Skip to content
2000
Volume 14, Issue 3
  • ISSN: 2211-5366
  • E-ISSN: 2211-5374

Abstract

MicroRNAs have emerged as pivotal post-transcriptional regulators, orchestrating a myriad of cellular processes critical to both normal physiology and pathological conditions, particularly cancer. Among these, miRNAs containing the highly conserved AAAGUGC seed sequence have garnered significant attention due to their multifaceted roles in cancer progression, acting as both oncogenes and tumour suppressors across a wide spectrum of malignancies. This review delves deeply into the evolutionary significance of AAAGUGC seed-containing miRNAs, elucidating their conserved nature and intricate roles in the regulation of cancer-related gene expression networks. We focused on eight specific miRNAs- miR-17-5p, miR-20a-5p, miR-93-5p, miR-106a-5p, miR-106b-5p, miR-519d-3p, miR-526b-3p, and miR-20b-5p -each of which demonstrates context-dependent oncogenic or tumour-suppressive behaviour. Through an in-depth exploration of the molecular mechanisms by which these miRNAs modulate critical pathways, we highlighted their capacity to influence essential processes, including cell proliferation, apoptosis, epithelial-to-mesenchymal transition (EMT), metastasis, and drug resistance, reflecting the complexity of their regulatory roles. Furthermore, we dissected the intricate interactions between these miRNAs and their downstream targets, showcasing their diverse contributions to the tumour microenvironment. The implications of miRNA dysregulation in chemotherapy resistance were also explored. In conclusion, AAAGUGC seed-containing miRNAs represent a complex and evolutionarily conserved family with implications in cancer biology. Their ability to modulate multiple oncogenic and tumour-suppressive pathways highlights their potential as therapeutic targets or biomarkers in the context of personalized cancer treatment strategies. This review provides a comprehensive depth of current knowledge while proposing avenues for future research into the therapeutic manipulation of these miRNAs in combating cancer.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366365058250513110804
2025-11-01
2025-12-10
Loading full text...

Full text loading...

References

  1. MacfarlaneL-A. MurphyP.R. MicroR.N.A. microRNA: Biogenesis, function and role in cancer.Curr. Genomics201011753756110.2174/138920210793175895 21532838
    [Google Scholar]
  2. OlivetoS. MancinoM. ManfriniN. BiffoS. Role of microRNAs in translation regulation and cancer.World J. Biol. Chem.201781455610.4331/wjbc.v8.i1.45 28289518
    [Google Scholar]
  3. IveyK.N. SrivastavaD. microRNAs as developmental regulators.Cold Spring Harb. Perspect. Biol.201577a00814410.1101/cshperspect.a008144 26134312
    [Google Scholar]
  4. AdamsB.D. KasinskiA.L. SlackF.J. Aberrant regulation and function of microRNAs in cancer.Curr. Biol.20142416R762R77610.1016/j.cub.2014.06.043 25137592
    [Google Scholar]
  5. BuenoM.J. MalumbresM. microRNAs and the cell cycle.Biochim. Biophys. Acta Mol. Basis Dis.20111812559260110.1016/j.bbadis.2011.02.002 21315819
    [Google Scholar]
  6. JangJ.H. LeeT.J. The role of microRNAs in cell death pathways.Yeungnam Univ. J. Med.202138210711710.12701/yujm.2020.00836 33435638
    [Google Scholar]
  7. GalagaliH. KimJ.K. The multifaceted roles of microRNAs in differentiation.Curr. Opin. Cell Biol.20206711814010.1016/j.ceb.2020.08.015 33152557
    [Google Scholar]
  8. GarofaloM. CondorelliG. CroceC. microRNAs in diseases and drug response.Curr. Opin. Pharmacol.20088566166710.1016/j.coph.2008.06.005 18619557
    [Google Scholar]
  9. KehlT. BackesC. KernF. About miRNAs, miRNA seeds, target genes and target pathways.Oncotarget201786310716710717510.18632/oncotarget.22363 29291020
    [Google Scholar]
  10. GregorovaJ. Vychytilova-FaltejskovaP. SevcikovaS. Epigenetic regulation of microRNA clusters and families during tumor development.Cancers2021136133310.3390/cancers13061333 33809566
    [Google Scholar]
  11. HaigD. MainieriA. The evolution of imprinted microRNAs and their RNA targets.Genes2020119103810.3390/genes11091038 32899179
    [Google Scholar]
  12. PatelV.D. CapraJ.A. Ancient human miRNAs are more likely to have broad functions and disease associations than young miRNAs.BMC Genomics201718167210.1186/s12864‑017‑4073‑z 28859623
    [Google Scholar]
  13. OtaA. TagawaH. KarnanS. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma.Cancer Res.20046493087309510.1158/0008‑5472.CAN‑03‑3773 15126345
    [Google Scholar]
  14. ZhaoW. GuptaA. KrawczykJ. GuptaS. The miR-17-92 cluster: Yin and Yang in human cancers.Cancer Treat. Res. Commun.20223310064710.1016/j.ctarc.2022.100647 36327576
    [Google Scholar]
  15. BentwichI. AvnielA. KarovY. Identification of hundreds of conserved and nonconserved human microRNAs.Nat. Genet.200537776677010.1038/ng1590 15965474
    [Google Scholar]
  16. LiX. ZhuG. LiY. LINC01798/miR-17-5p axis regulates ITGA8 and causes changes in tumor microenvironment and stemness in lung adenocarcinoma.Front. Immunol.202314109681810.3389/fimmu.2023.1096818 36911684
    [Google Scholar]
  17. JiJ. FuJ. MiR-17-3p facilitates aggressive cell phenotypes in colon cancer by targeting PLCD1 through affecting KIF14.Appl. Biochem. Biotechnol.202319531723173510.1007/s12010‑022‑04218‑7 36367621
    [Google Scholar]
  18. WangY. ZhaoJ. WangY. GaoJ. YangH. LiH. MiR-17-5p targets and downregulates CADM2, activating the malignant phenotypes of colon cancer cells.Mol. Biotechnol.202264121388140010.1007/s12033‑022‑00515‑y 35696058
    [Google Scholar]
  19. YifeiS. ChunxiaoH. DinuoL. MiR-17-5p inhibits the proliferation and metastasis of gastric cancer cells by targeting PTEN protein.Altern. Ther. Health Med.20222882329 35839114
    [Google Scholar]
  20. DaiZ.T. XiangY. DuanY. MiR-17-5p and MKL-1 modulate stem cell characteristics of gastric cancer cells.Int. J. Biol. Sci.20211792278229310.7150/ijbs.57338 34239355
    [Google Scholar]
  21. CaiN. HuL. XieY. MiR-17-5p promotes cervical cancer cell proliferation and metastasis by targeting transforming growth factor-β receptor 2.Eur. Rev. Med. Pharmacol. Sci.201822718991906 29687841
    [Google Scholar]
  22. LuD. TangL. ZhuangY. ZhaoP. miR-17-3P regulates the proliferation and survival of colon cancer cells by targeting Par4.Mol. Med. Rep.201710.3892/mmr.2017.7863 29115593
    [Google Scholar]
  23. SongJ. LiuY. WangT. LiB. ZhangS. MiR-17-5p promotes cellular proliferation and invasiveness by targeting RUNX3 in gastric cancer.Biomed. Pharmacother.202012811024610.1016/j.biopha.2020.110246 32447210
    [Google Scholar]
  24. ZouM. ZhangQ. miR-17-5p accelerates cervical cancer cells migration and invasion via the TIMP2/MMPs signaling cascade.Cytotechnology202173461962710.1007/s10616‑021‑00482‑3 34349351
    [Google Scholar]
  25. WeiQ. LiY.X. LiuM. LiX. TangH. MiR‐17‐5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells.IUBMB Life201264869770410.1002/iub.1051 22730212
    [Google Scholar]
  26. WangY. XuW. WangY. XuX. LvS. DongX. miR-17-5p promotes migration and invasion in breast cancer cells by repressing netrin 4.Int. J. Clin. Exp. Pathol.201912516491657 31933983
    [Google Scholar]
  27. GongA.Y. EischeidA.N. XiaoJ. miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells.BMC Cancer201212149210.1186/1471‑2407‑12‑492 23095762
    [Google Scholar]
  28. ZhuY. GuJ. LiY. MiR-17-5p enhances pancreatic cancer proliferation by altering cell cycle profiles via disruption of RBL2/E2F4-repressing complexes.Cancer Lett.2018412596810.1016/j.canlet.2017.09.044 28987387
    [Google Scholar]
  29. LiJ. LaiY. MaJ. miR-17-5p suppresses cell proliferation and invasion by targeting ETV1 in triple-negative breast cancer.BMC Cancer201717174510.1186/s12885‑017‑3674‑x 29126392
    [Google Scholar]
  30. FanM. SethuramanA. BrownM. SunW. PfefferL.M. Systematic analysis of metastasis-associated genes identifies miR-17-5p as a metastatic suppressor of basal-like breast cancer.Breast Cancer Res. Treat.2014146348750210.1007/s10549‑014‑3040‑5 25001613
    [Google Scholar]
  31. SelvenH. AndersenS. PedersenM.I. LombardiA.P.G. BusundL.T.R. KilværT.K. High expression of miR-17-5p and miR-20a-5p predicts favorable disease-specific survival in stage I-III colon cancer.Sci. Rep.2022121708010.1038/s41598‑022‑11090‑2 35490164
    [Google Scholar]
  32. LiuD.L. LuL.L. DongL.L. miR-17-5p and miR-20a-5p suppress postoperative metastasis of hepatocellular carcinoma via blocking HGF/ERBB3-NF-κB positive feedback loop.Theranostics20201083668368310.7150/thno.41365 32206115
    [Google Scholar]
  33. LiY. LiangM. ZhangY. miR-93, miR-373, and miR-17-5p negatively regulate the expression of TBP2 in lung cancer.Front. Oncol.20201052610.3389/fonc.2020.00526 32426273
    [Google Scholar]
  34. MaX. FuT. KeZ.Y. MiR-17- 5p/RRM2 regulated gemcitabine resistance in lung cancer A549 cells.Cell Cycle202322111367137910.1080/15384101.2023.2207247 37115505
    [Google Scholar]
  35. ZhangW. LinJ. WangP. SunJ. miR-17-5p down-regulation contributes to erlotinib resistance in non-small cell lung cancer cells.J. Drug Target.201725212513110.1080/1061186X.2016.1207647 27633093
    [Google Scholar]
  36. WangM. GuH. WangS. Circulating miR-17-5p and miR-20a: Molecular markers for gastric cancer.Mol. Med. Rep.20125615141520 22406928
    [Google Scholar]
  37. LiuZ. JiM. JinF. JiangF. LiuX. Expression and clinical significance of miR-17-5p in tumor tissues of patients with colorectal cancer.J. Gastrointest. Oncol.20221363067307910.21037/jgo‑22‑1185 36636078
    [Google Scholar]
  38. LvS WangY XuW DongX Serum exosomal miR-17-5p as a promising biomarker diagnostic biomarker for breast cancer.Clin Lab20206609/20206610.7754/Clin.Lab.2020.20012732902214
    [Google Scholar]
  39. WuH. PangP. LiuM.D. Upregulated miR 20a 5p expression promotes proliferation and invasion of head and neck squamous cell carcinoma cells by targeting of TNFRSF21.Oncol. Rep.20184021138114610.3892/or.2018.6477 29901115
    [Google Scholar]
  40. LiJ. YeD. ShenP. Mir-20a-5p induced WTX deficiency promotes gastric cancer progressions through regulating PI3K/AKT signaling pathway.J. Exp. Clin. Cancer Res.202039121210.1186/s13046‑020‑01718‑4 33032635
    [Google Scholar]
  41. BaiX. HanG. LiuY. JiangH. HeQ. MiRNA-20a-5p promotes the growth of triple-negative breast cancer cells through targeting RUNX3.Biomed. Pharmacother.20181031482148910.1016/j.biopha.2018.04.165 29864933
    [Google Scholar]
  42. OlarewajuO. HuY. TsayH.C. MicroRNA miR-20a-5p targets CYCS to inhibit apoptosis in hepatocellular carcinoma.Cell Death Dis.202415645610.1038/s41419‑024‑06841‑0 38937450
    [Google Scholar]
  43. QiY. WangH. ZhangQ. CAF-released exosomal miR-20a-5p facilitates HCC progression via the LIMA1-mediated β-Catenin pathway.Cells20221123385710.3390/cells11233857 36497115
    [Google Scholar]
  44. WangX. WeiP. YangL. MicroRNA-20a-5p regulates the epithelial-mesenchymal transition of human hepatocellular carcinoma by targeting RUNX3.Chin. Med. J.2022135172089209710.1097/CM9.0000000000001975 35143426
    [Google Scholar]
  45. HeY. MaH. WangJ. KangY. XueQ. miR 20a 5p inhibits endometrial cancer progression by targeting janus kinase 1.Oncol. Lett.202121542710.3892/ol.2021.12688 33850568
    [Google Scholar]
  46. YangH. ChenZ. LiuZ. MiR-20a-5p negatively regulates NR4A3 to promote metastasis in bladder cancer.J. Oncol.2021202111210.1155/2021/1377989 34925506
    [Google Scholar]
  47. LiuH. WangJ. ShenJ. WuX. LiY. miR-20a-5p inhibits proliferation of lung cancer A549 cells by down-regulating HOXB13.Nan Fang Yi Ke Da Xue Xue Bao2022424568574 35527493
    [Google Scholar]
  48. BaoF. ZhangL. PeiX. MiR-20a-5p functions as a potent tumor suppressor by targeting PPP6C in acute myeloid leukemia.PLoS One2021169e025699510.1371/journal.pone.0256995 34587164
    [Google Scholar]
  49. YuY. ZhangJ. JinY. MiR-20a-5p suppresses tumor proliferation by targeting autophagy-related gene 7 in neuroblastoma.Cancer Cell Int.2018181510.1186/s12935‑017‑0499‑2 29311760
    [Google Scholar]
  50. ZhaoF. PuY. CuiM. WangH. CaiS. MiR-20a-5p represses the multi-drug resistance of osteosarcoma by targeting the SDC2 gene.Cancer Cell Int.201717110010.1186/s12935‑017‑0470‑2 29118673
    [Google Scholar]
  51. LuH. LuS. YangD. MiR-20a-5p regulates gemcitabine chemosensitivity by targeting RRM2 in pancreatic cancer cells and serves as a predictor for gemcitabine-based chemotherapy.Biosci. Rep.2019395BSR2018137410.1042/BSR20181374 30777929
    [Google Scholar]
  52. HuangD. BianG. PanY. MiR–20a-5p promotes radio-resistance by targeting Rab27B in nasopharyngeal cancer cells.Cancer Cell Int.20171713210.1186/s12935‑017‑0389‑7 28265202
    [Google Scholar]
  53. LiZ. WuL. TanW. MiR-20b-5p promotes hepatocellular carcinoma cell proliferation, migration and invasion by down-regulating CPEB3.Ann. Hepatol.20212310034510.1016/j.aohep.2021.100345 33812045
    [Google Scholar]
  54. XiaL. LiF. QiuJ. Oncogenic miR-20b-5p contributes to malignant behaviors of breast cancer stem cells by bidirectionally regulating CCND1 and E2F1.BMC Cancer202020194910.1186/s12885‑020‑07395‑y 33008330
    [Google Scholar]
  55. YangH. LinJ. JiangJ. JiJ. WangC. ZhangJ. miR-20b-5p functions as tumor suppressor microRNA by targeting cyclinD1 in colon cancer.Cell Cycle202019212939295410.1080/15384101.2020.1829824 33044899
    [Google Scholar]
  56. QiJ.C. YangZ. ZhangY.P. miR-20b-5p, TGFBR2, and E2F1 form a regulatory loop to participate in epithelial to mesenchymal transition in prostate cancer.Front. Oncol.20209153510.3389/fonc.2019.01535 32010624
    [Google Scholar]
  57. HuaR. ZhangY. YanX. Syndecan-2, negatively regulated by miR-20b-5p, contributes to 5-fluorouracil resistance of colorectal cancer cells via the JNK/ERK signaling pathway.Acta Biochim. Biophys. Sin.202153111547155710.1093/abbs/gmab124 34596215
    [Google Scholar]
  58. JiangK. ZouH. microRNA-20b-5p overexpression combing Pembrolizumab potentiates cancer cells to radiation therapy via repressing programmed death-ligand 1.Bioengineered202213191792910.1080/21655979.2021.2014617 34968160
    [Google Scholar]
  59. ZhengY. ZhuK. WangG. miR-106a-5p carried by tumor-derived extracellular vesicles promotes the invasion and metastasis of ovarian cancer by targeting KLF6.Clin. Exp. Metastasis202239460362110.1007/s10585‑022‑10165‑8 35449340
    [Google Scholar]
  60. HuJ. XieC. XuS. Liver fibrosis-derived exosomal miR-106a-5p facilitates the malignancy by targeting SAMD12 and CADM2 in hepatocellular carcinoma.PLoS One2023185e028601710.1371/journal.pone.0286017 37228062
    [Google Scholar]
  61. LiD. WangZ. ChenZ. MicroRNA-106a-5p facilitates human glioblastoma cell proliferation and invasion by targeting adenomatosis polyposis coli protein.Biochem. Biophys. Res. Commun.20164813-424525010.1016/j.bbrc.2016.10.132 27815074
    [Google Scholar]
  62. XuH. WangF. WangL. Suppression of miR 106a 5p expression inhibits tumorigenesis via increasing CELF 2 expression in spinal cord glioma.Oncol. Lett.202122262710.3892/ol.2021.12888 34267819
    [Google Scholar]
  63. PanY.J. WeiL.L. WuX.J. HuoF.C. MouJ. PeiD.S. MiR-106a-5p inhibits the cell migration and invasion of renal cell carcinoma through targeting PAK5.Cell Death Dis.2017810e3155e510.1038/cddis.2017.561 29072688
    [Google Scholar]
  64. MaJ. WangW. AzhatiB. WangY. TusongH. miR-106a-5p functions as a tumor suppressor by targeting VEGFA in renal cell carcinoma.Dis. Markers202020201710.1155/2020/8837941 33224312
    [Google Scholar]
  65. ShenP. SunG. ZhaoP. MicroRNA-106a suppresses prostate cancer proliferation, migration and invasion by targeting tumor-derived IL-8.Transl. Cancer Res.2020953507351710.21037/tcr.2020.03.70 35117716
    [Google Scholar]
  66. ZhiF. ZhouG. ShaoN. miR-106a-5p inhibits the proliferation and migration of astrocytoma cells and promotes apoptosis by targeting FASTK.PLoS One201388e7239010.1371/journal.pone.0072390 24013584
    [Google Scholar]
  67. LiuJ. HuangY. WangH. WuD. MiR-106a-5p promotes 5-FU resistance and the metastasis of colorectal cancer by targeting TGFβR2.Int. J. Clin. Exp. Pathol.2018111256225634 31949649
    [Google Scholar]
  68. LiJ. HuC. ChaoH. Exosomal transfer of miR‐106a‐5p contributes to cisplatin resistance and tumorigenesis in nasopharyngeal carcinoma.J. Cell. Mol. Med.202125199183919810.1111/jcmm.16801 34469038
    [Google Scholar]
  69. PanM. ChenQ. LuY. MiR-106b-5p regulates the migration and invasion of colorectal cancer cells by targeting FAT4.Biosci. Rep.20204011BSR2020009810.1042/BSR20200098 33063118
    [Google Scholar]
  70. SunH. ChenX. MiR-106b-5p promotes malignant behaviors of cervical squamous cell carcinoma cells by targeting TIMP2.Reprod. Sci.202229120321110.1007/s43032‑021‑00788‑9 34767243
    [Google Scholar]
  71. WangZ. LiT.E. ChenM. PanJ.J. ShenK.W. miR-106b-5p contributes to the lung metastasis of breast cancer via targeting CNN1 and regulating Rho/ROCK1 pathway.Aging20201221867188710.18632/aging.102719 31986487
    [Google Scholar]
  72. LiN. MiaoY. ShanY. MiR-106b and miR-93 regulate cell progression by suppression of PTEN via PI3K/Akt pathway in breast cancer.Cell Death Dis.201785e279610.1038/cddis.2017.119 28518139
    [Google Scholar]
  73. ShiD.M. BianX.Y. QinC.D. WuW.Z. miR-106b-5p promotes stem cell-like properties of hepatocellular carcinoma cells by targeting PTEN via PI3K/Akt pathway.OncoTargets Ther.20181157158510.2147/OTT.S152611 29416358
    [Google Scholar]
  74. WeiK. PanC. YaoG. MiR-106b-5p promotes proliferation and inhibits apoptosis by regulating BTG3 in non-small cell lung cancer.Cell. Physiol. Biochem.20174441545155810.1159/000485650 29197876
    [Google Scholar]
  75. GuH. GuS. ZhangX. miR‐106b‐5p promotes aggressive progression of hepatocellular carcinoma via targeting RUNX3.Cancer Med.20198156756676710.1002/cam4.2511 31503422
    [Google Scholar]
  76. LuJ. WeiJ.H. FengZ.H. miR-106b-5p promotes renal cell carcinoma aggressiveness and stem-cell-like phenotype by activating Wnt/β-catenin signalling.Oncotarget2017813214612147110.18632/oncotarget.15591 28423523
    [Google Scholar]
  77. XiangW. HeJ. HuangC. miR-106b-5p targets tumor suppressor gene SETD2 to inactive its function in clear cell renal cell carcinoma.Oncotarget2015664066407910.18632/oncotarget.2926 25714014
    [Google Scholar]
  78. WangH. PengD. GanM. HeZ. KuangY. CPEB3 overexpression caused by miR-106b-5p inhibition inhibits esophageal carcinoma in-vitro progression and metastasis.Anticancer Drugs202233433535110.1097/CAD.0000000000001265 35102025
    [Google Scholar]
  79. NiS. WengW. XuM. miR-106b-5p inhibits the invasion and metastasis of colorectal cancer by targeting CTSA.OncoTargets Ther.2018113835384510.2147/OTT.S172887 30013364
    [Google Scholar]
  80. HongweiL. JuanL. XiaoyingX. ZhijunF. MicroRNA-106b-5p (miR-106b-5p) suppresses the proliferation and metastasis of cervical cancer cells via down-regulating fibroblast growth factor 4 (FGF4) expression.Cytotechnology202274446947810.1007/s10616‑022‑00536‑0 36110154
    [Google Scholar]
  81. LingB. LiaoX. TangQ. MicroRNA-106b-5p inhibits growth and progression of lung adenocarcinoma cells by downregulating IGSF10.Aging20211314187401875610.18632/aging.203318 34351868
    [Google Scholar]
  82. ZhouQ. HuQ. Oncogenic miR-106b-5p promotes cisplatin resistance in triple-negative breast cancer by targeting GDF11.Histol. Histopathol.2024394533541 37905957
    [Google Scholar]
  83. YuS. QinX. ChenT. ZhouL. XuX. FengJ. MicroRNA-106b-5p regulates cisplatin chemosensitivity by targeting polycystic kidney disease-2 in non-small-cell lung cancer.Anticancer Drugs201728885286010.1097/CAD.0000000000000524 28723865
    [Google Scholar]
  84. EnkhnaranB. ZhangG.C. ZhangN.P. microRNA-106b-5p promotes cell growth and sensitizes chemosensitivity to sorafenib by targeting the BTG3/Bcl-xL/p27 signaling pathway in hepatocellular carcinoma.J. Oncol.2022202211510.1155/2022/1971559 35342408
    [Google Scholar]
  85. DongZ.R. CaiJ.B. ShiG.M. Oncogenic miR-93-5p/Gal-9 axis drives CD8 (+) T-cell inactivation and is a therapeutic target for hepatocellular carcinoma immunotherapy.Cancer Lett.202356421618610.1016/j.canlet.2023.216186 37105392
    [Google Scholar]
  86. ZhouX. HuangL. XingR. YangF. NieH. MiR-93-5P represses the gluconeogenesis of hepatocellular carcinoma while boosting its glycolysis and malignant progression by suppressing PCK1.Crit. Rev. Eukaryot. Gene Expr.2022321354710.1615/CritRevEukaryotGeneExpr.2021038907 35377979
    [Google Scholar]
  87. SunX-Y. HanX-M. ZhaoX-L. ChengX-M. ZhangY. MiR-93-5p promotes cervical cancer progression by targeting THBS2/MMPS signal pathway.Eur. Rev. Med. Pharmacol. Sci.2019231251135121 31298364
    [Google Scholar]
  88. CaiY. RuanW. DingJ. miR 93 5p regulates the occurrence and development of esophageal carcinoma epithelial cells by targeting TGFβR2.Int. J. Mol. Med.2020473310.3892/ijmm.2020.4836 33448310
    [Google Scholar]
  89. LiL. ZhaoJ. HuangS. MiR-93-5p promotes gastric cancer-cell progression via inactivation of the Hippo signaling pathway.Gene201864124024710.1016/j.gene.2017.09.071 29045821
    [Google Scholar]
  90. ZhangS. HeY. LiuC. miR-93-5p enhances migration and invasion by targeting RGMB in squamous cell carcinoma of the head and neck.J. Cancer202011133871388110.7150/jca.43854 32328191
    [Google Scholar]
  91. HaoJ. JinX. ShiY. ZhangH. miR-93-5p enhance lacrimal gland adenoid cystic carcinoma cell tumorigenesis by targeting BRMS1L.Cancer Cell Int.20181817210.1186/s12935‑018‑0552‑9 29760585
    [Google Scholar]
  92. YuanF. YinX.Y. HuangY. Exosomal miR-93-5p as an important driver of bladder cancer progression.Transl. Androl. Urol.202312228629910.21037/tau‑22‑872 36915886
    [Google Scholar]
  93. LinH. ShiX. LiH. Urinary Exosomal miRNAs as biomarkers of bladder Cancer and experimental verification of mechanism of miR-93-5p in bladder Cancer.BMC Cancer2021211129310.1186/s12885‑021‑08926‑x 34861847
    [Google Scholar]
  94. YangM. XiaoR. WangX. MiR-93-5p regulates tumorigenesis and tumor immunity by targeting PD-L1/CCND1 in breast cancer.Ann. Transl. Med.2022104203310.21037/atm‑22‑97 35280383
    [Google Scholar]
  95. ChenG. YanY. QiuX. miR-93-5p suppresses ovarian cancer malignancy and negatively regulate CCND2 by binding to its 3′UTR region.Discov Oncol20221311510.1007/s12672‑022‑00478‑1 35306579
    [Google Scholar]
  96. WuH. LiuL. ZhuJ-M. MiR-93-5p inhibited proliferation and metastasis of glioma cells by targeting MMP2.Eur. Rev. Med. Pharmacol. Sci.2019232195179524 31773703
    [Google Scholar]
  97. BaoC. ChenJ. ChenD. MiR-93 suppresses tumorigenesis and enhances chemosensitivity of breast cancer via dual targeting E2F1 and CCND1.Cell Death Dis.202011861810.1038/s41419‑020‑02855‑6 32796817
    [Google Scholar]
  98. PanC. SunG. ShaM. WangP. GuY. NiQ. Investigation of miR-93-5p and its effect on the radiosensitivity of breast cancer.Cell Cycle202120121173118010.1080/15384101.2021.1930356 34024254
    [Google Scholar]
  99. HuB. MaoZ. DuQ. miR-93-5p targets Smad7 to regulate the transforming growth factor-β1/Smad3 pathway and mediate fibrosis in drug-resistant prolactinoma.Brain Res. Bull.2019149213110.1016/j.brainresbull.2019.03.013 30946881
    [Google Scholar]
  100. WuY. XuW. YangY. ZhangZ. miRNA-93-5p promotes gemcitabine resistance in pancreatic cancer cells by targeting the PTEN-mediated PI3K/Akt signaling pathway.Ann. Clin. Lab. Sci.2021513310320 34162560
    [Google Scholar]
  101. LiD. SongH. WuT. MiR-519d-3p suppresses breast cancer cell growth and motility via targeting LIM domain kinase 1.Mol. Cell. Biochem.20184441-216917810.1007/s11010‑017‑3241‑4 29188531
    [Google Scholar]
  102. LiY.Y. ShaoJ.P. ZhangS.P. XingG.Q. LiuH.J. miR-519d-3p inhibits cell proliferation and invasion of gastric cancer by downregulating B-cell Lymphoma 6.Cytogenet. Genome Res.20181541121910.1159/000487372 29510377
    [Google Scholar]
  103. ZhangG. HuY. YuanW. QiuH. YuH. DuJ. miR-519d-3p overexpression inhibits P38 and PI3K/AKT pathway via targeting VEGFA to attenuate the malignant biological behavior of non-small cell lung cancer.OncoTargets Ther.202013102571026610.2147/OTT.S252795 33116606
    [Google Scholar]
  104. ChoiJ.Y. SeokH.J. KimR.K. ChoiM.Y. LeeS.J. BaeI.H. miR-519d-3p suppresses tumorigenicity and metastasis by inhibiting Bcl-w and HIF-1α in NSCLC.Mol. Ther. Oncolytics20212236837910.1016/j.omto.2021.06.015 34553025
    [Google Scholar]
  105. ZhangD. YangX.J. LuoQ.D. XueL. ChongT. Transcription factor p53-mediated activation of miR-519d-3p and downregulation of E2F1 attenuates prostate cancer growth and metastasis.Cancer Gene Ther.20222971001101110.1038/s41417‑021‑00405‑6 34799723
    [Google Scholar]
  106. LiX. HanX. YangJ. SunJ. WeiP. Overexpression of miR-519d-3p inhibits the proliferation of DU-145 prostate cancer cells by reducing TRAF4.Xibao Yu Fenzi Mianyixue Zazhi20183411621 29595452
    [Google Scholar]
  107. LiP. PanX. ZhengZ. Downregulation of miR-519d-3p is associated with poor outcomes and facilitates tumor progression in papillary thyroid cancer by regulating FOXQ1.Horm. Metab. Res.202153962563210.1055/a‑1560‑2827 34496413
    [Google Scholar]
  108. YeX. LvH. MicroRNA-519d-3p inhibits cell proliferation and migration by targeting TROAP in colorectal cancer.Biomed. Pharmacother.201810587988610.1016/j.biopha.2018.04.114 30021381
    [Google Scholar]
  109. JiangL. ShiS. ShiQ. ZhangH. XiaY. ZhongT. MicroRNA-519d-3p inhibits proliferation and promotes apoptosis by targeting HIF-2α in cervical cancer under hypoxic conditions.Oncol. Res.20182671055106210.3727/096504018X15152056890500 29321085
    [Google Scholar]
  110. LiangJ. LiuY. ZhangL. TanJ. LiE. LiF. Overexpression of microRNA-519d-3p suppressed the growth of pancreatic cancer cells by inhibiting ribosomal protein S15A-mediated Wnt/β-catenin signaling.Chem. Biol. Interact.20193041910.1016/j.cbi.2019.02.026 30831090
    [Google Scholar]
  111. ZhangW. HongW. Upregulation of miR-519d-3p inhibits viability, proliferation, and G1/S cell cycle transition of oral squamous cell carcinoma cells through targeting CCND1.Cancer Biother. Radiopharm.202439215316310.1089/cbr.2020.3984 33052706
    [Google Scholar]
  112. JiangL. ShiS. LiF. miR 519d 3p/HIF 2α axis increases the chemosensitivity of human cervical cancer cells to cisplatin via inactivation of PI3K/AKT signaling.Mol. Med. Rep.202123535310.3892/mmr.2021.11992 33760204
    [Google Scholar]
  113. WangJ. ZhangZ. QiuC. WangJ. MicroRNA‐519d‐3p antagonizes osteosarcoma resistance against cisplatin by targeting PD‐L1.Mol. Carcinog.202261332233310.1002/mc.23370 34780678
    [Google Scholar]
  114. FangZ. YangH. ChenD. YY1 promotes colorectal cancer proliferation through the miR-526b-3p/E2F1 axis.Am. J. Cancer Res.201991226792692 31911854
    [Google Scholar]
  115. WuM. LiX. LiuQ. XieY. YuanJ. WanggouS. miR-526b-3p serves as a prognostic factor and regulates the proliferation, invasion, and migration of glioma through targeting WEE1.Cancer Manag. Res.2019113099311010.2147/CMAR.S192361 31114353
    [Google Scholar]
  116. ZhangR. ZhaoJ. XuJ. WangJ. JiaJ. miR-526b-3p functions as a tumor suppressor in colon cancer by regulating HIF-1α.Am. J. Transl. Res.20168627832789 27398161
    [Google Scholar]
  117. LuH. ZhouJ. LiX. HanX. MaS. FengC. MiR-526b-3p enhances sensitivity of head and neck squamous cell carcinoma cells to radiotherapy via suppressing exosomal LAMP3-mediated autophagy.Autoimmunity2023561225912510.1080/08916934.2023.2259125 37740656
    [Google Scholar]
  118. LiuJ.H. LiW.T. YangY. QiY.B. ChengY. WuJ.H. MiR-526b-3p attenuates breast cancer stem cell properties and chemoresistance by targeting HIF-2α/Notch signaling.Front. Oncol.20211169626910.3389/fonc.2021.696269
    [Google Scholar]
  119. ChenK. YangW. XuanY. LinA. miR-526b-3p inhibits lung cancer cisplatin-resistance and metastasis by inhibiting STAT3-promoted PD-L1.Cell Death Dis.202112874810.1038/s41419‑021‑04033‑8 34321456
    [Google Scholar]
  120. AlimenaS. StephensonB.J.K. WebberJ.W. Differences in Serum miRNA profiles by race, ethnicity, and socioeconomic Status: Implications for developing an equitable ovarian cancer screening test.Cancer Prev. Res.202417417718510.1158/1940‑6207.CAPR‑23‑0156 38388186
    [Google Scholar]
  121. VisoneR. CroceC.M. MiRNAs and Cancer.Am. J. Pathol.200917441131113810.2353/ajpath.2009.080794 19264914
    [Google Scholar]
  122. SaitoY. SaitoH. LiangG. FriedmanJ.M. Epigenetic alterations and microRNA misexpression in cancer and autoimmune diseases: A critical review.Clin. Rev. Allergy Immunol.201447212813510.1007/s12016‑013‑8401‑z 24362548
    [Google Scholar]
  123. XingY. RuanG. NiH. Tumor immune microenvironment and its related miRNAs in tumor progression.Front. Immunol.20211262472510.3389/fimmu.2021.624725 34084160
    [Google Scholar]
  124. AlfardusH. de los Angeles Estevez-CebreroM. RowlinsonJ. Intratumour heterogeneity in microRNAs expression regulates glioblastoma metabolism.Sci. Rep.20211111590810.1038/s41598‑021‑95289‑9 34354095
    [Google Scholar]
  125. HückerS.M. FehlmannT. WernoC. Single-cell microRNA sequencing method comparison and application to cell lines and circulating lung tumor cells.Nat. Commun.2021121431610.1038/s41467‑021‑24611‑w 34262050
    [Google Scholar]
  126. EngelA. RishikS. HirschP. SingmiR: A single-cell miRNA alignment and analysis tool.Nucleic Acids Res.202452W1W374-8010.1093/nar/gkae225 38572750
    [Google Scholar]
  127. WangN. ZhengJ. ChenZ. Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogeneity and mechanisms of microRNA regulation.Nat. Commun.20191019510.1038/s41467‑018‑07981‑6 30626865
    [Google Scholar]
  128. LiuW. ShomronN. Analysis of microRNA regulation in single cells.Methods Mol. Biol.2021224333935410.1007/978‑1‑0716‑1103‑6_18 33606267
    [Google Scholar]
  129. OlgunG. GopalanV. HannenhalliS. miRSCAPE - Inferring miRNA expression from scRNA-seq data.iScience202225910496210.1016/j.isci.2022.104962 36060076
    [Google Scholar]
  130. GrigaitisP. StarkuvieneV. RostU. ServaA. PucholtP. KummerU. miRNA target identification and prediction as a function of time in gene expression data.RNA Biol.2020177990100010.1080/15476286.2020.1748921 32249661
    [Google Scholar]
  131. HammellM. Computational methods to identify miRNA targets.Semin. Cell Dev. Biol.201021773874410.1016/j.semcdb.2010.01.004 20079866
    [Google Scholar]
  132. LiuB. LiJ. CairnsM.J. Identifying miRNAs, targets and functions.Brief. Bioinform.201415111910.1093/bib/bbs075 23175680
    [Google Scholar]
  133. LuoY. PengL. ShanW. SunM. LuoL. LiangW. Machine learning in the development of targeting microRNAs in human disease.Front. Genet.202313108818910.3389/fgene.2022.1088189 36685965
    [Google Scholar]
  134. BiY. LiF. WangC. Advancing microRNA target site prediction with transformer and base-pairing patterns.Nucleic Acids Res.20245219114551146510.1093/nar/gkae782 39271121
    [Google Scholar]
  135. LiangZ. LiX. DuanF. Protein tyrosine phosphatase non-receptor type 12 (PTPN12), negatively regulated by miR-106a-5p, suppresses the progression of hepatocellular carcinoma.Hum. Cell202235129930910.1007/s13577‑021‑00627‑8 34784010
    [Google Scholar]
  136. LiN. LiuY. MiaoY. ZhaoL. ZhouH. JiaL. MicroRNA‐106b targets FUT6 to promote cell migration, invasion, and proliferation in human breast cancer.IUBMB Life201668976477510.1002/iub.1541 27519168
    [Google Scholar]
  137. YangF. SunZ. WangD. DuT. MiR-106b-5p regulates esophageal squamous cell carcinoma progression by binding to HPGD.BMC Cancer202222130810.1186/s12885‑022‑09404‑8 35317779
    [Google Scholar]
  138. DongX. HuX. ChenJ. HuD. ChenL.F. BRD4 regulates cellular senescence in gastric cancer cells via E2F/miR-106b/p21 axis.Cell Death Dis.20189220310.1038/s41419‑017‑0181‑6 29434197
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366365058250513110804
Loading
/content/journals/mirna/10.2174/0122115366365058250513110804
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test