Skip to content
2000
Volume 14, Issue 3
  • ISSN: 2211-5366
  • E-ISSN: 2211-5374

Abstract

Introduction

Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is a major contributor to global morbidity and mortality. As diagnostic tools for MASLD remain limited, microRNAs (miRs) have garnered attention as promising biomarkers due to their roles in regulating metabolic pathways and reflecting disease states.

Methods

This systematic review of clinical studies explores the association between miRNAs and the spectrum of MASLD-related pathologies, including steatosis, fibrosis, and Hepatocellular Carcinoma (HCC). A comprehensive literature search was conducted using PRISMA guidelines, resulting in 44 peer-reviewed studies being included. The review identifies several key miRs, such as miR-122, miR-34a, and miR-193-5p, which are linked to lipid metabolism, insulin resistance, and MASLD severity. Results: Additionally, miR-214 and miR-193-5p are highlighted as potential biomarkers for fibrosis, while miR-21 and miR-34a are implicated in the progression of HCC. These miRs were found in various tissues, including serum, liver, visceral adipose tissue, and ascitic fluid, demonstrating their utility as diagnostic and prognostic tools across the MASLD spectrum.

Conclusion

While miR panels are being developed for clinical assessment, further research is required to confirm their roles in diagnosis and treatment, as well as their integration into routine clinical practice.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366359521250122115511
2025-11-01
2025-12-08
Loading full text...

Full text loading...

References

  1. NguyenH.D. KimM.S. Effects of chemical mixtures on liver function biomarkers in the Korean adult population: Thresholds and molecular mechanisms for non-alcoholic fatty liver disease involved.Environ. Sci. Pollut. Res. Int.20222952785557858710.1007/s11356‑022‑21090‑4 35696061
    [Google Scholar]
  2. JoplingC.L. YiM. LancasterA.M. LemonS.M. SarnowP. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA.Science200530957401577158110.1126/science.1113329 16141076
    [Google Scholar]
  3. HendyO.M. RabieH. El FoulyA. The circulating micro-RNAs (−122, −34a and −99a) as predictive biomarkers for non-alcoholic fatty liver diseases.Diabetes Metab. Syndr. Obes.2019122715272310.2147/DMSO.S231321 31908512
    [Google Scholar]
  4. EzazG. TrivediH.D. ConnellyM.A. Differential associations of circulating micrornas with pathogenic factors in NAFLD.Hepatol. Commun.20204567068010.1002/hep4.1501 32363318
    [Google Scholar]
  5. ZhaoZ. ZhongL. LiP. Cholesterol impairs hepatocyte lysosomal function causing M1 polarization of macrophages via exosomal miR-122-5p.Exp. Cell Res.2020387111173810.1016/j.yexcr.2019.111738 31759057
    [Google Scholar]
  6. NewmanL.A. UseckaiteZ. JohnsonJ. SorichM.J. HopkinsA.M. RowlandA. Selective isolation of liver-derived extracellular vesicles redefines performance of miRNA biomarkers for non-alcoholic fatty liver disease.Biomedicines202210119510.3390/biomedicines10010195 35052873
    [Google Scholar]
  7. PirolaC.J. Fernández GianottiT. CastañoG.O. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis.Gut201564580081210.1136/gutjnl‑2014‑306996 24973316
    [Google Scholar]
  8. BeckerP.P. RauM. SchmittJ. Performance of serum microRNAs -122, -192 and -21 as biomarkers in patients with non-alcoholic steatohepatitis.PLoS ONE20151011e014266110.1371/journal.pone.0142661
    [Google Scholar]
  9. AkutaN. KawamuraY. AraseY. Circulating MicroRNA‐122 and fibrosis stage predict mortality of Japanese patients with histopathologically confirmed NAFLD.Hepatol. Commun.202041667610.1002/hep4.1445 31909356
    [Google Scholar]
  10. MohamedA.A. El-DemeryA. Al-HussainE. NAFLD mark: An accurate model based on microRNA-34 for diagnosis of non-alcoholic fatty liver disease patients.J. Genet. Eng. Biotechnol.202119115710.1186/s43141‑021‑00257‑5 34661762
    [Google Scholar]
  11. MalakootianM. NaeliP. MowlaS.J. SeidahN.G. Post-transcriptional effects of miRNAs on PCSK7 expression and function: miR-125a-5p, miR-143-3p, and miR-409-3p as negative regulators.Metabolites202212758810.3390/metabo12070588 35888711
    [Google Scholar]
  12. QuintásG. CaimentF. RiendaI. Quantitative prediction of steatosis in patients with non-alcoholic fatty liver by means of hepatic microRNAs present in serum and correlating with hepatic fat.Int. J. Mol. Sci.20222316929810.3390/ijms23169298 36012565
    [Google Scholar]
  13. HuM.J. LongM. DaiR.J. Acetylation of H3K27 activated lncRNA NEAT1 and promoted hepatic lipid accumulation in non-alcoholic fatty liver disease via regulating miR-212-5p/GRIA3.Mol. Cell. Biochem.2022477119120310.1007/s11010‑021‑04269‑0 34652536
    [Google Scholar]
  14. WangD.R. WangB. YangM. Suppression of miR-30a-3p attenuates hepatic steatosis in non-alcoholic fatty liver disease.Biochem. Genet.202058569170410.1007/s10528‑020‑09971‑0 32419060
    [Google Scholar]
  15. AuguetT. AragonèsG. BerlangaA. miR33a/miR33b* and miR122 as possible contributors to hepatic lipid metabolism in obese women with nonalcoholic fatty liver disease.Int. J. Mol. Sci.20161710162010.3390/ijms17101620 27669236
    [Google Scholar]
  16. SharmaH. EstepM. BirerdincA. Expression of genes for micro RNA ‐processing enzymes is altered in advanced non‐alcoholic fatty liver disease.J. Gastroenterol. Hepatol.20132881410141510.1111/jgh.12268 23663110
    [Google Scholar]
  17. ShenN. TangL. QianY. Serum miR-4488 as a potential biomarker of lean nonalcoholic fatty liver disease.Ann. Transl. Med.2023114173310.21037/atm‑22‑6620 36923095
    [Google Scholar]
  18. HegazyM.A. Abd ALgwad I, Abuel Fadl S, Sayed Hassan M, Ahmed Rashed L, Hussein MA. Serum Micro-RNA-122 level as a simple noninvasive marker of MAFLD severity.Diabetes Metab. Syndr. Obes.2021142247225410.2147/DMSO.S291595
    [Google Scholar]
  19. HeZ. YangJ.J. ZhangR. Circulating miR‐29b positively correlates with non‐alcoholic fatty liver disease in a Chinese population.J. Dig. Dis.201920418919510.1111/1751‑2980.12716 30756471
    [Google Scholar]
  20. AkutaN. KawamuraY. SuzukiF. Analysis of association between circulating miR-122 and histopathological features of nonalcoholic fatty liver disease in patients free of hepatocellular carcinoma.BMC Gastroenterol.201616114110.1186/s12876‑016‑0557‑6 27955628
    [Google Scholar]
  21. Braza-BoïlsA. Marí-AlexandreJ. MolinaP. Deregulated hepatic micro RNA s underlie the association between non‐alcoholic fatty liver disease and coronary artery disease.Liver Int.20163681221122910.1111/liv.13097 26901384
    [Google Scholar]
  22. EikelisN. DixonJ.B. LambertE.A. MicroRNA-132 may be associated with blood pressure and liver steatosis—preliminary observations in obese individuals.J. Hum. Hypertens.2022361091191610.1038/s41371‑021‑00597‑2 34453104
    [Google Scholar]
  23. ErhartovaD. CahovaM. DankovaH. Serum miR-33a is associated with steatosis and inflammation in patients with non-alcoholic fatty liver disease after liver transplantation.PLoS One20191411e022482010.1371/journal.pone.0224820 31703079
    [Google Scholar]
  24. HuangF. LiuH. LeiZ. Long noncoding RNA CCAT1 inhibits miR‐613 to promote nonalcoholic fatty liver disease via increasing LXRα transcription.J. Cell. Physiol.2020235129819983310.1002/jcp.29795 32413192
    [Google Scholar]
  25. JohnsonK. LearyP.J. GovaereO. Increased serum miR-193a-5p during non-alcoholic fatty liver disease progression: Diagnostic and mechanistic relevance.JHEP Rep. Innov. Hepatol.20224210040910.1016/j.jhepr.2021.100409 35072021
    [Google Scholar]
  26. WangR. WangX. ZhuangL. Gene expression profiling reveals key genes and pathways related to the development of non-alcoholic fatty liver disease.Ann. Hepatol.201615219019910.5604/16652681.1193709 26845596
    [Google Scholar]
  27. YamadaH. SuzukiK. IchinoN. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver.Clin. Chim. Acta20134249910310.1016/j.cca.2013.05.021 23727030
    [Google Scholar]
  28. ZongY. YanJ. JinL. Relationship between circulating miR-132 and non-alcoholic fatty liver disease in a Chinese population.Hereditas202015712210.1186/s41065‑020‑00136‑y 32443971
    [Google Scholar]
  29. SendiH. MeadI. WanM. miR-122 inhibition in a human liver organoid model leads to liver inflammation, necrosis, steatofibrosis and dysregulated insulin signaling.PLoS One2018137e020084710.1371/journal.pone.0200847 30024933
    [Google Scholar]
  30. HuL.K. ChenJ.Q. ZhengH. TaoY.P. YangY. XuX.F. MicroRNA-506-3p targets SIRT1 and suppresses AMPK pathway activation to promote hepatic steatosis.Exp. Ther. Med.2021226143010.3892/etm.2021.10865 34707711
    [Google Scholar]
  31. EstepM. ArmisteadD. HossainN. Differential expression of miRNAs in the visceral adipose tissue of patients with non‐alcoholic fatty liver disease.Aliment. Pharmacol. Ther.201032348749710.1111/j.1365‑2036.2010.04366.x 20497147
    [Google Scholar]
  32. GuoX.Y. ChenJ.N. SunF. WangY.Q. PanQ. FanJ.G. circRNA_0046367 prevents hepatoxicity of lipid peroxidation: An inhibitory role against hepatic steatosis.Oxid. Med. Cell. Longev.201720171396019710.1155/2017/3960197 29018509
    [Google Scholar]
  33. HarrisonS.A. RatziuV. MagnanensiJ. NIS2+™, an optimisation of the blood-based biomarker NIS4® technology for the detection of at-risk NASH: A prospective derivation and validation study.J. Hepatol.202379375876710.1016/j.jhep.2023.04.031 37224923
    [Google Scholar]
  34. AbdelgwadM. ZakariaR. MarzoukS. The emerging role of circular RNA homeodomain interacting protein kinase 3 and circular RNA 0046367 through Wnt/beta-catenin pathway on the pathogenesis of nonalcoholic steatohepatitis in Egyptian patients.Rep. Biochem. Mol. Biol.202311461462510.52547/rbmb.11.4.614 37131898
    [Google Scholar]
  35. ChenS. CaiX. LiuY. The macrophage-associated microRNA-4715-3p/Gasdermin D axis potentially indicates fibrosis progression in nonalcoholic fatty liver disease: Evidence from transcriptome and biological data.Bioengineered2022135117401175110.1080/21655979.2022.2072602 35521691
    [Google Scholar]
  36. HansonA. PirasI.S. WilhelmsenD. Chemokine ligand 20 (CCL20) expression increases with NAFLD stage and hepatic stellate cell activation and is regulated by miR-590-5p.Cytokine201912315478910.1016/j.cyto.2019.154789 31352173
    [Google Scholar]
  37. BandieraS. PfefferS. BaumertT.F. ZeiselM.B. miR-122 – A key factor and therapeutic target in liver disease.J. Hepatol.201562244845710.1016/j.jhep.2014.10.004 25308172
    [Google Scholar]
  38. RagabH.M. EzzatW.M. HassanE.M. Significance of MiRNA-34a and MiRNA-192 as a risk factor for nonalcoholic fatty liver disease.J. Genet. Eng. Biotechnol.20232111310.1186/s43141‑023‑00467‑z 36757530
    [Google Scholar]
  39. LiC.W. ChiuY.K. ChenB.S. Investigating pathogenic and hepatocarcinogenic mechanisms from normal liver to HCC by constructing genetic and epigenetic networks via big genetic and epigenetic data mining and genome-wide NGS data identification.Dis. Markers2018201812210.1155/2018/8635329 30344796
    [Google Scholar]
  40. WangD. HuX. ChenJ. Bioinformatics analysis and validation of the role of Lnc-RAB11B-AS1 in the development and prognosis of hepatocellular carcinoma.Cells20221121351710.3390/cells11213517 36359911
    [Google Scholar]
  41. LetiF. MalenicaI. DoshiM. High-throughput sequencing reveals altered expression of hepatic microRNAs in nonalcoholic fatty liver disease–related fibrosis.Transl. Res.2015166330431410.1016/j.trsl.2015.04.014 26001595
    [Google Scholar]
  42. VogtJ. SheinsonD. KatavolosP. Variance component analysis of circulating miR-122 in serum from healthy human volunteers.PLoS One2019147e022040610.1371/journal.pone.0220406 31348817
    [Google Scholar]
  43. AghajanzadehT. TalkhabiM. ZaliM.R. HatamiB. BaghaeiK. Diagnostic potential and pathogenic performance of circulating miR-146b, miR-194, and miR-214 in liver fibrosis.Noncoding RNA Res.20238447148010.1016/j.ncrna.2023.06.004 37434946
    [Google Scholar]
  44. BinMowynaMN AlFarisNA Al-SaneaEA AlTamimiJZ AldayelTS Resveratrol attenuates against high-fat-diet-promoted non-alcoholic fatty liver disease in rats mainly by targeting the miR-34a/SIRT1 axis.Arch Physiol Biochem2024130330031510.1080/13813455.2022.204610635254877
    [Google Scholar]
  45. LiangM. XiaoX. ChenM. Artemisia capillaris Thunb. Water extract alleviates metabolic dysfunction-associated Steatotic liver disease Disease by inhibiting miR-34a-5p to activate Sirt1-mediated hepatic lipid metabolism.J. Ethnopharmacol.2025338Pt 211903010.1016/j.jep.2024.119030 39515682
    [Google Scholar]
  46. HuY. DuG. LiG. PengX. ZhangZ. ZhaiY. The miR-122 inhibition alleviates lipid accumulation and inflammation in NAFLD cell model.Arch. Physiol. Biochem.2021127538538910.1080/13813455.2019.1640744 31311339
    [Google Scholar]
  47. AlbadawyR. AgwaS.H.A. KhairyE. Circulatory Endothelin 1-Regulating RNAs panel: Promising biomarkers for non-invasive NAFLD/NASH diagnosis and stratification: clinical and molecular pilot study.Genes (Basel)20211211181310.3390/genes12111813 34828420
    [Google Scholar]
  48. RusuI. PirlogR. ChiroiP. Distinct morphological and molecular profiles of NAFLD and NAFLD-associated HCC revealed by immunohistochemistry and microRNA analysis.J. Gastrointestin. Liver Dis.202332335636610.15403/jgld‑5065 37494555
    [Google Scholar]
  49. Muhammad YusufA.N. Raja AliR.A. Muhammad NawawiK.N. MokhtarN.M. Potential biomarkers in NASH-induced liver cirrhosis with hepatocellular carcinoma: A preliminary work on roles of exosomal miR-182, miR-301a, and miR-373.Malays. J. Pathol.2020423377384 33361718
    [Google Scholar]
  50. López-SánchezG.N. Montalvo-JavéE. Domínguez-PerezM. Hepatic mir-122-3p, mir-140-5p and mir-148b-5p expressions are correlated with cytokeratin-18 serum levels in MAFLD.Ann. Hepatol.202227610075610.1016/j.aohep.2022.100756 36096296
    [Google Scholar]
  51. ZarrinparA. GuptaS. MauryaM.R. SubramaniamS. LoombaR. Serum microRNAs explain discordance of non-alcoholic fatty liver disease in monozygotic and dizygotic twins: A prospective study.Gut20166591546155410.1136/gutjnl‑2015‑309456 26002934
    [Google Scholar]
  52. MolletI.G. MacedoM.P. Pre-diabetes-linked miRNA miR-193b-3p targets PPARGC1A, disrupts metabolic gene expression profile and increases lipid accumulation in hepatocytes: Relevance for MAFLD.Int. J. Mol. Sci.2023244387510.3390/ijms24043875 36835287
    [Google Scholar]
  53. MarkovicJ. SharmaA.D. BalakrishnanA. MicroRNA-221: A fine tuner and potential biomarker of chronic liver injury.Cells202098176710.3390/cells9081767 32717951
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366359521250122115511
Loading
/content/journals/mirna/10.2174/0122115366359521250122115511
Loading

Data & Media loading...

Supplements

Supplementary material and PRISMA checklist are available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test