Combinatorial Chemistry & High Throughput Screening - Online First
Description text for Online First listing goes here...
121 - 124 of 124 results
-
-
Sanggenol L Alleviates Rotenone-induced Parkinson's Disease and Inhibits Mitochondrial Complex I by Apoptosis Via P13K/AKT/mTOR Signalling
Authors: Nan Zhao, Menghai Wu, Periyannan Velu, Annamalai Vijayalakshmi and Jianbin ZhangAvailable online: 13 December 2024More LessBackgroundParkinson’s disease (PD) is the age-associated, second most advanced neurodegenerative illness. Rotenone is an extensively used pesticide to study PD pathology and inhibits mitochondrial complex I. Reports indicate that rotenone exerts neurotoxicity by its capability to produce reactive oxygen species (ROS), which eventually leads to neuronal apoptosis.
ObjectiveSanggenol L (SL) is an eminent flavonoid present in the Morus alba root bark, which exhibits neuroprotective, anticancer, and antioxidant properties. Materials and Methods: Hence, we assessed the neuroprotective activity of SL (5 and 10 µM/ml) on rotenone-stimulated SK-N-SH neuroblastoma cells and elucidated the effect of the P13K/AKT/mTOR signalling.
ResultsThe anti-PD action of SL on proliferation, oxidative stress (OS), intracellular ROS, apoptosis, Bax, cleaved Caspase-12, -9, -3, and Cyt-c, Bcl-2 and P13K/AKT/mTOR signaling was determined by MTT assay, biochemical analysis, DCFDA, AO/EB staining and western blot. It was found that SL (5 and 10 µM/ml) reduced rotenone-triggered OS, ROS levels, and apoptosis in a concentration-related way. SL alleviates Bax, cleaved caspase-12, -9, -3, and Cyt-c, while reducing Bcl-2. Furthermore, SL safer mitochondria by increase MMP and suppresses phosphorylation of P13k/AKT/mTOR pathway, thereby regulating apoptotic signalling.
ConclusionOur findings indicate that SL showed protective effects against rotenone-induced OS, mitochondrial complex-I in neuronal cell damage, which suggests that SL might potentially serve as an anti-PD remedial candidate for PD treatment.
-
-
-
Dulaglutide Alleviates Alzheimer's Disease by Regulating Microglial Polarization and Neurogenic Activity
Available online: 27 November 2024More LessBackgroundsIncreasing research has proved that microglial activation, polarization, and inflammatory response in the brain affect the pathology of Alzheimer's disease. Hence, employing reagents targeted to microglial functions to optimize the brain microenvironment may become a promising therapeutic method for Alzheimer's disease.
MethodsThe phagocytosis and clearance of Aβ1-42 were detected using western blot and immunofluorescence assay. The cell viability was determined via 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) or cell counting kit-8 (CCK-8) assay. The load of pro-inflammation, in addition to anti-inflammation factors, was measured through an enzyme-linked immunosorbent (ELISA) assay. Flow cytometry was employed to estimate the apoptotic cells. The protein level related to microglial polarization and neuronal injury was detected via western blot. The length of the neuronal synapse was investigated using an immunofluorescence assay.
ResultsDulaglutide significantly promoted microglia to phagocytose and removed the Aβ plague. Additionally, dulaglutide treatment inhibited the production of pro-inflammatory factors, including tumor necrosis factor (TNF)-α, interleukin -1β, and IL-6, whereas it increased the load of anti-inflammatory molecules, such as IL-10 affected by Aβ1-42 exposure. Further investigation verified that Aβ1-42 down-regulated YM1/2 positive M2 microglial polarization phenotype but up-regulated cyclooxygenase-2 (Cox2) positive M1 microglia. However, treating with dulaglutide effectively counteracted these effects. Moreover, dulaglutide dramatically recovered primary cortical neuron cell viability and inhibited cell apoptosis influenced by Aβ1-42. Furthermore, the dulaglutide also reversed neuronal synapse injury after exposure to Aβ1-42.
ConclusionAltogether, this investigation verified that dulaglutide improved Aβ-induced inflammation and neuronal injury by mediating the activation and polarization of microglia, thereby alleviating Alzheimer's disease efficiently.
-
-
-
Astaxanthin Alleviates Chronic Prostatitis via the ERK1/2 Signaling Pathway: Evidence from Network Pharmacology and Experimental Validation
Authors: Yifu Liu, Liang Huang, Zhicheng Zhang, Qiqi Zhu, Ping Xi, Ting Sun and Binbin GongAvailable online: 09 October 2024More LessBackgroundAstaxanthin (AST) has been widely recognized for its therapeutic potential in chronic inflammatory ailments. This study investigates the therapeutic efficacy and underlying mechanisms of AST in the management of chronic prostatitis (CP).
MethodsMale Sprague-Dawley (SD) rats were randomly divided into control, complete Freund's adjuvant (CFA), and CFA + AST groups. CFA was used to induce the CP model, and saline was used for the control group. Inflammation of the prostate was detected 28 days after oral administration of AST. qRT-PCR and ELISA were used to detect pro-inflammatory factors in RWPE-1 and WPMY-1 cells. Potential targets of AST for CP were explored by network pharmacology, and related proteins were detected by Western blotting.
ResultsOral administration of AST alleviated the increase in prostate stroma and reduced inflammatory cell infiltration in CP rats. The IC50 of AST-treated RWPE-1 and WPMY-1 cells for 48 h were 171 and 212.1 μM, respectively. AST pretreatment reduced IL-6 and IL-8 expression in these cells. PPI network, GO, and KEGG enrichment analyses suggested that the anti-inflammatory effect of AST was associated with the ERK1/2 pathway. Western blotting showed that AST inhibited ERK1/2 phosphorylation. In addition, AST and ERK1/2 pathway inhibitors (U0126) synergistically inhibited LPS-induced inflammation in prostate cells.
ConclusionOur study identified the potential of AST in the treatment of CP. However, subsequent randomized controlled trials are needed to validate its clinical efficacy.
-
-
-
Green Synthesis of New Derivatives of Iminothiazole Using Cefixime and Removing Organic Pollutants from Aqueous Environment by Employing Cu@KF/Clinoptilolite NPs
Authors: Fariba Zamani-Hargalani and Faezeh ShafaeiAvailable online: 07 October 2024More LessAims and ObjectiveIn this research, multicomponent reactions of cefixime, isothiocyanates, and alkyl bromides were carried out for the synthesis of new iminothiazole derivatives with high yields in water as the solvent at room temperature in the presence of catalytic amounts of Cu@KF/CP NPs as catalysts. Also, the ability of Cu@KF/Clinoptilolite nanoparticles (NPs) to adsorb and remove 4-NP and cefixime from water was investigated. The Cu@KF/Clinoptilolite nanoparticles were synthesized by employing a water extract of Petasites hybridus rhizomes.
Materials and MethodsFor this experiment, all of the components obtained from Fluka and Merck were subjected to further purification. The antibiotic used in this investigation, cefixime, was obtained from a pharmaceutical facility situated in Sari, Mazandaran, Iran. The antibiotic factory is located in Sari City, Iran. All solutions were prepared using distilled water. The shape of Cu@KF/CP nanoparticles was analyzed using images obtained from a Holland Philips XL30 scanning electron microscope. An analysis was performed on the crystalline structure of Cu@KF/CP nanoparticles (NPs), and a room temperature X-ray diffraction (XRD) examination was carried out utilizing a Holland Philips Xpert X-ray powder diffractometer. The X-ray diffraction (XRD) examination was conducted using CuK radiation, which has a wavelength of 0.15406 nm. The analysis covered a 2ε angle range from 20 to 80°. The nanostructures that were produced were chemically analyzed using X-ray energy dispersive spectroscopy (EDS) with an S3700N equipment. The morphology and dimensions of Cu@KF/CP nanoparticles were characterized using a Philips EM208 transmission electron microscope operated at an acceleration voltage of 90 kV.
ResultsThe primary objective of this study was to develop a sustainable approach for producing new iminothiazole derivatives 4. This was achieved using a highly efficient three-component reaction combining cefixime 1, isothiocyanates 2, and alkyl bromides 3. The reaction was carried out in water at ambient temperature, using Cu@KF/CP NPs as a highly effective catalyst, leading to excellent yields. Moreover, the study findings showed that the synthesized compounds demonstrated a significant antioxidant activity compared to conventional antioxidants. The antibacterial efficacy of the synthesized compounds was evaluated against both Gram-positive and Gram-negative bacteria. Furthermore, Cu@KF/CP nanoparticles were utilized to adsorb CFX and 4-NP from water-based solutions.
ConclusionThis study showcases the effective synthesis of innovative iminothiazole derivatives through the use of multicomponent reactions, involving the combination of cefixime, isothiocyanates, and alkyl bromides. The reactions were conducted in a water-based solvent. The reactions were carried out at room temperature, utilizing Cu@KF/CP NPs as catalysts. The Cu@KF/CP nanoparticles, a newly developed heterogeneous nanocatalyst, were synthesized and evaluated utilizing X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) research techniques. Cu@KF/CP nanoparticles are utilized to adsorb CFX and 4-NP from water-based solutions. The objects were manufactured using a straightforward and uncomplicated approach. The BET surface area of Cu@KF/CP NPs was measured to be 201.8 m2/g. The experimental equilibrium data was evaluated by applying the isotherms of the Langmuir, Freundlich, Dubinin-Radushkevich, and Redlich-Peterson models. Additionally, we examined the catalytic efficiency of Cu@KF/CP nanoparticles (NPs) in reducing various colors in water.
-
Most Read This Month Most Read RSS feed
Most Cited Most Cited RSS feed
-
-
Label-Free Detection of Biomolecular Interactions Using BioLayer Interferometry for Kinetic Characterization
Authors: Joy Concepcion, Krista Witte, Charles Wartchow, Sae Choo, Danfeng Yao, Henrik Persson, Jing Wei, Pu Li, Bettina Heidecker, Weilei Ma, Ram Varma, Lian-She Zhao, Donald Perillat, Greg Carricato, Michael Recknor, Kevin Du, Huddee Ho, Tim Ellis, Juan Gamez, Michael Howes, Janette Phi-Wilson, Scott Lockard, Robert Zuk and Hong Tan
-
-
- More Less