Skip to content
2000
Volume 14, Issue 3
  • ISSN: 2211-5366
  • E-ISSN: 2211-5374

Abstract

Introduction

Critical limb ischemia (CLI) is considered the most severe form of peripheral artery disease (PAD). Nowadays, using stem cells such as mesenchymal stem cells (MSCs) to induce angiogenesis seems like a promising method for CLI therapy. Among the many factors that affect the angiogenesis process, microRNA-126 has an important role. Objective: The goal of this study was to increase the angiogenic potential of bone marrow mesenchymal stem cells (BMSCs) using microRNA-126.

Methods

BMSCs were isolated from male C57BL/6 inbred mice. CLI model was created by femoral artery ligation on C57BL/6 mice. Animals were allocated to control, BMSCs, miR-126, and BMSCsmiR-126 groups, and a defined number of the cells and virus were injected 24 h after surgery. Then, wound-healing assay, functional tests, real-time PCR, histopathological evaluation, and donor cell survival were performed.

Results

Results showed that BMSCs and miR-126 groups had a positive effect on angiogenesis. BMSCs miR-126 group had a significant effect on functional improvements, endothelial cell migration, neovascularization, and muscle restructures. evaluation showed that miR-126 could increase BMSCs survival and paracrine secretion of angiogenic factors such as VEGF and led to remarkable functional improvements and neovascularization in ischemic tissues.

Conclusion

It can be concluded that the combination uses of BMSCs and miR-126 lead to more effective recovery from ischemic damage compared with using them alone. MiR-126 can be used as a strong modifier to reinforce the angiogenic potential, paracrine secretion, and survival of the BMSCs.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366332247250124130611
2025-11-01
2025-12-08
Loading full text...

Full text loading...

References

  1. HermanG.M.D. GornikH.L. BarrettC. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.J. Am. Coll. Cardiol.201769111465150810.1016/j.jacc.2016.11.008 27851991
    [Google Scholar]
  2. UccioliL. MeloniM. IzzoV. GiuratoL. MerollaS. GandiniR. Critical limb ischemia: Current challenges and future prospects.Vasc. Health Risk Manag.201814637410.2147/VHRM.S125065 29731636
    [Google Scholar]
  3. DuffS. MafiliosM.S. BhounsuleP. HasegawaJ.T. The burden of critical limb ischemia: A review of recent literature.Vasc. Health Risk Manag.20191518720810.2147/VHRM.S209241 31308682
    [Google Scholar]
  4. MorishitaR. ShimamuraM. TakeyaY. Combined analysis of clinical data on HGF gene therapy to treat critical limb ischemia in Japan.Curr. Gene Ther.2020201253510.2174/18755631MTA2cNjgt1 32416690
    [Google Scholar]
  5. HanS.W. VerganiC.A. Junior, Reis PEO. Is gene therapy for limb ischemia a reality?J. Vasc. Bras.202019e2019005910.1590/1677‑5449.190059 34178054
    [Google Scholar]
  6. BarćP. AntkiewiczM. ŚliwaB. Double VEGF/HGF gene therapy in critical limb ischemia complicated by diabetes mellitus.J. Cardiovasc. Transl. Res.202114340941510.1007/s12265‑020‑10066‑9 32875492
    [Google Scholar]
  7. KhajehS. RazbanV. KhozaniT.T. Enhanced chondrogenic differentiation of dental pulp-derived mesenchymal stem cells in 3D pellet culture system: Effect of mimicking hypoxia.Biologia201873771572610.2478/s11756‑018‑0080‑z
    [Google Scholar]
  8. RazbanV. KhajehS. AlaeeS. PourM.Z. SoleimaniM. Tube formation potential of BMSCs and USSCs in response to HIF-1α overexpression under hypoxia.Cytol. Genet.201852323624410.3103/S0095452718030064
    [Google Scholar]
  9. ToledoC.E. RoseM. AguE. Enhancing retention of human bone marrow mesenchymal stem cells with prosurvival factors promotes angiogenesis in a mouse model of limb ischemia.Stem Cells Dev.201928211411910.1089/scd.2018.0090 30398391
    [Google Scholar]
  10. PetrenkoY. VackovaI. KekulovaK. A comparative analysis of multipotent mesenchymal stromal cells derived from different sources, with a focus on neuroregenerative potential.Sci. Rep.2020101429010.1038/s41598‑020‑61167‑z 32152403
    [Google Scholar]
  11. MohamedS.A. HowardL. McInerneyV. Autologous bone marrow mesenchymal stromal cell therapy for “no-option” critical limb ischemia is limited by karyotype abnormalities.Cytotherapy202022631332110.1016/j.jcyt.2020.02.007 32273232
    [Google Scholar]
  12. ZhangJ. SunX.J. ChenJ. Increasing the miR-126 expression in the peripheral blood of patients with diabetic foot ulcers treated with maggot debridement therapy.J. Diabetes Complications201731124124410.1016/j.jdiacomp.2016.07.026 27623390
    [Google Scholar]
  13. AnneseT. TammaR. GiorgisD.M. RibattiD. microRNAs biogenesis, functions and role in tumor angiogenesis.Front. Oncol.20201058100710.3389/fonc.2020.581007 33330058
    [Google Scholar]
  14. CremadesP.D. ChengH.S. FeinbergM.W. Noncoding RNAs in critical limb ischemia.Arterioscler. Thromb. Vasc. Biol.202040352353310.1161/ATVBAHA.119.312860 31893949
    [Google Scholar]
  15. NammianP. RazbanV. TabeiS.M.B. YousefabadA.S.L. MicroRNA-126: Dual role in angiogenesis dependent diseases.Curr. Pharm. Des.202026384883489310.2174/1381612826666200504120737 32364067
    [Google Scholar]
  16. ZhangL. OuyangP. HeG. Exosomes from microRNA‐126 overexpressing mesenchymal stem cells promote angiogenesis by targeting the PIK3R2‐mediated PI3K/Akt signalling pathway.J. Cell. Mol. Med.20212542148216210.1111/jcmm.16192 33350092
    [Google Scholar]
  17. RingA. IsmaeelA. WechslerM. MicroRNAs in peripheral artery disease: Potential biomarkers and pathophysiological mechanisms.Ther. Adv. Cardiovasc. Dis.2022161753944722109694010.1177/17539447221096940 35583375
    [Google Scholar]
  18. EbrahimiV. moghaddam RSH, Mohammadipour A. Therapeutic potentials of microRNA-126 in cerebral ischemia.Mol. Neurobiol.20236042062206910.1007/s12035‑022‑03197‑4 36596965
    [Google Scholar]
  19. KrishnaS.M. OmerS.M. LiJ. MortonS.K. JoseR.J. GolledgeJ. Development of a two-stage limb ischemia model to better simulate human peripheral artery disease.Sci. Rep.2020101344910.1038/s41598‑020‑60352‑4 32103073
    [Google Scholar]
  20. MaachaS. Paracrine mechanisms of mesenchymal stromal cells in angiogenesis.Stem Cells Int.20202020435635910.1155/2020/4356359
    [Google Scholar]
  21. TaoH. Proangiogenic features of mesenchymal stem cells and their therapeutic applications.Stem Cells Int.20162016131470910.1155/2016/1314709
    [Google Scholar]
  22. ShenC.C. ChenB. GuJ.T. The angiogenic related functions of bone marrow mesenchymal stem cells are promoted by CBDL rat serum via the Akt/Nrf2 pathway.Exp. Cell Res.20163441869410.1016/j.yexcr.2016.04.013 27105936
    [Google Scholar]
  23. UllahM. LiuD.D. ThakorA.S. Mesenchymal stromal cell homing: Mechanisms and strategies for improvement.iScience20191542143810.1016/j.isci.2019.05.004 31121468
    [Google Scholar]
  24. ChenC. LingC. GongJ. Increasing the expression of microRNA-126-5p in the temporal muscle can promote angiogenesis in the chronically ischemic brains of rats subjected to two-vessel occlusion plus encephalo-myo-synangiosis.Aging20201213132341325410.18632/aging.103431 32644942
    [Google Scholar]
  25. KongR. GaoJ. JiL. ZhaoD. MicroRNA-126 promotes proliferation, migration, invasion and endothelial differentiation while inhibits apoptosis and osteogenic differentiation of bone marrow-derived mesenchymal stem cells.Cell Cycle202019172119213810.1080/15384101.2020.1788258 32787491
    [Google Scholar]
  26. HuangB. WuG. PengC. miR ‐126 regulates the proliferation, migration, invasion, and apoptosis of non‐small lung cancer cells viaAKT2/HK2 axis.IUBMB Life202375318619510.1002/iub.2531 34320278
    [Google Scholar]
  27. ChangL. LiangJ. XiaX. ChenX. miRNA‐126 enhances viability, colony formation, and migration of keratinocytes HaCaT cells by regulating PI3 K/AKT signaling pathway.Cell Biol. Int.201943218219110.1002/cbin.11088 30571843
    [Google Scholar]
  28. ShengL. MaoX. YuQ. YuD. Effect of the PI3K/AKT signaling pathway on hypoxia-induced proliferation and differentiation of bone marrow-derived mesenchymal stem cells.Exp. Ther. Med.2017131556210.3892/etm.2016.3917 28123468
    [Google Scholar]
  29. KangI. LeeB.C. ChoiS.W. Donor-dependent variation of human umbilical cord blood mesenchymal stem cells in response to hypoxic preconditioning and amelioration of limb ischemia.Exp. Mol. Med.201850411510.1038/s12276‑017‑0014‑9 29674661
    [Google Scholar]
  30. YousefabadA.S.L. NammianP. TabeiS.M.B. Angiogenesis in diabetic mouse model with critical limb ischemia; cell and gene therapy.Microvasc. Res.202214110433910.1016/j.mvr.2022.104339 35151721
    [Google Scholar]
  31. HuW. JiangJ. YangF. LiuJ. The impact of bone marrow-derived mesenchymal stem cells on neovascularisation in rats with brain injury.Folia Neuropathol.201856211212310.5114/fn.2018.76615 30509031
    [Google Scholar]
  32. LiG.C. ZhangH.W. ZhaoQ.C. Mesenchymal stem cells promote tumor angiogenesis via the action of transforming growth factor β1.Oncol. Lett.20161121089109410.3892/ol.2015.3997 26893697
    [Google Scholar]
  33. YeL. PengY. MoJ. YaoY. MiR-126 enhances VEGF expression in induced pluripotent stem cell-derived retinal neural stem cells by targeting spred-1.Int. J. Clin. Exp. Pathol.201811210231030 31938197
    [Google Scholar]
  34. QuQ. BingW. MengX. Upregulation of miR-126-3p promotes human saphenous vein endothelial cell proliferation in vitro and prevents vein graft neointimal formation ex vivo and in vivo .Oncotarget201786310679010680610.18632/oncotarget.22365 29290989
    [Google Scholar]
  35. TanoN. KanekoM. IchiharaY. Allogeneic mesenchymal stromal cells transplanted onto the heart surface achieve therapeutic myocardial repair despite immunologic responses in rats.J. Am. Heart Assoc.201652e00281510.1161/JAHA.115.002815 26896478
    [Google Scholar]
  36. SaldañaL. BensiamarF. VallésG. ManceboF.J. ReyG.E. VilaboaN. Immunoregulatory potential of mesenchymal stem cells following activation by macrophage-derived soluble factors.Stem Cell Res. Ther.20191015810.1186/s13287‑019‑1156‑6 30760316
    [Google Scholar]
  37. WeissA.R.R. DahlkeM.H. Immunomodulation by mesenchymal stem cells (MSCs): Mechanisms of action of living, apoptotic, and dead MSCs.Front. Immunol.201910119110.3389/fimmu.2019.01191 31214172
    [Google Scholar]
  38. ChenL. WangJ. WangB. MiR-126 inhibits vascular endothelial cell apoptosis through targeting PI3K/Akt signaling.Ann. Hematol.201695336537410.1007/s00277‑015‑2567‑9 26659078
    [Google Scholar]
  39. QuM.J. PanJ-J. ShiX-J. ZhangZ-J. TangY-H. YangG-Y. MicroRNA-126 is a prospective target for vascular disease.Neuroimmunol. Neuroinflamm.2018541010.20517/2347‑8659.2018.01
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366332247250124130611
Loading
/content/journals/mirna/10.2174/0122115366332247250124130611
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Angiogenesis; BMSCs; critical limb ischemia; gene therapy; MicroRNA-126; stem cell therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test