Skip to content
2000
Volume 14, Issue 2
  • ISSN: 2211-5366
  • E-ISSN: 2211-5374

Abstract

The revolutionary CRISPR/Cas9 gene editing technology holds immense potential for treating genetic diseases and tackling conditions like cancer. However, efficient delivery remains a significant challenge. This is where nanoparticles come into play, emerging as powerful allies in the realm of drug delivery. Nanoparticles can accommodate larger insertion sizes, enabling the incorporation of larger Cas9 enzymes and complex guide RNAs, thus opening up the possibility of editing previously inaccessible genetic regions. Their relatively straightforward and scalable production processes make them cost-effective options for wider applications. Notably, nanoparticles excel , demonstrating efficient tissue penetration and targeted delivery, which are crucial for maximizing therapeutic impact while minimizing side effects.

This review aims to explore the potential of nanoparticle-based delivery systems for CRISPR/Cas9, highlighting their advantages and challenges in gene editing applications. The diverse range of nanoparticles further bolsters their potential. Polymeric nanoparticles, for instance, offer tunable properties for customization and controlled release of the CRISPR cargo. Lipid-based nanoparticles facilitate efficient cellular uptake and endosomal escape, ensuring the CRISPR components reach the target DNA. Even gold nanoparticles, known for their unique biocompatibility and photothermal properties, hold promise in light-activated editing strategies. Non-viral delivery systems, particularly those based on nanoparticles, stand out due to their inherent advantages.

Collectively, the evidence paints a promising picture: nanoparticles are not merely passive carriers but active participants in the CRISPR/Cas9 delivery landscape. Their versatility, efficiency, and safety position them as key enablers of a future where gene editing can revolutionize drug development, offering personalized and targeted therapies for a wide range of diseases.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366319848241022092805
2025-07-01
2025-12-13
Loading full text...

Full text loading...

References

  1. BarrangouR. HorvathP. A decade of discovery: CRISPR functions and applications.Nat. Microbiol.2017271709210.1038/nmicrobiol.2017.9228581505
    [Google Scholar]
  2. MakarovaK.S. ZhangF. KooninE.V. SnapShot: Class 2 CRISPR-Cas systems.Cell20171681-2328
    [Google Scholar]
  3. JinekM. ChylinskiK. FonfaraI. HauerM. DoudnaJ.A. CharpentierE. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science2012337609681682110.1126/science.122582922745249
    [Google Scholar]
  4. ZhangJ. RouillonC. KerouM. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity.Mol. Cell201245330331310.1016/j.molcel.2011.12.01322227115
    [Google Scholar]
  5. HochstrasserM.L. DoudnaJ.A. Cutting it close: CRISPR-associated endoribonuclease structure and function.Trends Biochem. Sci.2015401586610.1016/j.tibs.2014.10.00725468820
    [Google Scholar]
  6. HsuP.D. LanderE.S. ZhangF. Development and applications of CRISPR-Cas9 for genome engineering.Cell201415761262127810.1016/j.cell.2014.05.01024906146
    [Google Scholar]
  7. AlkhnbashiO.S. MeierT. MitrofanovA. BackofenR. VoßB. CRISPR-Cas bioinformatics.Methods202017231110.1016/j.ymeth.2019.07.01331326596
    [Google Scholar]
  8. SapranauskasR GasiunasG FremauxC BarrangouR HorvathP SiksnysV. The Streptococcus thermophilus CRISPR/Cas system provides immunity inEscherichia coli nucleic acids res 2011392192758210.1093/nar/gkr60621813460
    [Google Scholar]
  9. XuX. WanT. XinH. Delivery of CRISPR/Cas9 for therapeutic genome editing.J. Gene Med.2019217e310710.1002/jgm.310731237055
    [Google Scholar]
  10. TongS. MoyoB. LeeC.M. LeongK. BaoG. Engineered materials for in vivo delivery of genome-editing machinery.Nat. Rev. Mater.201941172673710.1038/s41578‑019‑0145‑934094589
    [Google Scholar]
  11. Parra-NietoJ. del CidM.A.G. de CárcerI.A. BaezaA. Inorganic porous nanoparticles for drug delivery in antitumoral therapy.Biotechnol. J.2021162200015010.1002/biot.20200015032476279
    [Google Scholar]
  12. AdamsD. GonzalezH. DeliliersJ. Patisiran efficacy and safety for transthyretin amyloidosis polyneuropathy.N. Engl. J. Med.2018379201953196310.1056/NEJMoa1801091
    [Google Scholar]
  13. AkintayoA. AkintayoT. AdeyemoA.A. Lipid nanoparticles for cell and gene delivery: A promising approach for targeted delivery to solid tumors.Drug Deliv. Transl. Res.20122420622210.1007/s13346‑012‑0140‑6
    [Google Scholar]
  14. LvH. ZhangW. WangB. Surface charge density-dependent endocytosis and intracellular trafficking of cationic lipid nanoparticles.ACS Nano2014821250126210.1021/nn405554m
    [Google Scholar]
  15. Ten HoeveW. HeiseA. Zuhorn-KlemmE. Design of polymeric nanocarriers for intracellular delivery.Chem. Rev.201711716107461107110.1021/acs.chemrev.600709b
    [Google Scholar]
  16. GilletL. BolañosP. DíezI. Stimuli-responsive nanocarriers for enhanced intracellular delivery of CRISPR/Cas9 ribonucleoprotein complexes.ACS Nano20171143334334410.1021/acsnano.7b00701
    [Google Scholar]
  17. ZhengL. BandaraS.R. TanZ. LealC. Lipid nanoparticle topology regulates endosomal escape and delivery of RNA to the cytoplasm.Proc. Natl. Acad. Sci. USA202312027e230106712010.1073/pnas.230106712037364130
    [Google Scholar]
  18. JiangW. BikardD. CoxD.B. CRISPR-Cas9 editing of DNA repair genes reveals an unexpected role of Mre11 in non-homologous recombination.DNA Repair (Amst.)201535707610.1016/j.dnarep.2015.05.004
    [Google Scholar]
  19. YangH. WangH. ShivalilaC.S. ChengA.W. ShiL. JaenischR. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering.Cell201315461370137910.1016/j.cell.2013.08.02223992847
    [Google Scholar]
  20. ChewW.L. TabebordbarM. ChengJ.K.W. A multifunctional AAV–CRISPR–Cas9 and its host response.Nat. Methods2016131086887410.1038/nmeth.399327595405
    [Google Scholar]
  21. PaquetD. KwartD. ChenA. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.Nature2016533760112512910.1038/nature1766427120160
    [Google Scholar]
  22. CarterB.J. Adeno-associated virus and the development of adeno-associated virus vectors: A historical perspective.Mol. Ther.200410698198910.1016/j.ymthe.2004.09.01115564130
    [Google Scholar]
  23. HastieE. SamulskiR.J. Adeno-associated virus at 50: A golden anniversary of discovery, research, and gene therapy success - A personal perspective.Hum. Gene Ther.201526525726510.1089/hum.2015.02525807962
    [Google Scholar]
  24. KottermanM.A. ChalbergT.W. SchafferD.V. Viral vectors for gene therapy: Translational and clinical outlook.Annu. Rev. Biomed. Eng.2015171638910.1146/annurev‑bioeng‑071813‑10493826643018
    [Google Scholar]
  25. LeeC.S. BishopE.S. ZhangR. Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine.Genes Dis.201742436310.1016/j.gendis.2017.04.00128944281
    [Google Scholar]
  26. SongR. MurphyM. LiC. TingK. SooC. ZhengZ. Current development of biodegradable polymeric materials for biomedical applications.Drug Des. Devel. Ther.2018123117314510.2147/DDDT.S16544030288019
    [Google Scholar]
  27. HanafyN. El-KemaryM. LeporattiS. Micelles structure development as a strategy to improve smart cancer therapy.Cancers201810723810.3390/cancers1007023830037052
    [Google Scholar]
  28. GothwalA. KhanI. GuptaU. Polymeric micelles: Recent advancements in the delivery of anticancer drugs.Pharm. Res.2016331183910.1007/s11095‑015‑1784‑126381278
    [Google Scholar]
  29. SunW. JiW. HallJ.M. Hu Q, Wang C, Beisel CL, Gu Z. Self‐assembled DNA nanoclews for the efficient delivery of CRISPR–Cas9 for genome editing.Angewandte Chemie. 2015 Oct 5;127411219712201
    [Google Scholar]
  30. SharmaA.K. PrasherP. AljabaliA.A. Emerging era of somes: Polymersomes as versatile drug delivery carrier for cancer diagnostics and therapy.Drug Deliv. Transl. Res.20201051171119010.1007/s13346‑020‑00789‑232504410
    [Google Scholar]
  31. WuD. XuX. Exploring cutting-edge hydrogel technologies and their biomedical applications.Bioact. Mater.20183444644710.1016/j.bioactmat.2018.08.00130182071
    [Google Scholar]
  32. Mohammadi-SamaniS. GhasemiyehP. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages.Res. Pharm. Sci.201813428830310.4103/1735‑5362.23515630065762
    [Google Scholar]
  33. BattagliaL. GallarateM. Lipid nanoparticles: State of the art, new preparation methods and challenges in drug delivery.Expert Opin. Drug Deliv.20129549750810.1517/17425247.2012.67327822439808
    [Google Scholar]
  34. TaratulaO. KuzmovA. ShahM. GarbuzenkoO.B. MinkoT. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA.J. Control. Release2013171334935710.1016/j.jconrel.2013.04.01823648833
    [Google Scholar]
  35. YanarF. MosayyebiA. NastruzziC. CarugoD. ZhangX. Continuous-flow production of liposomes with a millireactor under varying fluidic conditions.Pharmaceutics20201211100110.3390/pharmaceutics1211100133105650
    [Google Scholar]
  36. FelgnerP.L. GadekT.R. HolmM. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure.Proc. Natl. Acad. Sci. USA198784217413741710.1073/pnas.84.21.74132823261
    [Google Scholar]
  37. AbdelkaderH. AlaniA.W.G. AlanyR.G. Recent advances in non-ionic surfactant vesicles (niosomes): Self-assembly, fabrication, characterization, drug delivery applications and limitations.Drug Deliv.20142128710010.3109/10717544.2013.83807724156390
    [Google Scholar]
  38. Ag SeleciD. MaurerV. StahlF. ScheperT. GarnweitnerG. Rapid microfluidic preparation of niosomes for targeted drug delivery.Int. J. Mol. Sci.20192019469610.3390/ijms2019469631546717
    [Google Scholar]
  39. AslanC. ZolbaninN.M. FarajiF. JafariR. Exosomes for CRISPR-Cas9 delivery: The cutting edge in genome editing.Mol. Biotechnol.202312510.1007/s12033‑023‑00932‑738012525
    [Google Scholar]
  40. DuanL. OuyangK. XuX. Nanoparticle delivery of CRISPR/Cas9 for genome editing.Front. Genet.20211267328610.3389/fgene.2021.67328634054927
    [Google Scholar]
  41. Lin-ShiaoE. PfeiferW.G. ShyB.R. CRISPR–Cas9-mediated nuclear transport and genomic integration of nanostructured genes in human primary cells.Nucleic Acids Res.20225031256126810.1093/nar/gkac04935104875
    [Google Scholar]
  42. SunW. JiangT. LuY. ReiffM. MoR. GuZ. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery.J. Am. Chem. Soc.201413642147221472510.1021/ja508802425336272
    [Google Scholar]
  43. BahlE. JyotiA. SinghA. Nanomaterials for intelligent CRISPR-Cas tools: Improving environment sustainability.Environ. Sci. Pollut. Res. Int.20241710.1007/s11356‑024‑32101‑x38291210
    [Google Scholar]
  44. García-FernándezA. Vivo-LlorcaG. SanchoM. Nanodevices for the efficient codelivery of CRISPR-Cas9 editing machinery and an entrapped cargo: A proposal for dual anti-inflammatory therapy.Pharmaceutics2022147149510.3390/pharmaceutics1407149535890389
    [Google Scholar]
  45. LiY. LiC. YanJ. Polymeric micellar nanoparticles for effective CRISPR/Cas9 genome editing in cancer.Biomaterials202430912257310.1016/j.biomaterials.2024.12257338677222
    [Google Scholar]
  46. ZhangC. WangX. LiuG. Metal coordination micelles for anti-cancer treatment by gene-editing and phototherapy.J. Control. Release202335721022110.1016/j.jconrel.2023.03.04236972864
    [Google Scholar]
  47. ZhangC. WangX. LiuG. CRISPR/Cas9 and chlorophyll coordination micelles for cancer treatment by genome editing and photodynamic therapy.Small20231917220698110.1002/smll.20220698136693779
    [Google Scholar]
  48. ZamoloS.J. DarbreT. ReymondJ.L. Transfecting tissue models with CRISPR/Cas9 plasmid DNA using peptide dendrimers.Chem. Commun20205680119811198410.1039/D0CC04750C32895670
    [Google Scholar]
  49. LiuC. WanT. WangH. ZhangS. PingY. ChengY. A boronic acid–rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing.Sci. Adv.201956eaaw892210.1126/sciadv.aaw892231206027
    [Google Scholar]
  50. Pérez-SosaC. PérezM.S. Vallejo-JanetaA.P. BhansaliS. MiriukaS. LernerB. Droplets for gene editing using CRISPR-Cas9 and clonal selection improvement using hydrogels.Micromachines202415341310.3390/mi1503041338542660
    [Google Scholar]
  51. EswaranL. KazimirskyG. BykG. New biocompatible nanohydrogels of predefined sizes for complexing nucleic acids.Pharmaceutics202315233210.3390/pharmaceutics1502033236839655
    [Google Scholar]
  52. RohY.H. LeeC.Y. LeeS. CRISPR‐enhanced hydrogel microparticles for multiplexed detection of nucleic acids.Adv. Sci.20231010220687210.1002/advs.20220687236725305
    [Google Scholar]
  53. ZhaoR. TangY. SongD. LiuM. LiB. CRISPR/Cas12a-responsive hydrogels for conjugation-free and universal indicator release in colorimetric detection.Anal. Chem.20239550185221852910.1021/acs.analchem.3c0390038055961
    [Google Scholar]
  54. MaW. LiuM. Xie S, Liu B, Jiang L, Zhang X, Yuan X. CRISPR/Cas12a system responsive DNA hydrogel for label-free detection of non-glucose targets with a portable personal glucose meter. Analytica Chimica Acta. 2022 Oct 23;1231340439
    [Google Scholar]
  55. ZhangT. Applications of lipid nanoparticles in CRISPR technology.MedScien20241710.61173/ecc6db10
    [Google Scholar]
  56. PalankiR. HanE.L. MurrayA.M. Optimized microfluidic formulation and organic excipients for improved lipid nanoparticle mediated genome editing.Lab Chip202424163790380110.1039/D4LC00283K39037068
    [Google Scholar]
  57. YangS. ImS.H. ChungJ.Y. An Antibody‐CRISPR/Cas conjugate platform for target‐specific delivery and gene editing in cancer.Adv. Sci. (Weinh.)20241121230876310.1002/advs.202308763
    [Google Scholar]
  58. WaltherJ. PorentaD. WilbieD. Comparative analysis of lipid nanoparticle-mediated delivery of CRISPR-Cas9 RNP versus mRNA/sgRNA for gene editing in vitro and in vivo.Eur. J. Pharm. Biopharm.202419611420710.1016/j.ejpb.2024.11420738325664
    [Google Scholar]
  59. SunQ. ZhangH. DingF. GaoX. ZhuZ. YangC. Development of ionizable lipid nanoparticles and a lyophilized formulation for potent CRISPR-Cas9 delivery and genome editing.Int. J. Pharm.202465212384510.1016/j.ijpharm.2024.12384538266942
    [Google Scholar]
  60. GeczyR. ThommandruB. SwaminathanM. Lipid nanoparticle-mediated gene editing of human primary T cells and off-target analysis of the CRISPR-Cas9 indels.Blood2023142Suppl. 1683310.1182/blood‑2023‑185068
    [Google Scholar]
  61. ChenK. HanH. ZhaoS. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR-Cas9 RNP.bioRxiv2023202356633910.1101/2023.11.15.566339
    [Google Scholar]
  62. AlhazzaA. MahdipoorP. HallR. Modifying peptide/lipid-associated nucleic acids (PLANAs) for CRISPR/Cas9 ribonucleoprotein delivery.Eur. J. Pharm. Sci.202419510670810.1016/j.ejps.2024.10670838262570
    [Google Scholar]
  63. JuH. KimD. OhY.K. Lipid nanoparticle-mediated CRISPR/Cas9 gene editing and metabolic engineering for anticancer immunotherapy.Asian J. Pharm. Sci.2022175641652
    [Google Scholar]
  64. Fu JY. Preparation method of CRISPR/Cas9 targeted delivery system based on albumin.C.N. Patent 115844831B2022
  65. Amy CH. Delivering CRISPR therapeutics with lipid nanoparticles.U.S. Patent 10626393B22016
  66. Kallanthottathil G. Lipid formulations for gene editing.U.S. Patent 12024484B22021
  67. Zhang F. Delivery and use of the CRISPR-CAS systems, vectors and compositions for hepatic targeting and therapyU.S. Patent 12018275B22023
/content/journals/mirna/10.2174/0122115366319848241022092805
Loading
/content/journals/mirna/10.2174/0122115366319848241022092805
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test