Skip to content
2000
image of AAAGUGC Seed-Containing miRNAs: Master Regulators of Cancer Pathways and Therapeutic Resistance

Abstract

MicroRNAs have emerged as pivotal post-transcriptional regulators, orchestrating a myriad of cellular processes critical to both normal physiology and pathological conditions, particularly cancer. Among these, miRNAs containing the highly conserved AAAGUGC seed sequence have garnered significant attention due to their multifaceted roles in cancer progression, acting as both oncogenes and tumour suppressors across a wide spectrum of malignancies. This review delves deeply into the evolutionary significance of AAAGUGC seed-containing miRNAs, elucidating their conserved nature and intricate roles in the regulation of cancer-related gene expression networks.

We focused on eight specific miRNAs- miR-17-5p, miR-20a-5p, miR-93-5p, miR-106a-5p, miR-106b-5p, miR-519d-3p, miR-526b-3p, and miR-20b-5p -each of which demonstrates context-dependent oncogenic or tumour-suppressive behaviour. Through an in-depth exploration of the molecular mechanisms by which these miRNAs modulate critical pathways, we highlighted their capacity to influence essential processes, including cell proliferation, apoptosis, epithelial-to-mesenchymal transition (EMT), metastasis, and drug resistance, reflecting the complexity of their regulatory roles.

Furthermore, we dissected the intricate interactions between these miRNAs and their downstream targets, showcasing their diverse contributions to the tumour microenvironment. The implications of miRNA dysregulation in chemotherapy resistance were also explored.

In conclusion, AAAGUGC seed-containing miRNAs represent a complex and evolutionarily conserved family with implications in cancer biology. Their ability to modulate multiple oncogenic and tumour-suppressive pathways highlights their potential as therapeutic targets or biomarkers in the context of personalized cancer treatment strategies. This review provides a comprehensive depth of current knowledge while proposing avenues for future research into the therapeutic manipulation of these miRNAs in combating cancer.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366365058250513110804
2025-05-26
2025-09-27
Loading full text...

Full text loading...

References

  1. Macfarlane L-A. Murphy P.R. Micro R.N.A. microRNA: Biogenesis, function and role in cancer. Curr. Genomics 2010 11 7 537 561 10.2174/138920210793175895 21532838
    [Google Scholar]
  2. Oliveto S. Mancino M. Manfrini N. Biffo S. Role of microRNAs in translation regulation and cancer. World J. Biol. Chem. 2017 8 1 45 56 10.4331/wjbc.v8.i1.45 28289518
    [Google Scholar]
  3. Ivey K.N. Srivastava D. microRNAs as developmental regulators. Cold Spring Harb. Perspect. Biol. 2015 7 7 a008144 10.1101/cshperspect.a008144 26134312
    [Google Scholar]
  4. Adams B.D. Kasinski A.L. Slack F.J. Aberrant regulation and function of microRNAs in cancer. Curr. Biol. 2014 24 16 R762 R776 10.1016/j.cub.2014.06.043 25137592
    [Google Scholar]
  5. Bueno M.J. Malumbres M. microRNAs and the cell cycle. Biochim. Biophys. Acta Mol. Basis Dis. 2011 1812 5 592 601 10.1016/j.bbadis.2011.02.002 21315819
    [Google Scholar]
  6. Jang J.H. Lee T.J. The role of microRNAs in cell death pathways. Yeungnam Univ. J. Med. 2021 38 2 107 117 10.12701/yujm.2020.00836 33435638
    [Google Scholar]
  7. Galagali H. Kim J.K. The multifaceted roles of microRNAs in differentiation. Curr. Opin. Cell Biol. 2020 67 118 140 10.1016/j.ceb.2020.08.015 33152557
    [Google Scholar]
  8. Garofalo M. Condorelli G. Croce C. microRNAs in diseases and drug response. Curr. Opin. Pharmacol. 2008 8 5 661 667 10.1016/j.coph.2008.06.005 18619557
    [Google Scholar]
  9. Kehl T. Backes C. Kern F. About miRNAs, miRNA seeds, target genes and target pathways. Oncotarget 2017 8 63 107167 107175 10.18632/oncotarget.22363 29291020
    [Google Scholar]
  10. Gregorova J. Vychytilova-Faltejskova P. Sevcikova S. Epigenetic regulation of microRNA clusters and families during tumor development. Cancers 2021 13 6 1333 10.3390/cancers13061333 33809566
    [Google Scholar]
  11. Haig D. Mainieri A. The evolution of imprinted microRNAs and their RNA targets. Genes 2020 11 9 1038 10.3390/genes11091038 32899179
    [Google Scholar]
  12. Patel V.D. Capra J.A. Ancient human miRNAs are more likely to have broad functions and disease associations than young miRNAs. BMC Genomics 2017 18 1 672 10.1186/s12864‑017‑4073‑z 28859623
    [Google Scholar]
  13. Ota A. Tagawa H. Karnan S. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 2004 64 9 3087 3095 10.1158/0008‑5472.CAN‑03‑3773 15126345
    [Google Scholar]
  14. Zhao W. Gupta A. Krawczyk J. Gupta S. The miR-17-92 cluster: Yin and Yang in human cancers. Cancer Treat. Res. Commun. 2022 33 100647 10.1016/j.ctarc.2022.100647 36327576
    [Google Scholar]
  15. Bentwich I. Avniel A. Karov Y. Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet. 2005 37 7 766 770 10.1038/ng1590 15965474
    [Google Scholar]
  16. Li X. Zhu G. Li Y. LINC01798/miR-17-5p axis regulates ITGA8 and causes changes in tumor microenvironment and stemness in lung adenocarcinoma. Front. Immunol. 2023 14 1096818 10.3389/fimmu.2023.1096818 36911684
    [Google Scholar]
  17. Ji J. Fu J. MiR-17-3p facilitates aggressive cell phenotypes in colon cancer by targeting PLCD1 through affecting KIF14. Appl. Biochem. Biotechnol. 2023 195 3 1723 1735 10.1007/s12010‑022‑04218‑7 36367621
    [Google Scholar]
  18. Wang Y. Zhao J. Wang Y. Gao J. Yang H. Li H. MiR-17-5p targets and downregulates CADM2, activating the malignant phenotypes of colon cancer cells. Mol. Biotechnol. 2022 64 12 1388 1400 10.1007/s12033‑022‑00515‑y 35696058
    [Google Scholar]
  19. Yifei S. Chunxiao H. Dinuo L. MiR-17-5p inhibits the proliferation and metastasis of gastric cancer cells by targeting PTEN protein. Altern. Ther. Health Med. 2022 28 8 23 29 35839114
    [Google Scholar]
  20. Dai Z.T. Xiang Y. Duan Y. MiR-17-5p and MKL-1 modulate stem cell characteristics of gastric cancer cells. Int. J. Biol. Sci. 2021 17 9 2278 2293 10.7150/ijbs.57338 34239355
    [Google Scholar]
  21. Cai N. Hu L. Xie Y. MiR-17-5p promotes cervical cancer cell proliferation and metastasis by targeting transforming growth factor-β receptor 2. Eur. Rev. Med. Pharmacol. Sci. 2018 22 7 1899 1906 29687841
    [Google Scholar]
  22. Lu D. Tang L. Zhuang Y. Zhao P. miR-17-3P regulates the proliferation and survival of colon cancer cells by targeting Par4. Mol. Med. Rep. 2017 10.3892/mmr.2017.7863 29115593
    [Google Scholar]
  23. Song J. Liu Y. Wang T. Li B. Zhang S. MiR-17-5p promotes cellular proliferation and invasiveness by targeting RUNX3 in gastric cancer. Biomed. Pharmacother. 2020 128 110246 10.1016/j.biopha.2020.110246 32447210
    [Google Scholar]
  24. Zou M. Zhang Q. miR-17-5p accelerates cervical cancer cells migration and invasion via the TIMP2/MMPs signaling cascade. Cytotechnology 2021 73 4 619 627 10.1007/s10616‑021‑00482‑3 34349351
    [Google Scholar]
  25. Wei Q. Li Y.X. Liu M. Li X. Tang H. MiR‐17‐5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells. IUBMB Life 2012 64 8 697 704 10.1002/iub.1051 22730212
    [Google Scholar]
  26. Wang Y. Xu W. Wang Y. Xu X. Lv S. Dong X. miR-17-5p promotes migration and invasion in breast cancer cells by repressing netrin 4. Int. J. Clin. Exp. Pathol. 2019 12 5 1649 1657 31933983
    [Google Scholar]
  27. Gong A.Y. Eischeid A.N. Xiao J. miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells. BMC Cancer 2012 12 1 492 10.1186/1471‑2407‑12‑492 23095762
    [Google Scholar]
  28. Zhu Y. Gu J. Li Y. MiR-17-5p enhances pancreatic cancer proliferation by altering cell cycle profiles via disruption of RBL2/E2F4-repressing complexes. Cancer Lett. 2018 412 59 68 10.1016/j.canlet.2017.09.044 28987387
    [Google Scholar]
  29. Li J. Lai Y. Ma J. miR-17-5p suppresses cell proliferation and invasion by targeting ETV1 in triple-negative breast cancer. BMC Cancer 2017 17 1 745 10.1186/s12885‑017‑3674‑x 29126392
    [Google Scholar]
  30. Fan M. Sethuraman A. Brown M. Sun W. Pfeffer L.M. Systematic analysis of metastasis-associated genes identifies miR-17-5p as a metastatic suppressor of basal-like breast cancer. Breast Cancer Res. Treat. 2014 146 3 487 502 10.1007/s10549‑014‑3040‑5 25001613
    [Google Scholar]
  31. Selven H. Andersen S. Pedersen M.I. Lombardi A.P.G. Busund L.T.R. Kilvær T.K. High expression of miR-17-5p and miR-20a-5p predicts favorable disease-specific survival in stage I-III colon cancer. Sci. Rep. 2022 12 1 7080 10.1038/s41598‑022‑11090‑2 35490164
    [Google Scholar]
  32. Liu D.L. Lu L.L. Dong L.L. miR-17-5p and miR-20a-5p suppress postoperative metastasis of hepatocellular carcinoma via blocking HGF/ERBB3-NF-κB positive feedback loop. Theranostics 2020 10 8 3668 3683 10.7150/thno.41365 32206115
    [Google Scholar]
  33. Li Y. Liang M. Zhang Y. miR-93, miR-373, and miR-17-5p negatively regulate the expression of TBP2 in lung cancer. Front. Oncol. 2020 10 526 10.3389/fonc.2020.00526 32426273
    [Google Scholar]
  34. Ma X. Fu T. Ke Z.Y. MiR-17- 5p/RRM2 regulated gemcitabine resistance in lung cancer A549 cells. Cell Cycle 2023 22 11 1367 1379 10.1080/15384101.2023.2207247 37115505
    [Google Scholar]
  35. Zhang W. Lin J. Wang P. Sun J. miR-17-5p down-regulation contributes to erlotinib resistance in non-small cell lung cancer cells. J. Drug Target. 2017 25 2 125 131 10.1080/1061186X.2016.1207647 27633093
    [Google Scholar]
  36. Wang M. Gu H. Wang S. Circulating miR-17-5p and miR-20a: Molecular markers for gastric cancer. Mol. Med. Rep. 2012 5 6 1514 1520 22406928
    [Google Scholar]
  37. Liu Z. Ji M. Jin F. Jiang F. Liu X. Expression and clinical significance of miR-17-5p in tumor tissues of patients with colorectal cancer. J. Gastrointest. Oncol. 2022 13 6 3067 3079 10.21037/jgo‑22‑1185 36636078
    [Google Scholar]
  38. Lv S Wang Y Xu W Dong X. Serum exosomal miR-17-5p as a promising biomarker diagnostic biomarker for breast cancer. Clin Lab 2020 66 09/2020 66 10.7754/Clin.Lab.2020.200127 32902214
    [Google Scholar]
  39. Wu H. Pang P. Liu M.D. Upregulated miR 20a 5p expression promotes proliferation and invasion of head and neck squamous cell carcinoma cells by targeting of TNFRSF21. Oncol. Rep. 2018 40 2 1138 1146 10.3892/or.2018.6477 29901115
    [Google Scholar]
  40. Li J. Ye D. Shen P. Mir-20a-5p induced WTX deficiency promotes gastric cancer progressions through regulating PI3K/AKT signaling pathway. J. Exp. Clin. Cancer Res. 2020 39 1 212 10.1186/s13046‑020‑01718‑4 33032635
    [Google Scholar]
  41. Bai X. Han G. Liu Y. Jiang H. He Q. MiRNA-20a-5p promotes the growth of triple-negative breast cancer cells through targeting RUNX3. Biomed. Pharmacother. 2018 103 1482 1489 10.1016/j.biopha.2018.04.165 29864933
    [Google Scholar]
  42. Olarewaju O. Hu Y. Tsay H.C. MicroRNA miR-20a-5p targets CYCS to inhibit apoptosis in hepatocellular carcinoma. Cell Death Dis. 2024 15 6 456 10.1038/s41419‑024‑06841‑0 38937450
    [Google Scholar]
  43. Qi Y. Wang H. Zhang Q. CAF-released exosomal miR-20a-5p facilitates HCC progression via the LIMA1-mediated β-Catenin pathway. Cells 2022 11 23 3857 10.3390/cells11233857 36497115
    [Google Scholar]
  44. Wang X. Wei P. Yang L. MicroRNA-20a-5p regulates the epithelial-mesenchymal transition of human hepatocellular carcinoma by targeting RUNX3. Chin. Med. J. 2022 135 17 2089 2097 10.1097/CM9.0000000000001975 35143426
    [Google Scholar]
  45. He Y. Ma H. Wang J. Kang Y. Xue Q. miR 20a 5p inhibits endometrial cancer progression by targeting janus kinase 1. Oncol. Lett. 2021 21 5 427 10.3892/ol.2021.12688 33850568
    [Google Scholar]
  46. Yang H. Chen Z. Liu Z. MiR-20a-5p negatively regulates NR4A3 to promote metastasis in bladder cancer. J. Oncol. 2021 2021 1 12 10.1155/2021/1377989 34925506
    [Google Scholar]
  47. Liu H. Wang J. Shen J. Wu X. Li Y. miR-20a-5p inhibits proliferation of lung cancer A549 cells by down-regulating HOXB13. Nan Fang Yi Ke Da Xue Xue Bao 2022 42 4 568 574 35527493
    [Google Scholar]
  48. Bao F. Zhang L. Pei X. MiR-20a-5p functions as a potent tumor suppressor by targeting PPP6C in acute myeloid leukemia. PLoS One 2021 16 9 e0256995 10.1371/journal.pone.0256995 34587164
    [Google Scholar]
  49. Yu Y. Zhang J. Jin Y. MiR-20a-5p suppresses tumor proliferation by targeting autophagy-related gene 7 in neuroblastoma. Cancer Cell Int. 2018 18 1 5 10.1186/s12935‑017‑0499‑2 29311760
    [Google Scholar]
  50. Zhao F. Pu Y. Cui M. Wang H. Cai S. MiR-20a-5p represses the multi-drug resistance of osteosarcoma by targeting the SDC2 gene. Cancer Cell Int. 2017 17 1 100 10.1186/s12935‑017‑0470‑2 29118673
    [Google Scholar]
  51. Lu H. Lu S. Yang D. MiR-20a-5p regulates gemcitabine chemosensitivity by targeting RRM2 in pancreatic cancer cells and serves as a predictor for gemcitabine-based chemotherapy. Biosci. Rep. 2019 39 5 BSR20181374 10.1042/BSR20181374 30777929
    [Google Scholar]
  52. Huang D. Bian G. Pan Y. MiR–20a-5p promotes radio-resistance by targeting Rab27B in nasopharyngeal cancer cells. Cancer Cell Int. 2017 17 1 32 10.1186/s12935‑017‑0389‑7 28265202
    [Google Scholar]
  53. Li Z. Wu L. Tan W. MiR-20b-5p promotes hepatocellular carcinoma cell proliferation, migration and invasion by down-regulating CPEB3. Ann. Hepatol. 2021 23 100345 10.1016/j.aohep.2021.100345 33812045
    [Google Scholar]
  54. Xia L. Li F. Qiu J. Oncogenic miR-20b-5p contributes to malignant behaviors of breast cancer stem cells by bidirectionally regulating CCND1 and E2F1. BMC Cancer 2020 20 1 949 10.1186/s12885‑020‑07395‑y 33008330
    [Google Scholar]
  55. Yang H. Lin J. Jiang J. Ji J. Wang C. Zhang J. miR-20b-5p functions as tumor suppressor microRNA by targeting cyclinD1 in colon cancer. Cell Cycle 2020 19 21 2939 2954 10.1080/15384101.2020.1829824 33044899
    [Google Scholar]
  56. Qi J.C. Yang Z. Zhang Y.P. miR-20b-5p, TGFBR2, and E2F1 form a regulatory loop to participate in epithelial to mesenchymal transition in prostate cancer. Front. Oncol. 2020 9 1535 10.3389/fonc.2019.01535 32010624
    [Google Scholar]
  57. Hua R. Zhang Y. Yan X. Syndecan-2, negatively regulated by miR-20b-5p, contributes to 5-fluorouracil resistance of colorectal cancer cells via the JNK/ERK signaling pathway. Acta Biochim. Biophys. Sin. 2021 53 11 1547 1557 10.1093/abbs/gmab124 34596215
    [Google Scholar]
  58. Jiang K. Zou H. microRNA-20b-5p overexpression combing Pembrolizumab potentiates cancer cells to radiation therapy via repressing programmed death-ligand 1. Bioengineered 2022 13 1 917 929 10.1080/21655979.2021.2014617 34968160
    [Google Scholar]
  59. Zheng Y. Zhu K. Wang G. miR-106a-5p carried by tumor-derived extracellular vesicles promotes the invasion and metastasis of ovarian cancer by targeting KLF6. Clin. Exp. Metastasis 2022 39 4 603 621 10.1007/s10585‑022‑10165‑8 35449340
    [Google Scholar]
  60. Hu J. Xie C. Xu S. Liver fibrosis-derived exosomal miR-106a-5p facilitates the malignancy by targeting SAMD12 and CADM2 in hepatocellular carcinoma. PLoS One 2023 18 5 e0286017 10.1371/journal.pone.0286017 37228062
    [Google Scholar]
  61. Li D. Wang Z. Chen Z. MicroRNA-106a-5p facilitates human glioblastoma cell proliferation and invasion by targeting adenomatosis polyposis coli protein. Biochem. Biophys. Res. Commun. 2016 481 3-4 245 250 10.1016/j.bbrc.2016.10.132 27815074
    [Google Scholar]
  62. Xu H. Wang F. Wang L. Suppression of miR 106a 5p expression inhibits tumorigenesis via increasing CELF 2 expression in spinal cord glioma. Oncol. Lett. 2021 22 2 627 10.3892/ol.2021.12888 34267819
    [Google Scholar]
  63. Pan Y.J. Wei L.L. Wu X.J. Huo F.C. Mou J. Pei D.S. MiR-106a-5p inhibits the cell migration and invasion of renal cell carcinoma through targeting PAK5. Cell Death Dis. 2017 8 10 e3155 e5 10.1038/cddis.2017.561 29072688
    [Google Scholar]
  64. Ma J. Wang W. Azhati B. Wang Y. Tusong H. miR-106a-5p functions as a tumor suppressor by targeting VEGFA in renal cell carcinoma. Dis. Markers 2020 2020 1 7 10.1155/2020/8837941 33224312
    [Google Scholar]
  65. Shen P. Sun G. Zhao P. MicroRNA-106a suppresses prostate cancer proliferation, migration and invasion by targeting tumor-derived IL-8. Transl. Cancer Res. 2020 9 5 3507 3517 10.21037/tcr.2020.03.70 35117716
    [Google Scholar]
  66. Zhi F. Zhou G. Shao N. miR-106a-5p inhibits the proliferation and migration of astrocytoma cells and promotes apoptosis by targeting FASTK. PLoS One 2013 8 8 e72390 10.1371/journal.pone.0072390 24013584
    [Google Scholar]
  67. Liu J. Huang Y. Wang H. Wu D. MiR-106a-5p promotes 5-FU resistance and the metastasis of colorectal cancer by targeting TGFβR2. Int. J. Clin. Exp. Pathol. 2018 11 12 5622 5634 31949649
    [Google Scholar]
  68. Li J. Hu C. Chao H. Exosomal transfer of miR‐106a‐5p contributes to cisplatin resistance and tumorigenesis in nasopharyngeal carcinoma. J. Cell. Mol. Med. 2021 25 19 9183 9198 10.1111/jcmm.16801 34469038
    [Google Scholar]
  69. Pan M. Chen Q. Lu Y. MiR-106b-5p regulates the migration and invasion of colorectal cancer cells by targeting FAT4. Biosci. Rep. 2020 40 11 BSR20200098 10.1042/BSR20200098 33063118
    [Google Scholar]
  70. Sun H. Chen X. MiR-106b-5p promotes malignant behaviors of cervical squamous cell carcinoma cells by targeting TIMP2. Reprod. Sci. 2022 29 1 203 211 10.1007/s43032‑021‑00788‑9 34767243
    [Google Scholar]
  71. Wang Z. Li T.E. Chen M. Pan J.J. Shen K.W. miR-106b-5p contributes to the lung metastasis of breast cancer via targeting CNN1 and regulating Rho/ROCK1 pathway. Aging 2020 12 2 1867 1887 10.18632/aging.102719 31986487
    [Google Scholar]
  72. Li N. Miao Y. Shan Y. MiR-106b and miR-93 regulate cell progression by suppression of PTEN via PI3K/Akt pathway in breast cancer. Cell Death Dis. 2017 8 5 e2796 10.1038/cddis.2017.119 28518139
    [Google Scholar]
  73. Shi D.M. Bian X.Y. Qin C.D. Wu W.Z. miR-106b-5p promotes stem cell-like properties of hepatocellular carcinoma cells by targeting PTEN via PI3K/Akt pathway. OncoTargets Ther. 2018 11 571 585 10.2147/OTT.S152611 29416358
    [Google Scholar]
  74. Wei K. Pan C. Yao G. MiR-106b-5p promotes proliferation and inhibits apoptosis by regulating BTG3 in non-small cell lung cancer. Cell. Physiol. Biochem. 2017 44 4 1545 1558 10.1159/000485650 29197876
    [Google Scholar]
  75. Gu H. Gu S. Zhang X. miR‐106b‐5p promotes aggressive progression of hepatocellular carcinoma via targeting RUNX3. Cancer Med. 2019 8 15 6756 6767 10.1002/cam4.2511 31503422
    [Google Scholar]
  76. Lu J. Wei J.H. Feng Z.H. miR-106b-5p promotes renal cell carcinoma aggressiveness and stem-cell-like phenotype by activating Wnt/β-catenin signalling. Oncotarget 2017 8 13 21461 21471 10.18632/oncotarget.15591 28423523
    [Google Scholar]
  77. Xiang W. He J. Huang C. miR-106b-5p targets tumor suppressor gene SETD2 to inactive its function in clear cell renal cell carcinoma. Oncotarget 2015 6 6 4066 4079 10.18632/oncotarget.2926 25714014
    [Google Scholar]
  78. Wang H. Peng D. Gan M. He Z. Kuang Y. CPEB3 overexpression caused by miR-106b-5p inhibition inhibits esophageal carcinoma in-vitro progression and metastasis. Anticancer Drugs 2022 33 4 335 351 10.1097/CAD.0000000000001265 35102025
    [Google Scholar]
  79. Ni S. Weng W. Xu M. miR-106b-5p inhibits the invasion and metastasis of colorectal cancer by targeting CTSA. OncoTargets Ther. 2018 11 3835 3845 10.2147/OTT.S172887 30013364
    [Google Scholar]
  80. Hongwei L. Juan L. Xiaoying X. Zhijun F. MicroRNA-106b-5p (miR-106b-5p) suppresses the proliferation and metastasis of cervical cancer cells via down-regulating fibroblast growth factor 4 (FGF4) expression. Cytotechnology 2022 74 4 469 478 10.1007/s10616‑022‑00536‑0 36110154
    [Google Scholar]
  81. Ling B. Liao X. Tang Q. MicroRNA-106b-5p inhibits growth and progression of lung adenocarcinoma cells by downregulating IGSF10. Aging 2021 13 14 18740 18756 10.18632/aging.203318 34351868
    [Google Scholar]
  82. Zhou Q. Hu Q. Oncogenic miR-106b-5p promotes cisplatin resistance in triple-negative breast cancer by targeting GDF11. Histol. Histopathol. 2024 39 4 533 541 37905957
    [Google Scholar]
  83. Yu S. Qin X. Chen T. Zhou L. Xu X. Feng J. MicroRNA-106b-5p regulates cisplatin chemosensitivity by targeting polycystic kidney disease-2 in non-small-cell lung cancer. Anticancer Drugs 2017 28 8 852 860 10.1097/CAD.0000000000000524 28723865
    [Google Scholar]
  84. Enkhnaran B. Zhang G.C. Zhang N.P. MicroRNA-106b-5p promotes cell growth and sensitizes chemosensitivity to sorafenib by targeting the BTG3/Bcl-xL/p27 signaling pathway in hepatocellular carcinoma. J. Oncol. 2022 2022 1 15 10.1155/2022/1971559 35342408
    [Google Scholar]
  85. Dong Z.R. Cai J.B. Shi G.M. Oncogenic miR-93-5p/Gal-9 axis drives CD8 (+) T-cell inactivation and is a therapeutic target for hepatocellular carcinoma immunotherapy. Cancer Lett. 2023 564 216186 10.1016/j.canlet.2023.216186 37105392
    [Google Scholar]
  86. Zhou X. Huang L. Xing R. Yang F. Nie H. MiR-93-5P represses the gluconeogenesis of hepatocellular carcinoma while boosting its glycolysis and malignant progression by suppressing PCK1. Crit. Rev. Eukaryot. Gene Expr. 2022 32 1 35 47 10.1615/CritRevEukaryotGeneExpr.2021038907 35377979
    [Google Scholar]
  87. Sun X-Y. Han X-M. Zhao X-L. Cheng X-M. Zhang Y. MiR-93-5p promotes cervical cancer progression by targeting THBS2/MMPS signal pathway. Eur. Rev. Med. Pharmacol. Sci. 2019 23 12 5113 5121 31298364
    [Google Scholar]
  88. Cai Y. Ruan W. Ding J. miR 93 5p regulates the occurrence and development of esophageal carcinoma epithelial cells by targeting TGFβR2. Int. J. Mol. Med. 2020 47 3 3 10.3892/ijmm.2020.4836 33448310
    [Google Scholar]
  89. Li L. Zhao J. Huang S. MiR-93-5p promotes gastric cancer-cell progression via inactivation of the Hippo signaling pathway. Gene 2018 641 240 247 10.1016/j.gene.2017.09.071 29045821
    [Google Scholar]
  90. Zhang S. He Y. Liu C. miR-93-5p enhances migration and invasion by targeting RGMB in squamous cell carcinoma of the head and neck. J. Cancer 2020 11 13 3871 3881 10.7150/jca.43854 32328191
    [Google Scholar]
  91. Hao J. Jin X. Shi Y. Zhang H. miR-93-5p enhance lacrimal gland adenoid cystic carcinoma cell tumorigenesis by targeting BRMS1L. Cancer Cell Int. 2018 18 1 72 10.1186/s12935‑018‑0552‑9 29760585
    [Google Scholar]
  92. Yuan F. Yin X.Y. Huang Y. Exosomal miR-93-5p as an important driver of bladder cancer progression. Transl. Androl. Urol. 2023 12 2 286 299 10.21037/tau‑22‑872 36915886
    [Google Scholar]
  93. Lin H. Shi X. Li H. Urinary Exosomal miRNAs as biomarkers of bladder Cancer and experimental verification of mechanism of miR-93-5p in bladder Cancer. BMC Cancer 2021 21 1 1293 10.1186/s12885‑021‑08926‑x 34861847
    [Google Scholar]
  94. Yang M. Xiao R. Wang X. MiR-93-5p regulates tumorigenesis and tumor immunity by targeting PD-L1/CCND1 in breast cancer. Ann. Transl. Med. 2022 10 4 203 3 10.21037/atm‑22‑97 35280383
    [Google Scholar]
  95. Chen G. Yan Y. Qiu X. miR-93-5p suppresses ovarian cancer malignancy and negatively regulate CCND2 by binding to its 3′UTR region. Discov Oncol 2022 13 1 15 10.1007/s12672‑022‑00478‑1 35306579
    [Google Scholar]
  96. Wu H. Liu L. Zhu J-M. MiR-93-5p inhibited proliferation and metastasis of glioma cells by targeting MMP2. Eur. Rev. Med. Pharmacol. Sci. 2019 23 21 9517 9524 31773703
    [Google Scholar]
  97. Bao C. Chen J. Chen D. MiR-93 suppresses tumorigenesis and enhances chemosensitivity of breast cancer via dual targeting E2F1 and CCND1. Cell Death Dis. 2020 11 8 618 10.1038/s41419‑020‑02855‑6 32796817
    [Google Scholar]
  98. Pan C. Sun G. Sha M. Wang P. Gu Y. Ni Q. Investigation of miR-93-5p and its effect on the radiosensitivity of breast cancer. Cell Cycle 2021 20 12 1173 1180 10.1080/15384101.2021.1930356 34024254
    [Google Scholar]
  99. Hu B. Mao Z. Du Q. miR-93-5p targets Smad7 to regulate the transforming growth factor-β1/Smad3 pathway and mediate fibrosis in drug-resistant prolactinoma. Brain Res. Bull. 2019 149 21 31 10.1016/j.brainresbull.2019.03.013 30946881
    [Google Scholar]
  100. Wu Y. Xu W. Yang Y. Zhang Z. miRNA-93-5p promotes gemcitabine resistance in pancreatic cancer cells by targeting the PTEN-mediated PI3K/Akt signaling pathway. Ann. Clin. Lab. Sci. 2021 51 3 310 320 34162560
    [Google Scholar]
  101. Li D. Song H. Wu T. MiR-519d-3p suppresses breast cancer cell growth and motility via targeting LIM domain kinase 1. Mol. Cell. Biochem. 2018 444 1-2 169 178 10.1007/s11010‑017‑3241‑4 29188531
    [Google Scholar]
  102. Li Y.Y. Shao J.P. Zhang S.P. Xing G.Q. Liu H.J. miR-519d-3p inhibits cell proliferation and invasion of gastric cancer by downregulating B-cell Lymphoma 6. Cytogenet. Genome Res. 2018 154 1 12 19 10.1159/000487372 29510377
    [Google Scholar]
  103. Zhang G. Hu Y. Yuan W. Qiu H. Yu H. Du J. miR-519d-3p overexpression inhibits P38 and PI3K/AKT pathway via targeting VEGFA to attenuate the malignant biological behavior of non-small cell lung cancer. OncoTargets Ther. 2020 13 10257 10266 10.2147/OTT.S252795 33116606
    [Google Scholar]
  104. Choi J.Y. Seok H.J. Kim R.K. Choi M.Y. Lee S.J. Bae I.H. miR-519d-3p suppresses tumorigenicity and metastasis by inhibiting Bcl-w and HIF-1α in NSCLC. Mol. Ther. Oncolytics 2021 22 368 379 10.1016/j.omto.2021.06.015 34553025
    [Google Scholar]
  105. Zhang D. Yang X.J. Luo Q.D. Xue L. Chong T. Transcription factor p53-mediated activation of miR-519d-3p and downregulation of E2F1 attenuates prostate cancer growth and metastasis. Cancer Gene Ther. 2022 29 7 1001 1011 10.1038/s41417‑021‑00405‑6 34799723
    [Google Scholar]
  106. Li X. Han X. Yang J. Sun J. Wei P. Overexpression of miR-519d-3p inhibits the proliferation of DU-145 prostate cancer cells by reducing TRAF4. Xibao Yu Fenzi Mianyixue Zazhi 2018 34 1 16 21 29595452
    [Google Scholar]
  107. Li P. Pan X. Zheng Z. Downregulation of miR-519d-3p is associated with poor outcomes and facilitates tumor progression in papillary thyroid cancer by regulating FOXQ1. Horm. Metab. Res. 2021 53 9 625 632 10.1055/a‑1560‑2827 34496413
    [Google Scholar]
  108. Ye X. Lv H. MicroRNA-519d-3p inhibits cell proliferation and migration by targeting TROAP in colorectal cancer. Biomed. Pharmacother. 2018 105 879 886 10.1016/j.biopha.2018.04.114 30021381
    [Google Scholar]
  109. Jiang L. Shi S. Shi Q. Zhang H. Xia Y. Zhong T. MicroRNA-519d-3p inhibits proliferation and promotes apoptosis by targeting HIF-2α in cervical cancer under hypoxic conditions. Oncol. Res. 2018 26 7 1055 1062 10.3727/096504018X15152056890500 29321085
    [Google Scholar]
  110. Liang J. Liu Y. Zhang L. Tan J. Li E. Li F. Overexpression of microRNA-519d-3p suppressed the growth of pancreatic cancer cells by inhibiting ribosomal protein S15A-mediated Wnt/β-catenin signaling. Chem. Biol. Interact. 2019 304 1 9 10.1016/j.cbi.2019.02.026 30831090
    [Google Scholar]
  111. Zhang W. Hong W. Upregulation of miR-519d-3p inhibits viability, proliferation, and G1/S cell cycle transition of oral squamous cell carcinoma cells through targeting CCND1. Cancer Biother. Radiopharm. 2024 39 2 153 163 10.1089/cbr.2020.3984 33052706
    [Google Scholar]
  112. Jiang L. Shi S. Li F. miR 519d 3p/HIF 2α axis increases the chemosensitivity of human cervical cancer cells to cisplatin via inactivation of PI3K/AKT signaling. Mol. Med. Rep. 2021 23 5 353 10.3892/mmr.2021.11992 33760204
    [Google Scholar]
  113. Wang J. Zhang Z. Qiu C. Wang J. MicroRNA‐519d‐3p antagonizes osteosarcoma resistance against cisplatin by targeting PD‐L1. Mol. Carcinog. 2022 61 3 322 333 10.1002/mc.23370 34780678
    [Google Scholar]
  114. Fang Z. Yang H. Chen D. YY1 promotes colorectal cancer proliferation through the miR-526b-3p/E2F1 axis. Am. J. Cancer Res. 2019 9 12 2679 2692 31911854
    [Google Scholar]
  115. Wu M. Li X. Liu Q. Xie Y. Yuan J. Wanggou S. miR-526b-3p serves as a prognostic factor and regulates the proliferation, invasion, and migration of glioma through targeting WEE1. Cancer Manag. Res. 2019 11 3099 3110 10.2147/CMAR.S192361 31114353
    [Google Scholar]
  116. Zhang R. Zhao J. Xu J. Wang J. Jia J. miR-526b-3p functions as a tumor suppressor in colon cancer by regulating HIF-1α. Am. J. Transl. Res. 2016 8 6 2783 2789 27398161
    [Google Scholar]
  117. Lu H. Zhou J. Li X. Han X. Ma S. Feng C. MiR-526b-3p enhances sensitivity of head and neck squamous cell carcinoma cells to radiotherapy via suppressing exosomal LAMP3-mediated autophagy. Autoimmunity 2023 56 1 2259125 10.1080/08916934.2023.2259125 37740656
    [Google Scholar]
  118. Liu J.H. Li W.T. Yang Y. Qi Y.B. Cheng Y. Wu J.H. MiR-526b-3p attenuates breast cancer stem cell properties and chemoresistance by targeting HIF-2α/Notch signaling. Front. Oncol. 2021 11 696269 10.3389/fonc.2021.696269
    [Google Scholar]
  119. Chen K. Yang W. Xuan Y. Lin A. miR-526b-3p inhibits lung cancer cisplatin-resistance and metastasis by inhibiting STAT3-promoted PD-L1. Cell Death Dis. 2021 12 8 748 10.1038/s41419‑021‑04033‑8 34321456
    [Google Scholar]
  120. Alimena S. Stephenson B.J.K. Webber J.W. Differences in Serum miRNA profiles by race, ethnicity, and socioeconomic Status: Implications for developing an equitable ovarian cancer screening test. Cancer Prev. Res. 2024 17 4 177 185 10.1158/1940‑6207.CAPR‑23‑0156 38388186
    [Google Scholar]
  121. Visone R. Croce C.M. MiRNAs and Cancer. Am. J. Pathol. 2009 174 4 1131 1138 10.2353/ajpath.2009.080794 19264914
    [Google Scholar]
  122. Saito Y. Saito H. Liang G. Friedman J.M. Epigenetic alterations and microRNA misexpression in cancer and autoimmune diseases: A critical review. Clin. Rev. Allergy Immunol. 2014 47 2 128 135 10.1007/s12016‑013‑8401‑z 24362548
    [Google Scholar]
  123. Xing Y. Ruan G. Ni H. Tumor immune microenvironment and its related miRNAs in tumor progression. Front. Immunol. 2021 12 624725 10.3389/fimmu.2021.624725 34084160
    [Google Scholar]
  124. Alfardus H. de los Angeles Estevez-Cebrero M. Rowlinson J. Intratumour heterogeneity in microRNAs expression regulates glioblastoma metabolism. Sci. Rep. 2021 11 1 15908 10.1038/s41598‑021‑95289‑9 34354095
    [Google Scholar]
  125. Hücker S.M. Fehlmann T. Werno C. Single-cell microRNA sequencing method comparison and application to cell lines and circulating lung tumor cells. Nat. Commun. 2021 12 1 4316 10.1038/s41467‑021‑24611‑w 34262050
    [Google Scholar]
  126. Engel A. Rishik S. Hirsch P. SingmiR: A single-cell miRNA alignment and analysis tool. Nucleic Acids Res. 2024 52 W1 W374-80 10.1093/nar/gkae225 38572750
    [Google Scholar]
  127. Wang N. Zheng J. Chen Z. Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogeneity and mechanisms of microRNA regulation. Nat. Commun. 2019 10 1 95 10.1038/s41467‑018‑07981‑6 30626865
    [Google Scholar]
  128. Liu W. Shomron N. Analysis of microRNA regulation in single cells. Methods Mol. Biol. 2021 2243 339 354 10.1007/978‑1‑0716‑1103‑6_18 33606267
    [Google Scholar]
  129. Olgun G. Gopalan V. Hannenhalli S. miRSCAPE - Inferring miRNA expression from scRNA-seq data. iScience 2022 25 9 104962 10.1016/j.isci.2022.104962 36060076
    [Google Scholar]
  130. Grigaitis P. Starkuviene V. Rost U. Serva A. Pucholt P. Kummer U. miRNA target identification and prediction as a function of time in gene expression data. RNA Biol. 2020 17 7 990 1000 10.1080/15476286.2020.1748921 32249661
    [Google Scholar]
  131. Hammell M. Computational methods to identify miRNA targets. Semin. Cell Dev. Biol. 2010 21 7 738 744 10.1016/j.semcdb.2010.01.004 20079866
    [Google Scholar]
  132. Liu B. Li J. Cairns M.J. Identifying miRNAs, targets and functions. Brief. Bioinform. 2014 15 1 1 19 10.1093/bib/bbs075 23175680
    [Google Scholar]
  133. Luo Y. Peng L. Shan W. Sun M. Luo L. Liang W. Machine learning in the development of targeting microRNAs in human disease. Front. Genet. 2023 13 1088189 10.3389/fgene.2022.1088189 36685965
    [Google Scholar]
  134. Bi Y. Li F. Wang C. Advancing microRNA target site prediction with transformer and base-pairing patterns. Nucleic Acids Res. 2024 52 19 11455 11465 10.1093/nar/gkae782 39271121
    [Google Scholar]
  135. Liang Z. Li X. Duan F. Protein tyrosine phosphatase non-receptor type 12 (PTPN12), negatively regulated by miR-106a-5p, suppresses the progression of hepatocellular carcinoma. Hum. Cell 2022 35 1 299 309 10.1007/s13577‑021‑00627‑8 34784010
    [Google Scholar]
  136. Li N. Liu Y. Miao Y. Zhao L. Zhou H. Jia L. MicroRNA‐106b targets FUT6 to promote cell migration, invasion, and proliferation in human breast cancer. IUBMB Life 2016 68 9 764 775 10.1002/iub.1541 27519168
    [Google Scholar]
  137. Yang F. Sun Z. Wang D. Du T. MiR-106b-5p regulates esophageal squamous cell carcinoma progression by binding to HPGD. BMC Cancer 2022 22 1 308 10.1186/s12885‑022‑09404‑8 35317779
    [Google Scholar]
  138. Dong X. Hu X. Chen J. Hu D. Chen L.F. BRD4 regulates cellular senescence in gastric cancer cells via E2F/miR-106b/p21 axis. Cell Death Dis. 2018 9 2 203 10.1038/s41419‑017‑0181‑6 29434197
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366365058250513110804
Loading
/content/journals/mirna/10.2174/0122115366365058250513110804
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test