Skip to content
2000
image of Enhancement of Platinum-Based Drug Sensitivity in Ovarian Cancer Cells Through Hyperthermia-Induced Activation of the TGF-β1/β-Catenin Signaling Pathway

Abstract

Background

Platinum-based drugs like cisplatin are key in treating ovarian cancer, but resistance frequently leads to treatment failure. The TGF-β1/β-catenin signaling pathway has been implicated in tumor resistance. This study investigates whether hyperthermiaenhances ovarian cancer cell sensitivity to platinum-based drugs by activating the TGF-β1/β-catenin pathway.

Methods

and models of ovarian cancer were treated with hyperthermia and cisplatin. Changes in TGF-β1 and β-catenin expression were measured using Western blotting, qPCR, immunohistochemistry, and cell viability assays to determine the impact of hyperthermia on drug sensitivity.

Results

Hyperthermia significantly reduced TGF-β1 and β-catenin expression in ovarian cancer cells and tumor tissues, suppressing the pathway. This led to increased cisplatin sensitivity and higher apoptosis rates , while , tumor growth was significantly suppressed, and cisplatin's antitumor effects were enhanced.

Conclusion

Hyperthermia boosts the effectiveness of platinum-based drugs in ovarian cancer by suppressing the TGF-β1/β-catenin pathway, presenting a potential strategy to overcome chemoresistance and improve patient outcomes.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240367566250327040010
2025-04-07
2025-09-14
Loading full text...

Full text loading...

References

  1. Micha J.P. Rettenmaier M.A. Bohart R.D. Goldstein B.H. Does aspirin use reduce the risk for ovarian cancer? Cancer Invest. 2024 42 7 643 646 10.1080/07357907.2024.2375573 38965997
    [Google Scholar]
  2. Yang L. Xie H.J. Li Y.Y. Wang X. Liu X.X. Mai J. Molecular mechanisms of platinum‑based chemotherapy resistance in ovarian cancer (Review). Oncol. Rep. 2022 47 4 82 10.3892/or.2022.8293 35211759
    [Google Scholar]
  3. Lim M.C. Chang S.J. Park B. Yoo H.J. Yoo C.W. Nam B.H. Park S.Y. Seo S-S. Kang S. Yun J.Y. Cho D-S. Kim S.H. Kim T-S. Park S.S. Lee D.W. Park S.C. Park H.M. Han S-S. Kim S.H. Yang H.C. Kim M.S. Lee J.M. Eom B.W. Kim Y.I. Yoon H.M. Choi I.J. Kim S.H. Joung J.Y. Seo H.K. Joo J.N. Song Y.J. Park S.H. Jung D.C. Kim M.J. Park J.W. Jeong S-Y. Yun Y.H. Park S. Bristow R.E. Survival after hyperthermic intraperitoneal chemotherapy and primary or interval cytoreductive surgery in ovarian cancer. JAMA Surg. 2022 157 5 374 383 10.1001/jamasurg.2022.0143 35262624
    [Google Scholar]
  4. Xie D. Yin R.T. Li K.M. Xiao P. Tong L.X. Effects of hyperthermia combined platinum-based drugs on ovarian cancer cell lines SKOV3. Sichuan Da Xue Xue Bao Yi Xue Ban 2014 45 4 606 611 25286685
    [Google Scholar]
  5. Wu J. Jiang L. Wang S. Peng L. Zhang R. Liu Z. TGF β1 promotes the polarization of M2-type macrophages and activates PI3K/mTOR signaling pathway by inhibiting ISG20 to sensitize ovarian cancer to cisplatin. Int. Immunopharmacol. 2024 134 112235 10.1016/j.intimp.2024.112235 38761779
    [Google Scholar]
  6. Devan A.R. Pavithran K. Nair B. Murali M. Nath L.R. Deciphering the role of transforming growth factor-beta 1 as a diagnostic-prognostic-therapeutic candidate against hepatocellular carcinoma. World J. Gastroenterol. 2022 28 36 5250 5264 10.3748/wjg.v28.i36.5250 36185626
    [Google Scholar]
  7. Działo E. Czepiel M. Tkacz K. Siedlar M. Kania G. Błyszczuk P. WNT/β-Catenin signaling promotes TGF-β-mediated activation of human cardiac fibroblasts by enhancing IL-11 production. Int. J. Mol. Sci. 2021 22 18 10072 10.3390/ijms221810072 34576234
    [Google Scholar]
  8. Liao J. Chen R. Lin B. Deng R. Liang Y. Zeng J. Ma S. Qiu X. Cross-talk between the TGF-β and cell adhesion signaling pathways in cancer. Int. J. Med. Sci. 2024 21 7 1307 1320 10.7150/ijms.96274 38818471
    [Google Scholar]
  9. Yi G.Y. Kim M.J. Kim H.I. Park J. Baek S.H. Hyperthermia treatment as a promising anti-cancer strategy: Therapeutic targets, perspective mechanisms and synergistic combinations in experimental approaches. Antioxidants 2022 11 4 625 10.3390/antiox11040625 35453310
    [Google Scholar]
  10. Wang J. Liu K. Xiao T. Liu P. Prinz R.A. Xu X. Uric acid accumulation in DNA-damaged tumor cells induces NKG2D ligand expression and antitumor immunity by activating TGF-β-activated kinase 1. OncoImmunology 2022 11 1 2016159 10.1080/2162402X.2021.2016159 35154904
    [Google Scholar]
  11. Chen J. Ding Z. Li S. Liu S. Xiao C. Li Z. Zhang B. Chen X. Yang X. Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics 2021 11 3 1345 1363 10.7150/thno.51383 33391538
    [Google Scholar]
  12. McAdam A.D. Batchelor L.K. Romano-deGea J. Vasilyev D. Dyson P.J. Thermoresponsive carboplatin-releasing prodrugs. J. Inorg. Biochem. 2024 254 112505 10.1016/j.jinorgbio.2024.112505 38377623
    [Google Scholar]
  13. Idiago-López J. Ferreira D. Asín L. Moros M. Armenia I. Grazú V. Fernandes A.R. de la Fuente J.M. Baptista P.V. Fratila R.M. Membrane-localized magnetic hyperthermia promotes intracellular delivery of cell-impermeant probes. Nanoscale 2024 16 32 15176 15195 10.1039/D4NR01955E 39052238
    [Google Scholar]
  14. Koshkin V. De Oliveira M. Peng C. Ailles L. Liu G. Covens A. Krylov S. Multi‑drug‑resistance efflux in cisplatin‑naive and cisplatin‑exposed A2780 ovarian cancer cells responds differently to cell culture dimensionality. Mol. Clin. Oncol. 2021 15 2 161 10.3892/mco.2021.2323 34295468
    [Google Scholar]
  15. Syed V. TGF‐β signaling in cancer. J. Cell. Biochem. 2016 117 6 1279 1287 10.1002/jcb.25496 26774024
    [Google Scholar]
  16. Loo L.H. Bougen-Zhukov N.M. Tan W.L.C. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments. Sci. Rep. 2017 7 1 43541 10.1038/srep43541 28272488
    [Google Scholar]
  17. Xiang Y. Si L. Zheng Y. Wang H. Shikonin enhances chemosensitivity of oral cancer through β‐catenin pathway. Oral Dis. 2024 30 2 433 447 10.1111/odi.14458 36453015
    [Google Scholar]
  18. Pietras P. Aulas A. Fay M.M. Leśniczak-Staszak M. Sowiński M. Lyons S.M. Szaflarski W. Ivanov P. Translation inhibition and suppression of stress granules formation by cisplatin. Biomed. Pharmacother. 2022 145 112382 10.1016/j.biopha.2021.112382 34864307
    [Google Scholar]
  19. Bian F. Niu F. Qu P. Gong F. Yan J. Glycyrrhizic acid inhibits DNA damage repair and enhances cisplatin‐induced apoptosis of melanoma cells. Chem. Biol. Drug Des. 2024 103 5 e14536 10.1111/cbdd.14536 38725079
    [Google Scholar]
  20. Yang L. Chen Y. Cui T. Knösel T. Zhang Q. Albring K.F. Huber O. Petersen I. Desmoplakin acts as a tumor suppressor by inhibition of the Wnt/β-catenin signaling pathway in human lung cancer. Carcinogenesis 2012 33 10 1863 1870 10.1093/carcin/bgs226 22791817
    [Google Scholar]
  21. Huang S. Yuan J. Xie Y. Qing K. Shi Z. Chen G. Gao J. Tan H. Zhou W. Targeting nano-regulator based on metal–organic frameworks for enhanced immunotherapy of bone metastatic prostate cancer. Cancer Nanotechnol. 2023 14 1 43 10.1186/s12645‑023‑00200‑y
    [Google Scholar]
  22. Cheng Y. Bai F. Ren X. Sun R. Guo X. Liu W. Wang B. Yang Y. Zhang X. Xu Y. Li C. Yang X. Gao L. Ma C. Li X. Liang X. Phosphoinositide-binding protein TIPE1 promotes alternative activation of macrophages and tumor progression via PIP3/Akt/TGFβ Axis. Cancer Res. 2022 82 8 1603 1616 10.1158/0008‑5472.CAN‑21‑0003 35135809
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240367566250327040010
Loading
/content/journals/cmm/10.2174/0115665240367566250327040010
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test