Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Introduction

Liquid biopsies have great potential for precision medicine as they provide information about primary and metastatic tumors using minimally invasive techniques. MicroRNAs (miRNAs) are promising biomarkers for detecting gastric cancer (GC). The aim of the study was to identify miR molecules associated with autophagy in gastric cancer (GC) cells, determine their expression levels in GC and FLOT-treated patients, and assess the efficacy of FLOT therapy in GC patients.

Methods

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathways were used to analyze cellular pathways. MicroRNAs were isolated from the tissues.

Results

The study found a connection between the expression of the let-7a-5p gene and the size of primary tumors. Bioinformatics analysis identified multiple targets and signaling pathways associated with this phenomenon. We observed an increase in the levels of miR-21-3p and hsa-miR-130b-3p with lymph node involvement. miR-21-3p is associated with the activation of molecular pathways induced by in cases of coinfection. Patients with complete regression had higher levels of expression of hsa-mir-130b-3p.

Conclusion

The bioinformatics analysis allowed us to identify the most significant targets among microRNAs. Based on the presented data, it becomes clear that GC is heterogeneous and that the process of autophagy is complex. The association between hsa-miR-130b-3p and tumor response to therapy is particularly interesting.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240336458241217161009
2025-01-16
2025-12-24
Loading full text...

Full text loading...

References

  1. SextonR.E. HallakA.M.N. DiabM. AzmiA.S. Gastric cancer: A comprehensive review of current and future treatment strategies.Cancer Metastasis Rev.20203941179120310.1007/s10555‑020‑09925‑3 32894370
    [Google Scholar]
  2. ZhangZ. WuH. ChongW. ShangL. JingC. LiL. Liquid biopsy in gastric cancer: Predictive and prognostic biomarkers.Cell Death Dis.2022131090310.1038/s41419‑022‑05350‑2 36302755
    [Google Scholar]
  3. RöckenC. Predictive biomarkers in gastric cancer.J. Cancer Res. Clin. Oncol.2023149146748110.1007/s00432‑022‑04408‑0 36260159
    [Google Scholar]
  4. AalamiA.H. AalamiF. SahebkarA. Gastric cancer and circulating microRNAs: An updated systematic review and diagnostic meta-analysis.Curr. Med. Chem.202330333798381410.2174/0929867330666221121155905 36411580
    [Google Scholar]
  5. MaS. ZhouM. XuY. Clinical application and detection techniques of liquid biopsy in gastric cancer.Mol. Cancer2023221710.1186/s12943‑023‑01715‑z 36627698
    [Google Scholar]
  6. MaX. OuK. LiuX. YangL. Application progress of liquid biopsy in gastric cancer.Front. Oncol.20221296986610.3389/fonc.2022.969866 36185234
    [Google Scholar]
  7. IzumiD. ZhuZ. ChenY. Assessment of the diagnostic efficiency of a liquid biopsy assay for early detection of gastric cancer.JAMA Netw. Open202148e212112910.1001/jamanetworkopen.2021.21129 34427680
    [Google Scholar]
  8. DominkušP.P. MesicA. HudlerP. PLK2 single nucleotide variant in gastric cancer patients affects miR-23b-5p binding.J. Gastric Cancer202222434836810.5230/jgc.2022.22.e31 36316110
    [Google Scholar]
  9. SongY. GuoD. LiuJ.F. Downregulation of miR 7 and miR 153 is involved in Helicobacter pylori CagA induced gastric carcinogenesis and progression.Int. J. Oncol.20236317910.3892/ijo.2023.5527 37232358
    [Google Scholar]
  10. YangD. ShiM. YouQ. Tumor- and metastasis-promoting roles of miR-488 inhibition via HULC enhancement and EZH2-mediated p53 repression in gastric cancer.Cell Biol. Toxicol.20233941341135810.1007/s10565‑022‑09760‑y 36449143
    [Google Scholar]
  11. LiuH. ChenY. ZhouL. JiangX. ZhouX. MicroRNA-642b-3p functions as an oncomiR in gastric cancer by down-regulating the CUB and sushi multiple domains protein 1/smad axis.Bioengineered20221349614962810.1080/21655979.2022.2056813 35412956
    [Google Scholar]
  12. MahboobiR. FallahF. YadegarA. Expression analysis of miRNA-155 level in Helicobacter pylori related inflammation and chronic gastritis.Iran. J. Microbiol.202214449550210.18502/ijm.v14i4.10235 36721512
    [Google Scholar]
  13. YouJ. ChenY. ChenD. Circular RNA 0001789 sponges miR-140-3p and regulates PAK2 to promote the progression of gastric cancer.J. Transl. Med.20232118310.1186/s12967‑022‑03853‑2 36740679
    [Google Scholar]
  14. GuoT. TangX.H. GaoX.Y. A liquid biopsy signature of circulating exosome-derived mRNAs, miRNAs and lncRNAs predict therapeutic efficacy to neoadjuvant chemotherapy in patients with advanced gastric cancer.Mol. Cancer202221121610.1186/s12943‑022‑01684‑9 36510184
    [Google Scholar]
  15. AliabadiP. SadriM. SiriG. Restoration of miR-648 overcomes 5-FU-resistance through targeting ET-1 in gastric cancer cells in-vitro.Pathol. Res. Pract.202223915413910.1016/j.prp.2022.154139 36191447
    [Google Scholar]
  16. WuY. XuQ. HeC. Association of polymorphisms in three pri-miRNAs that target pepsinogen C with the risk and prognosis of gastric cancer.Sci. Rep.2017713952810.1038/srep39528 28067243
    [Google Scholar]
  17. RoyS. KandaM. NomuraS. Diagnostic efficacy of circular RNAs as noninvasive, liquid biopsy biomarkers for early detection of gastric cancer.Mol. Cancer20222114210.1186/s12943‑022‑01527‑7 35139874
    [Google Scholar]
  18. HongZ.P. WangL.G. WangH.J. YeW.F. WangX.Z. Wogonin exacerbates the cytotoxic effect of oxaliplatin by inducing nitrosative stress and autophagy in human gastric cancer cells.Phytomedicine20183916817510.1016/j.phymed.2017.12.019 29433678
    [Google Scholar]
  19. LinX. PengZ. WangX. Targeting autophagy potentiates antitumor activity of Met-TKIs against Met-amplified gastric cancer.Cell Death Dis.201910213910.1038/s41419‑019‑1314‑x 30760701
    [Google Scholar]
  20. HuangX. MaZ. QinW. Screening and bioinformatics analyses of key miRNAs associated with toll-like receptor activation in gastric cancer cells.Medicina202359351110.3390/medicina59030511 36984512
    [Google Scholar]
  21. SunX. ZhangK. LiD. Prognostic potential of miR-21-3p in gastric cancer.JBUON202025626782682 33455113
    [Google Scholar]
  22. JiangZ. SuM. ChenH. WuL. YuX. LiuZ. MicroRNA-23a-3p influences the molecular mechanism of gastric cancer cells via CCL22/PI3K/Akt axis.Bioengineered2021122112771128710.1080/21655979.2021.2002620 34874224
    [Google Scholar]
  23. CuiY. PuR. YeJ. LncRNA FAM230B promotes gastric cancer growth and metastasis by regulating the miR-27a-5p/TOP2A axis.Dig. Dis. Sci.20216682637265010.1007/s10620‑020‑06581‑z 32910366
    [Google Scholar]
  24. YanJ. DaiL. YuanJ. miR-107 Inhibits the proliferation of gastric cancer cells in vivo and in vitro by targeting TRIAP1.Front. Genet.20221385535510.3389/fgene.2022.855355 35480301
    [Google Scholar]
  25. ZhangY. MengW. YueP. LiX. Retracted article: M2 macrophage-derived extracellular vesicles promote gastric cancer progression via a microRNA-130b-3p/MLL3/GRHL2 signaling cascade.J. Exp. Clin. Cancer Res.202039113410.1186/s13046‑020‑01626‑7 32660626
    [Google Scholar]
  26. ZhengX. PengB. WuX. Male-specific long non-coding RNA testis-specific transcript, Y-linked 15 promotes gastric cancer cell growth by regulating Wnt family member 1/β-catenin signaling by sponging microRNA let-7a-5p.Bioengineered20221348605861610.1080/21655979.2022.2053814 35287556
    [Google Scholar]
  27. WangH. SunG. XuP. Circular RNA TMEM87A promotes cell proliferation and metastasis of gastric cancer by elevating ULK1 via sponging miR-142-5p.J. Gastroenterol.202156212513810.1007/s00535‑020‑01744‑1 33155080
    [Google Scholar]
  28. IizasaH. KartikaA.V. FekaduS. Development of Epstein-Barr virus-associated gastric cancer: Infection, inflammation, and oncogenesis.World J. Gastroenterol.202228446249625710.3748/wjg.v28.i44.6249 36504553
    [Google Scholar]
  29. EslamiM. YousefiB. kokhaei P, arabkari V, Ghasemian A. Current information on the association of Helicobacter pylori with autophagy and gastric cancer.J. Cell. Physiol.20192349148001481110.1002/jcp.28279 30784066
    [Google Scholar]
  30. LiT. HuangH. ShiG. TGF-β1-SOX9 axis-inducible COL10A1 promotes invasion and metastasis in gastric cancer via epithelial-to-mesenchymal transition.Cell Death Dis.20189984910.1038/s41419‑018‑0877‑2 30154451
    [Google Scholar]
  31. EconomescuC.M. NeculaL. MateiL. DraguD. BleotuC. DiaconuC.C. Clinical applications of liquid biopsy in gastric cancer.Front. Med.2021874925010.3389/fmed.2021.749250 34651002
    [Google Scholar]
  32. JiaL. LeiB. GaoH. miR-130b suppresses the invasion and migration of prostate cancer via inhibiting DLL1 and regulating the PI3K/Akt pathways.Exp. Ther. Med.20212319810.3892/etm.2021.11021 34976140
    [Google Scholar]
  33. XieS.H. HuangR.Q. LiuY.L. CaoS.M. QianC.N. An increase in early cancer detection rates at a single cancer center: Experiences from sun yat-sen university cancer center.Visual Canc Med20223110.1051/vcm/2022001
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240336458241217161009
Loading
/content/journals/cmm/10.2174/0115665240336458241217161009
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): autophagy; autophagy-related proteins; FLOT therapy; Gastric cancer; microRNA-130b
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test