress of relationship between inflammation and atherosclerosis. Medical Recapitulate 2021 27 24 4789 4793
    [Google Scholar]
  128. Liu S. Bi H. Jiang M. Chen Y. Jiang M. An update on the role of TRIM/NLRP3 signaling pathway in atherosclerosis. Biomed. Pharmacother. 2023 160 114321 10.1016/j.biopha.2023.114321 36736278
    [Google Scholar]
  129. Fang H. Zhao X. Zhang M. Ma Y. Huang J. Zhou P. Beneficial effects of flavonoids on cardiovascular diseases by influencing NLRP3 inflammasome. Inflammopharmacology 2023 31 4 1715 1729 10.1007/s10787‑023‑01249‑2 37261627
    [Google Scholar]
  130. Capria A. De Nardo D. Baffetti F.R. Barbini U. Violo A. Tondo T. Fontana L. Long-term anti-TNF-α treatments reverse the endothelial dysfunction in rheumatoid arthritis: The biological coherence between synovial and endothelial inflammation. Int. J. Immunopathol. Pharmacol. 2010 23 1 255 262 10.1177/039463201002300123 20378011
    [Google Scholar]
  131. Zhao Y. Shao C. Zhou H. Yu L. Bao Y. Mao Q. Yang J. Wan H. Salvianolic acid B inhibits atherosclerosis and TNF-α-induced inflammation by regulating NF-κB/NLRP3 signaling pathway. Phytomedicine 2023 119 155002 10.1016/j.phymed.2023.155002 37572566
    [Google Scholar]
  132. Mu Y. Song Z. Liu Q. Tumor necrosis factor-α induced protein 8 like 2 affects LPS induced secretion of inflammatory factors by NF-κB signaling pathway. Chin. J. Immunol. 2021 37 08 970 974
    [Google Scholar]
  133. Zhang W. Jia L. Zhao B. Xiong Y. Wang Y.N. Liang J. Xu X. Quercetin reverses TNF‑α induced osteogenic damage to human periodontal ligament stem cells by suppressing the NF‑κB/NLRP3 inflammasome pathway. Int. J. Mol. Med. 2021 47 4 39 10.3892/ijmm.2021.4872 33537804
    [Google Scholar]
  134. Chen J. Yan J. Li S. Zhu J. Zhou J. Li J. Zhang Y. Huang Z. Yuan L. Xu K. Chen W. Ye W. Atorvastatin inhibited TNF-α induced matrix degradation in rat nucleus pulposus cells by suppressing NLRP3 inflammasome activity and inducing autophagy through NF-κB signaling. Cell Cycle 2021 20 20 2160 2173 10.1080/15384101.2021.1973707 34494933
    [Google Scholar]
  135. Bullón P. Alcocer-Gómez E. Carrión A.M. Marín-Aguilar F. Garrido-Maraver J. Román-Malo L. Ruiz-Cabello J. Culic O. Ryffel B. Apetoh L. Ghiringhelli F. Battino M. Sánchez-Alcazar J.A. Cordero M.D. AMPK phosphorylation modulates pain by activation of NLRP3 inflammasome. Antioxid. Redox Signal. 2016 24 3 157 170 10.1089/ars.2014.6120 26132721
    [Google Scholar]
  136. Uthman L. Kuschma M. Römer G. Boomsma M. Kessler J. Hermanides J. Hollmann M.W. Preckel B. Zuurbier C.J. Weber N.C. Novel anti-inflammatory effects of canagliflozin involving hexokinase II in lipopolysaccharide-stimulated human coronary artery endothelial cells. Cardiovasc. Drugs Ther. 2021 35 6 1083 1094 10.1007/s10557‑020‑07083‑w 33048256
    [Google Scholar]
  137. Li H. Yang H. Qin Z. Wang Q. Li L. Colchicine ameliorates myocardial injury induced by coronary microembolization through suppressing pyroptosis via the AMPK/SIRT1/NLRP3 signaling pathway. BMC Cardiovasc. Disord. 2024 24 1 23 10.1186/s12872‑023‑03697‑8 38172692
    [Google Scholar]
  138. Antunes B.M. Rossi F.E. Cholewa J.M. Lira F.S. Regular physical activity and vascular aging. Curr. Pharm. Des. 2016 22 24 3715 3729 10.2174/1381612822666160322144724 27000828
    [Google Scholar]
  139. Fan J. Weng X. Lin W. Effects of exercise combined with hypoxia on serum TNF-α and adiponectin in insulin resistant rats. Zhongguo Laonianxue Zazhi 2021 41 20 4506 4508
    [Google Scholar]
  140. Shirvani H. Mirnejad R. Soleimani M. Arabzadeh E. Swimming exercise improves gene expression of PPAR-γ and downregulates the overexpression of TLR4, MyD88, IL-6, and TNF-α after high-fat diet in rat skeletal muscle cells. Gene 2021 775 145441 10.1016/j.gene.2021.145441 33482280
    [Google Scholar]
  141. Yang T. Feng X. Zhao Y. Zhang H. Cui H. Wei M. Yang H. Fan H. Dexmedetomidine enhances autophagy via α2-AR/AMPK/mTOR pathway to inhibit the activation of NLRP3 inflammasome and subsequently alleviates lipopolysaccharide-induced acute kidney injury. Front. Pharmacol. 2020 11 790 10.3389/fphar.2020.00790 32670056
    [Google Scholar]
  142. Li Z. Huang Z. Zhang H. Lu J. Tian Y. Piao S. Lin Z. Bai L. Moderate-intensity exercise alleviates pyroptosis by promoting autophagy in osteoarthritis via the P2X7/AMPK/mTOR axis. Cell Death Discov. 2021 7 1 346 10.1038/s41420‑021‑00746‑z 34759265
    [Google Scholar]
  143. Zhang M. Alemasi A. Zhao M. Xu W. Zhang Y. Gao W. Yu H. Xiao H. Exercise training attenuates acute β-Adrenergic receptor activation-induced cardiac inflammation via the activation of AMP-activated protein kinase. Int. J. Mol. Sci. 2023 24 11 9263 10.3390/ijms24119263 37298222
    [Google Scholar]
  144. Wu W. Wang H. Jiao G. Yue J. Wang G. Aerobic exercise suppresses atherosclerosis through adiponectin-nuclear transcription factor κb pathway in apolipoprotein E–deficient mice. Am. J. Med. Sci. 2017 353 3 275 281 10.1016/j.amjms.2016.11.002 28262215
    [Google Scholar]
  145. Liu J. Jia S. Yang Y. Piao L. Wang Z. Jin Z. Bai L. Exercise induced meteorin-like protects chondrocytes against inflammation and pyroptosis in osteoarthritis by inhibiting PI3K/Akt/NF-κB and NLRP3/caspase-1/GSDMD signaling. Biomed. Pharmacother. 2023 158 114118 10.1016/j.biopha.2022.114118 36527845
    [Google Scholar]
  146. Li X. Jin Y. Ding X. Zhu T. Wei C. Yao L. Long-term exercise training inhibits inflammation by suppressing hippocampal NLRP3 in APP/PS1 mice. Sports Med. Health Sci. 2023 5 4 329 335 10.1016/j.smhs.2023.09.009 38314041
    [Google Scholar]
  147. Suthivanich P. Boonhoh W. Sumneang N. Punsawad C. Cheng Z. Phungphong S. Aerobic exercise attenuates doxorubicin-induced cardiomyopathy by suppressing NLRP3 inflammasome activation in a rat model. Int. J. Mol. Sci. 2024 25 17 9692 10.3390/ijms25179692 39273638
    [Google Scholar]
  148. Memme J.M. Erlich A.T. Phukan G. Hood D.A. Exercise and mitochondrial health. J. Physiol. 2021 599 3 803 817 10.1113/JP278853 31674658
    [Google Scholar]
  149. Gage J. Hasu M. Thabet M. Whitman S.C. Caspase-1 deficiency decreases atherosclerosis in apolipoprotein E-null mice. Can. J. Cardiol. 2012 28 2 222 229 10.1016/j.cjca.2011.10.013 22265992
    [Google Scholar]
  150. Luo X. He C. Yang B. Yin S. Li K. WTAP promotes atherosclerosis by inducing macrophage pyroptosis and M1 polarization through upregulating NLRP3. Appl. Biochem. Biotechnol. 2025 05016 10.1007/s12010‑024‑05106‑y 39747738
    [Google Scholar]
  151. Zhao J. Wang Z. Yuan Z. Lv S. Su Q. Baicalin ameliorates atherosclerosis by inhibiting NLRP3 inflammasome in apolipoprotein E-deficient mice. Diab. Vasc. Dis. Res. 2020 17 6 1479164120977441 10.1177/1479164120977441 33269624
    [Google Scholar]
  152. Jiang Y. Xing W. Li Z. Zhao D. Xiu B. Xi Y. Bai S. Li X. Zhang Z. Zhang W. Li H. The calcium‐sensing receptor alleviates endothelial inflammation in atherosclerosis through regulation of integrin β1‐ NLRP 3 inflammasome. FEBS J. 2025 292 1 191 205 10.1111/febs.17308 39552549
    [Google Scholar]
  153. Ye B. Cai X. Liang X. Chen Y. Dai S. Huang Z. Huang W. Zhang L. Wang Z. Xing J. Lai X. Huang Z. Jia Z. Emodin suppresses NLRP3/GSDMD-induced inflammation via the TLR4/MyD88/NF-κB signaling pathway in atherosclerosis. Cardiovasc. Drugs Ther. 2024 07659 10.1007/s10557‑024‑07659‑w
    [Google Scholar]
  154. Kearns A.C. Liu F. Dai S. Robinson J.A. Kiernan E. Tesfaye Cheru L. Peng X. Gordon J. Morgello S. Abuova A. Lo J. Zanni M.V. Grinspoon S.K. Burdo T.H. Qin X. Caspase-1 activation is related with HIV-associated atherosclerosis in an HIV transgenic mouse model and HIV patient cohort. Arterioscler. Thromb. Vasc. Biol. 2019 39 9 1762 1775 10.1161/ATVBAHA.119.312603 31315440
    [Google Scholar]
  155. Li Z. Zhang F. Li Q. Wang L. Sun X. Li C. Yin X. Liu C. Wang Y. Du X. Lu C. Gentiopicroside alleviates atherosclerosis by suppressing reactive oxygen species-dependent NLRP3 inflammasome activation in vascular endothelial cells via SIRT1/Nrf2 pathway. Chin. J. Integr. Med. 2025 31 2 118 130 10.1007/s11655‑024‑4206‑6 39671057
    [Google Scholar]
  156. Liu C. Wang L. Yao F. Jiawei wendantang regulates NF-κB/NLRP3 pathway to reduce inflammation in rat model of diabetic atherosclerosis. Zhongguo Shiyan Fangjixue Zazhi 2024 1 9
    [Google Scholar]
  157. Wu M. Zhang X. Su Z. Study on the mechanism of Qihuang Juyu Formula affecting the formation of atherosclerosis byregulating ApoE-/- mice macrophage related cytokines. Zhonghua Zhongyiyao Zazhi 2024 39 01 376 381
    [Google Scholar]
  158. Sun R. Cheng Z. Li D. Effect of electroacupuncture on the expression of NLRP3 inflammatory-related factors in atherosclerotic mice. Lishizhen Med. Mater. Med. Res. 2023 34 12 3043 3046
    [Google Scholar]
  159. Marandi S.M. Hovsepian V. Esfarjani F. Zavar R. Sadeghi M. The effect of all extremity high intensity interval training on athero-protective factors and endothelial function in overweight and obese women. Int. J. Prev. Med. 2021 12 1 141 10.4103/ijpvm.IJPVM_248_19 34912517
    [Google Scholar]
  160. Wang W. Yang J. Clinical effect of long-term aerobic exercise combined with ginkgo biloba leaves in treatment of arteriosclerosis. J. Hainan Med. Coll. 2018 24 22 1971 1974
    [Google Scholar]
  161. Ma X. Li M. Liu L. Lei F. Wang L. Xiao W. Tan Y. He B. Ruan S. A randomized controlled trial of Baduanjin exercise to reduce the risk of atherosclerotic cardiovascular disease in patients with prediabetes. Sci. Rep. 2022 12 1 19338 10.1038/s41598‑022‑22896‑5 36369247
    [Google Scholar]
  162. Mejías-Peña Y. Estébanez B. Rodriguez-Miguelez P. Fernandez-Gonzalo R. Almar M. de Paz J.A. González-Gallego J. Cuevas M.J. Impact of resistance training on the autophagy-inflammation-apoptosis crosstalk in elderly subjects. Aging 2017 9 2 408 418 10.18632/aging.101167 28160545
    [Google Scholar]
  163. Liang F. Huang T. Li B. Zhao Y. Zhang X. Xu B. High-intensity interval training and moderate-intensity continuous training alleviate β-amyloid deposition by inhibiting NLRP3 inflammasome activation in APPswe/PS1dE9 mice. Neuroreport 2020 31 5 425 432 10.1097/WNR.0000000000001429 32150150
    [Google Scholar]
  164. Liu M. Zhang Y. Yan J. Wang Y. Aerobic exercise alleviates ventilator-induced lung injury by inhibiting NLRP3 inflammasome activation. BMC Anesthesiol. 2022 22 1 369 10.1186/s12871‑022‑01874‑4 36456896
    [Google Scholar]
  165. Xu Z. Ma Z. Zhao X. Zhang B. Aerobic exercise mitigates high-fat diet-induced cardiac dysfunction, pyroptosis, and inflammation by inhibiting STING-NLRP3 signaling pathway. Mol. Cell. Biochem. 2024 479 12 3459 3470 10.1007/s11010‑024‑04950‑0 38388792
    [Google Scholar]
  166. Butts B. Butler J. Dunbar S.B. Corwin E. Gary R.A. Effects of exercise on ASC methylation and IL-1 cytokines in heart failure. Med. Sci. Sports Exerc. 2018 50 9 1757 1766 10.1249/MSS.0000000000001641 29683921
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240368171250419113225
Loading
/content/journals/cmm/10.2174/0115665240368171250419113225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test