Skip to content
2000
Volume 14, Issue 3
  • ISSN: 2211-5366
  • E-ISSN: 2211-5374

Abstract

Non-alcoholic fatty liver disease (NAFLD) is commonly related to metabolic-associated chronic liver disease, which has a pathological spectrum from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). It is mainly associated with other disease conditions, such as obesity, type 2 diabetes mellitus (T2DM), and cardiovascular disease. MicroRNAs (miRs) are small non-coding RNAs, having 22 nucleotides in length, that play an important role in epigenetic modulation for disease. miRs act by targeting mRNA and altering its expression. Alteration of miRs regulates different stages of NAFLD and NASH. A liver biopsy is the gold standard diagnosis for NASH. However, it is an invasive diagnostic process, so it is not feasible to screen a large number of NASH patients. Consequently, it is imperative to develop new non-invasive diagnosis strategies to detect NAFLD to NASH progression. Circulating miR can be a novel diagnostic marker for NAFLD/NASH. This review explains the role of miRs in the pathogenesis and miR-based targeted therapy in NAFLD/NASH.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366364599250604050335
2025-11-01
2025-12-13
Loading full text...

Full text loading...

References

  1. AntonM.C. ShanthiB. SrideviC. Prevalence of non-alcoholic fatty liver disease in urban adult population in a tertiary care center.Indian J. Community Med.202348460160410.4103/ijcm.ijcm_437_22 37662140
    [Google Scholar]
  2. El HadiH. Di VincenzoA. VettorR. RossatoM. Cardio-metabolic disorders in non-alcoholic fatty liver disease.Int. J. Mol. Sci.2019209221510.3390/ijms20092215 31064058
    [Google Scholar]
  3. PengC. StewartA.G. WoodmanO.L. RitchieR.H. QinC.X. Non-alcoholic steatohepatitis: A review of its mechanism, models and medical treatments.Front. Pharmacol.20201160392610.3389/fphar.2020.603926 33343375
    [Google Scholar]
  4. YanB. ZhengX. ChenX. Silibinin targeting heat shock protein 90 represents a novel approach to alleviate nonalcoholic fatty liver disease by simultaneously lowering hepatic lipotoxicity and enhancing gut barrier function.ACS Pharmacol. Transl. Sci.2024772110212410.1021/acsptsci.4c00185 39022366
    [Google Scholar]
  5. KakiyamaG. Rodriguez-AgudoD. PandakW.M. Mitochondrial cholesterol metabolites in a bile acid synthetic pathway drive nonalcoholic fatty liver disease: A revised “Two-Hit” hypothesis.Cells20231210143410.3390/cells12101434 37408268
    [Google Scholar]
  6. WangY.D. WuL.L. QiX.Y. New insight of obesity-associated NAFLD: Dysregulated “crosstalk” between multi-organ and the liver?Genes Dis.202310379981210.1016/j.gendis.2021.12.013 37396503
    [Google Scholar]
  7. TilgH. AdolphT.E. MoschenA.R. Multiple parallel hits hypothesis in nonalcoholic fatty liver disease: Revisited after a decade.Hepatology202173283384210.1002/hep.31518 32780879
    [Google Scholar]
  8. KumarS. DuanQ. WuR. HarrisE.N. SuQ. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis.Adv. Drug Deliv. Rev.202117611386910.1016/j.addr.2021.113869 34280515
    [Google Scholar]
  9. LinH.Y. YangY.L. WangP.W. WangF.S. HuangY.H. The emerging role of microRNAS in NAFLD: Highlight of microrna-29a in modulating oxidative stress, inflammation, and beyond.Cells202094104110.3390/cells9041041 32331364
    [Google Scholar]
  10. RinellaM.E. SookoianS. From NAFLD to MASLD: Updated naming and diagnosis criteria for fatty liver disease.J. Lipid Res.202465110048510.1016/j.jlr.2023.100485 38103785
    [Google Scholar]
  11. HateleyC. OlonaA. HallidayL. Multi-tissue profiling of oxylipins reveal a conserved up-regulation of epoxide:diol ratio that associates with white adipose tissue inflammation and liver steatosis in obesity.EBioMedicine202410310512710.1016/j.ebiom.2024.105127 38677183
    [Google Scholar]
  12. RamezaniM. ZobeiryM. AbdolahiS. HatamiB. ZaliM.R. BaghaeiK. A crosstalk between epigenetic modulations and non-alcoholic fatty liver disease progression.Pathol. Res. Pract.202325115480910.1016/j.prp.2023.154809 37797383
    [Google Scholar]
  13. Rivera-AguirreJ. López-SánchezG.N. Chávez-TapiaN.C. UribeM. Nuño-LámbarriN. Metabolic-associated fatty liver disease regulation through nutri epigenetic methylation.Mini Rev. Med. Chem.202323171680169010.2174/1389557523666230130093512 36718062
    [Google Scholar]
  14. KimH. LeeY.Y. KimV.N. The biogenesis and regulation of animal microRNAs.Nat. Rev. Mol. Cell Biol.20242627629610.1038/s41580‑024‑00805‑0 39702526
    [Google Scholar]
  15. MohamedF.A. FreudeK. Implications of SNP-triggered miRNA dysregulation in Schizophrenia development.Front. Genet.202415132123210.3389/fgene.2024.1321232 38343691
    [Google Scholar]
  16. MalakondaiahS. JuliusA. PonnambalamD. Gene silencing by RNA interference: A review.Genome Instab. Disease20245522524110.1007/s42764‑024‑00135‑7
    [Google Scholar]
  17. NazouE. PotirisA. MavrogianniD. Oocyte maturation and miRNAs: Studying a complicate interaction to reveal possible biomarkers for female infertility.Diseases202412612110.3390/diseases12060121 38920553
    [Google Scholar]
  18. HuangW. MicroRNAs: Biomarkers, diagnostics, and therapeutics.Methods Mol. Biol.20171617576710.1007/978‑1‑4939‑7046‑9_4 28540676
    [Google Scholar]
  19. LiuW. CaoH. YanJ. HuangR. YingH. ‘Micro‐managers’ of hepatic lipid metabolism and NAFLD.Wiley Interdiscip. Rev. RNA20156558159310.1002/wrna.1295 26198708
    [Google Scholar]
  20. ChaoH.W. ChaoS.W. LinH. KuH.C. ChengC.F. Homeostasis of glucose and lipid in non-alcoholic fatty liver disease.Int. J. Mol. Sci.201920229810.3390/ijms20020298 30642126
    [Google Scholar]
  21. SamyA.M. KandeilM.A. SabryD. Abdel-GhanyA.A. MahmoudM.O. Exosomal miR‐122, miR‐128, miR‐200, miR‐298, and miR‐342 as novel diagnostic biomarkers in NAFL/NASH: Impact of LPS/TLR‐4/FoxO3 pathway.Arch Pharm20243574230063110.1002/ardp.202300631 38574101
    [Google Scholar]
  22. RodriguesP.M. AfonsoM.B. SimãoA.L. miR ‐21‐5p promotes NASH ‐related hepatocarcinogenesis.Liver Int.202343102256227410.1111/liv.15682 37534739
    [Google Scholar]
  23. ZhangT. YangZ. KusumanchiP. HanS. LiangpunsakulS. Critical Role of microRNA-21 in the Pathogenesis of Liver Diseases.Front. Med.20207710.3389/fmed.2020.00007 32083086
    [Google Scholar]
  24. Benhamouche-TrouilletS. PosticC. Emerging role of miR-21 in non-alcoholic fatty liver disease.Gut201665111781178310.1136/gutjnl‑2015‑310044 27436271
    [Google Scholar]
  25. LiuJ. XiaoY. WuX. A circulating microRNA signature as noninvasive diagnostic and prognostic biomarkers for nonalcoholic steatohepatitis.BMC Genomics201819118810.1186/s12864‑018‑4575‑3 29523084
    [Google Scholar]
  26. WangX.M. WangX.Y. HuangY.M. Role and mechanisms of action of microRNA 21 as regards the regulation of the WNT/β catenin signaling pathway in the pathogenesis of non alcoholic fatty liver disease.Int. J. Mol. Med.20194462201221210.3892/ijmm.2019.4375 31638173
    [Google Scholar]
  27. CaloN. RamadoriP. SobolewskiC. Stress-activated miR-21/miR-21* in hepatocytes promotes lipid and glucose metabolic disorders associated with high-fat diet consumption.Gut201665111871188110.1136/gutjnl‑2015‑310822 27222533
    [Google Scholar]
  28. BinMowynaMN AlFarisNA Al-SaneaEA AlTamimiJZ AldayelTS Resveratrol attenuates against high-fat-diet-promoted non-alcoholic fatty liver disease in rats mainly by targeting the miR-34a/SIRT1 axis.Arch Physiol Biochem2024130330031510.1080/13813455.2022.204610635254877
    [Google Scholar]
  29. BahramiradZ. MoloudiM.R. MoradzadM. AbdollahiA. VahabzadehZ. Trimethylamine-N-oxide, a new risk factor for non-alcoholic fatty liver disease changes the expression of miRNA-34a, and miRNA-122 in the Fatty Liver Cell Model.Biochem. Genet.20246321298130910.1007/s10528‑024‑10754‑0 38536569
    [Google Scholar]
  30. XuY. ZalzalaM. XuJ. LiY. YinL. ZhangY. A metabolic stress-inducible miR-34a-HNF4α pathway regulates lipid and lipoprotein metabolism.Nat. Commun.201561746610.1038/ncomms8466 26100857
    [Google Scholar]
  31. AliB.M. Al-MokaddemA.K. SelimH.M.R.M. Pinocembrin’s protective effect against acute pancreatitis in a rat model: The correlation between TLR4/NF-κB/NLRP3 and miR-34a-5p/SIRT1/Nrf2/HO-1 pathways.Biomed. Pharmacother.202417611685410.1016/j.biopha.2024.116854 38824834
    [Google Scholar]
  32. MengD. ZhangF. YuW. Biological role and related natural products of sirt1 in nonalcoholic fatty liver.Diabetes Metab. Syndr. Obes.2023164043406410.2147/DMSO.S437865 38089432
    [Google Scholar]
  33. DingJ. LiM. WanX. Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease.Sci. Rep.2015511372910.1038/srep13729 26330104
    [Google Scholar]
  34. SmithJ.J. KenneyR.D. GagneD.J. Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo.BMC Syst. Biol.2009313110.1186/1752‑0509‑3‑31 19284563
    [Google Scholar]
  35. GirardM. JacqueminE. MunnichA. LyonnetS. Henrion-CaudeA. miR-122, a paradigm for the role of microRNAs in the liver.J. Hepatol.200848464865610.1016/j.jhep.2008.01.019 18291553
    [Google Scholar]
  36. MiyaakiH. IchikawaT. KamoY. Significance of serum and hepatic micro RNA ‐122 levels in patients with non‐alcoholic fatty liver disease.Liver Int.2014347e302e30710.1111/liv.12429 24313922
    [Google Scholar]
  37. ChaiC. RivkinM. BerkovitsL. Metabolic circuit involving free fatty acids, microrna 122, and triglyceride synthesis in liver and muscle tissues.Gastroenterology201715351404141510.1053/j.gastro.2017.08.013 28802563
    [Google Scholar]
  38. BaranovaA. MaltsevaD. TonevitskyA. Adipose may actively delay progression of NAFLD by releasing tumor‐suppressing, anti‐fibrotic miR ‐122 into circulation.Obes. Rev.201920110811810.1111/obr.12765 30248223
    [Google Scholar]
  39. GjorgjievaM. SobolewskiC. DolickaD. Correia de SousaM. FotiM. miRNAs and NAFLD: From pathophysiology to therapy.Gut201968112065207910.1136/gutjnl‑2018‑318146 31300518
    [Google Scholar]
  40. NatarajanS.K. StringhamB.A. MohrA.M. FoxO3 increases miR-34a to cause palmitate-induced cholangiocyte lipoapoptosis.J. Lipid Res.201758586687510.1194/jlr.M071357 28250026
    [Google Scholar]
  41. GorriniC. HarrisI.S. MakT.W. Modulation of oxidative stress as an anticancer strategy.Nat. Rev. Drug Discov.2013121293194710.1038/nrd4002 24287781
    [Google Scholar]
  42. Conde de la RosaL. Role of oxidative stress in liver disorders.Livers20222428331410.3390/livers2040023
    [Google Scholar]
  43. LiuC. ZhouB. MengM. FOXA3 induction under endoplasmic reticulum stress contributes to non-alcoholic fatty liver disease.J. Hepatol.202175115016210.1016/j.jhep.2021.01.042 33548387
    [Google Scholar]
  44. FuX. DongB. TianY. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids.J. Clin. Invest.201512562497250910.1172/JCI75438 25961460
    [Google Scholar]
  45. XuH. TianY. TangD. An endoplasmic reticulum stress–microRNA‐26a feedback circuit in NAFLD.Hepatology20217341327134510.1002/hep.31428 32567701
    [Google Scholar]
  46. ChengY. MaiJ. HouT. PingJ. MicroRNA-421 induces hepatic mitochondrial dysfunction in non-alcoholic fatty liver disease mice by inhibiting sirtuin 3.Biochem. Biophys. Res. Commun.20164741576310.1016/j.bbrc.2016.04.065 27107702
    [Google Scholar]
  47. WangX. WangJ. High-content hydrogen water-induced downregulation of miR-136 alleviates non-alcoholic fatty liver disease by regulating Nrf2 via targeting MEG3.Biol. Chem.2018399439740610.1515/hsz‑2017‑0303 29261513
    [Google Scholar]
  48. ZhangY. WangC. LuJ. Targeting of miR-96-5p by catalpol ameliorates oxidative stress and hepatic steatosis in LDLr-/- mice via p66shc/cytochrome C cascade.Aging20201232049206910.18632/aging.102721 32023549
    [Google Scholar]
  49. BugianesiE. MoscatielloS. CiaravellaM.F. MarchesiniG. Insulin resistance in nonalcoholic fatty liver disease.Curr. Pharm. Des.201016171941195110.2174/138161210791208875 20370677
    [Google Scholar]
  50. BuzzettiE. PinzaniM. TsochatzisE.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD).Metabolism20166581038104810.1016/j.metabol.2015.12.012 26823198
    [Google Scholar]
  51. AticA.I. Circulating miRNAs associated with nonalcoholic fatty liver disease.Am. J. Physiol. Cell Physiol.20233242C588C60210.1152/ajpcell.00253.2022
    [Google Scholar]
  52. XuY. YuT. HeL. Inhibition of miRNA-152-3p enhances diabetic wound repair via upregulation of PTEN.Aging20201214149781498910.18632/aging.103557 32620711
    [Google Scholar]
  53. HeS Targeted delivery of microRNA 146b mimic to hepatocytes by lactosylated PDMAEMA nanoparticles for the treatment of NAFLD.Artif Cells Nanomed Biotechnol2018846sup221722810.1080/21691401.2018.1453830
    [Google Scholar]
  54. WangS. WangL. DouL. Micro RNA 152 regulates hepatic glycogenesis by targeting PTEN.FEBS J.2016283101935194610.1111/febs.13713 26996529
    [Google Scholar]
  55. FangZ. DouG. WangL. MicroRNAs in the pathogenesis of nonalcoholic fatty liver disease.Int. J. Biol. Sci.20211771851186310.7150/ijbs.59588 33994867
    [Google Scholar]
  56. WangL. ZhangN. PanH. WangZ. CaoZ. MiR-499-5p contributes to hepatic insulin resistance by suppressing PTEN.Cell. Physiol. Biochem.20153662357236510.1159/000430198 26279439
    [Google Scholar]
  57. YangW.M. JeongH.J. ParkS.W. LeeW. Obesity‐induced miR‐15b is linked causally to the development of insulin resistance through the repression of the insulin receptor in hepatocytes.Mol. Nutr. Food Res.201559112303231410.1002/mnfr.201500107 26179126
    [Google Scholar]
  58. DaiL.L. LiS.D. MaY.C. MicroRNA‐30b regulates insulin sensitivity by targeting SERCA2b in non‐alcoholic fatty liver disease.Liver Int.20193981504151310.1111/liv.14067 30721562
    [Google Scholar]
  59. WuH. ZhangT. PanF. MicroRNA-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis.J. Hepatol.201766481682410.1016/j.jhep.2016.12.016 28025059
    [Google Scholar]
  60. XuM. ZhengX.M. JiangF. QiuW. MicroRNA‐190b regulates lipid metabolism and insulin sensitivity by targeting IGF‐1 and ADAMTS9 in non‐alcoholic fatty liver disease.J. Cell. Biochem.201811975864587410.1002/jcb.26776 29575055
    [Google Scholar]
  61. HouK. WuZ.X. ChenX.Y. Microbiota in health and diseases.Signal Transduct. Target. Ther.20227113510.1038/s41392‑022‑00974‑4 35461318
    [Google Scholar]
  62. FangJ. YuC.H. LiX.J. Gut dysbiosis in nonalcoholic fatty liver disease: Pathogenesis, diagnosis, and therapeutic implications.Front. Cell. Infect. Microbiol.20221299701810.3389/fcimb.2022.997018 36425787
    [Google Scholar]
  63. HuangS. XiaoX. WuH. ZhouF. FuC. MicroRNA-582-3p knockdown alleviates non-alcoholic steatohepatitis by altering the gut microbiota composition and moderating TMBIM1.Ir. J. Med. Sci.2024193290991610.1007/s11845‑023‑03529‑w 37823951
    [Google Scholar]
  64. PirolaC.J. SalatinoA. Fernández GianottiT. CastañoG.O. GaraycoecheaM. SookoianS. Cross talk between the liver microbiome and epigenome in patients with metabolic dysfunction-associated steatotic liver disease.EBioMedicine202410110499610.1016/j.ebiom.2024.104996 38320344
    [Google Scholar]
  65. FengD. MukhopadhyayP. QiuJ. WangH. Inflammation in liver diseases.Mediators Inflamm.201820181210.1155/2018/3927134 29618944
    [Google Scholar]
  66. LiuW. BakerR.D. BhatiaT. ZhuL. BakerS.S. Pathogenesis of nonalcoholic steatohepatitis.Cell. Mol. Life Sci.201673101969198710.1007/s00018‑016‑2161‑x 26894897
    [Google Scholar]
  67. SchusterS. CabreraD. ArreseM. FeldsteinA.E. Triggering and resolution of inflammation in NASH.Nat. Rev. Gastroenterol. Hepatol.201815634936410.1038/s41575‑018‑0009‑6 29740166
    [Google Scholar]
  68. BessoneF. Molecular pathways of nonalcoholic fatty liver disease development and progression.Cell. Mol. Life Sci.20197619912810.1007/s00018‑018‑2947‑0
    [Google Scholar]
  69. YeD. ZhangT. LouG. LiuY. Role of miR-223 in the pathophysiology of liver diseases.Exp. Mol. Med.201850911210.1038/s12276‑018‑0153‑7 30258086
    [Google Scholar]
  70. HeY. HwangS. CaiY. MicroRNA‐223 ameliorates nonalcoholic steatohepatitis and cancer by targeting multiple inflammatory and oncogenic genes in hepatocytes.Hepatology20197041150116710.1002/hep.30645 30964207
    [Google Scholar]
  71. HouX. YinS. RenR. Myeloid‐cell–specific IL‐6 signaling promotes microRNA‐223‐enriched exosome production to attenuate nafld‐associated fibrosis.Hepatology202174111613210.1002/hep.31658 33236445
    [Google Scholar]
  72. López-SánchezG.N. Dóminguez-PérezM. UribeM. Chávez-TapiaN.C. Nuño-LámbarriN. Non-alcoholic fatty liver disease and microRNAs expression, how it affects the development and progression of the disease.Ann. Hepatol.20212110021210.1016/j.aohep.2020.04.012 32533953
    [Google Scholar]
  73. TianH. LiuC. ZouX. WuW. ZhangC. YuanD. MiRNA-194 regulates palmitic acid-induced toll-like receptor 4 inflammatory responses in THP-1 cells.Nutrients2015753483349610.3390/nu7053483 25984739
    [Google Scholar]
  74. DoghishA.S. ElballalM.S. ElazazyO. The role of miRNAs in liver diseases: Potential therapeutic and clinical applications.Pathol. Res. Pract.202324315437510.1016/j.prp.2023.154375 36801506
    [Google Scholar]
  75. LiuX.L. PanQ. CaoH.X. Lipotoxic hepatocyte‐derived exosomal microRNA 192‐5p activates macrophages through rictor/akt/forkhead box transcription factor o1 signaling in nonalcoholic fatty liver disease.Hepatology202072245446910.1002/hep.31050 31782176
    [Google Scholar]
  76. ZhangT. HuJ. WangX. MicroRNA-378 promotes hepatic inflammation and fibrosis via modulation of the NF-κB-TNFα pathway.J. Hepatol.2019701879610.1016/j.jhep.2018.08.026 30218679
    [Google Scholar]
  77. Karimi-SalesE. JeddiS. Ebrahimi-KalanA. AlipourM.R. Protective role of trans-chalcone against the progression from simple steatosis to non-alcoholic steatohepatitis: Regulation of miR-122, 21, 34a, and 451.Adv. Pharm. Bull.2022121200205 35517895
    [Google Scholar]
  78. SchwabeR.F. LueddeT. Apoptosis and necroptosis in the liver: A matter of life and death.Nat. Rev. Gastroenterol. Hepatol.2018151273875210.1038/s41575‑018‑0065‑y 30250076
    [Google Scholar]
  79. KandaT. MatsuokaS. YamazakiM. Apoptosis and non-alcoholic fatty liver diseases.World J. Gastroenterol.201824252661267210.3748/wjg.v24.i25.2661 29991872
    [Google Scholar]
  80. QadirX.V. ChenW. HanC. SongK. ZhangJ. WuT. miR-223 Deficiency protects against fas-induced hepatocyte apoptosis and liver injury through targeting insulin-like growth factor 1 receptor.Am. J. Pathol.2015185123141315110.1016/j.ajpath.2015.08.020 26598234
    [Google Scholar]
  81. FengZ. LiZ. ZhuD. Mir-24 regulates hepatocyte apoptosis via BIM during acute liver failure.Am. J. Transl. Res.201791149254935 29218090
    [Google Scholar]
  82. WuS. HuangX. SunW. Role of the microRNA 214/Bax axis in the progression of acute liver failure.Mol. Med. Rep.202022111712610.3892/mmr.2020.11123 32377732
    [Google Scholar]
  83. FriedmanS.L. Liver fibrosis – from bench to bedside.J. Hepatol.200338Suppl. 1385310.1016/S0168‑8278(02)00429‑4 12591185
    [Google Scholar]
  84. AnguloP. MachadoM. DiehlA. Fibrosis in nonalcoholic fatty liver disease: Mechanisms and clinical implications.Semin. Liver Dis.201535213214510.1055/s‑0035‑1550065 25974899
    [Google Scholar]
  85. SchuppanD. SurabattulaR. WangX.Y. Determinants of fibrosis progression and regression in NASH.J. Hepatol.201868223825010.1016/j.jhep.2017.11.012 29154966
    [Google Scholar]
  86. DongiovanniP. MeroniM. LongoM. FargionS. FracanzaniA.L. miRNA signature in NAFLD: A turning point for a non-invasive diagnosis.Int. J. Mol. Sci.20181912396610.3390/ijms19123966 30544653
    [Google Scholar]
  87. LetiF. MalenicaI. DoshiM. High-throughput sequencing reveals altered expression of hepatic microRNAs in nonalcoholic fatty liver disease–related fibrosis.Transl. Res.2015166330431410.1016/j.trsl.2015.04.014 26001595
    [Google Scholar]
  88. DattaroyD. PourhoseiniS. DasS. Micro-RNA 21 inhibition of SMAD7 enhances fibrogenesis via leptin-mediated NADPH oxidase in experimental and human nonalcoholic steatohepatitis.Am. J. Physiol. Gastrointest. Liver Physiol.20153084G298G31210.1152/ajpgi.00346.2014 25501551
    [Google Scholar]
  89. CavigliaJ.M. YanJ. JangM.K. MicroRNA‐21 and Dicer are dispensable for hepatic stellate cell activation and the development of liver fibrosis.Hepatology20186762414242910.1002/hep.29627 29091291
    [Google Scholar]
  90. CsakT. BalaS. LippaiD. micro RNA ‐122 regulates hypoxia‐inducible factor‐1 and vimentin in hepatocytes and correlates with fibrosis in diet‐induced steatohepatitis.Liver Int.201535253254110.1111/liv.12633 25040043
    [Google Scholar]
  91. DuJ. NiuX. WangY. MiR-146a-5p suppresses activation and proliferation of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis through directly targeting Wnt1 and Wnt5a.Sci. Rep.2015511616310.1038/srep16163 26537990
    [Google Scholar]
  92. ChengJ.H. SheH. HanY.P. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis.Am. J. Physiol. Gastrointest. Liver Physiol.20082941G39G4910.1152/ajpgi.00263.2007 18006602
    [Google Scholar]
  93. MaL. YangX. WeiR. MicroRNA-214 promotes hepatic stellate cell activation and liver fibrosis by suppressing Sufu expression.Cell Death Dis.20189771810.1038/s41419‑018‑0752‑1 29915227
    [Google Scholar]
  94. OkadaH. HondaM. CampbellJ.S. Inhibition of micro RNA ‐214 ameliorates hepatic fibrosis and tumor incidence in platelet‐derived growth factor C transgenic mice.Cancer Sci.201510691143115210.1111/cas.12730 26122702
    [Google Scholar]
  95. WangY. DuJ. NiuX. MiR-130a-3p attenuates activation and induces apoptosis of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis by directly targeting TGFBR1 and TGFBR2.Cell Death Dis.201785279210.1038/cddis.2017.10 28518142
    [Google Scholar]
  96. TsayH.C. YuanQ. BalakrishnanA. Hepatocyte-specific suppression of microRNA-221-3p mitigates liver fibrosis.J. Hepatol.201970472273410.1016/j.jhep.2018.12.016 30582979
    [Google Scholar]
  97. HochreuterM.Y. DallM. TreebakJ.T. BarrèsR. MicroRNAs in non-alcoholic fatty liver disease: Progress and perspectives.Mol. Metab.20226510158110.1016/j.molmet.2022.101581 36028120
    [Google Scholar]
  98. LiuC.H. AmpueroJ. Gil-GómezA. miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis.J. Hepatol.20186961335134810.1016/j.jhep.2018.08.008 30142428
    [Google Scholar]
  99. YangJ. TangX. ChenL. Liver-derived exosomal miRNA in NAFLD: Mechanisms of action, biomarkers, and therapeutic applications.Curr. Med. Chem.20241810.2174/0109298673276581231210170332 38299293
    [Google Scholar]
  100. XinS. ZhanQ. ChenX. XuJ. YuY. Efficacy of serum miRNA test as a non-invasive method to diagnose nonalcoholic steatohepatitis: A systematic review and meta-analysis.BMC Gastroenterol.202020118610.1186/s12876‑020‑01334‑8 32532204
    [Google Scholar]
  101. AlbhaisiS. SanyalA.J. Applying non-invasive fibrosis measurements in nafld/nash: Progress to date.Pharmaceut. Med.201933645146310.1007/s40290‑019‑00305‑z 31933238
    [Google Scholar]
  102. ZhangJ.W. UllahK. KhanN. PanH.T. Comprehensive profiling of serum microRNAs in normal and non-alcoholic fatty liver disease (NAFLD) patients.Sci. Rep.2025151376610.1038/s41598‑025‑87791‑1 39885249
    [Google Scholar]
  103. LiY.J. BaumertB.O. StratakisN. Circulating microRNA expression and nonalcoholic fatty liver disease in adolescents with severe obesity.World J. Gastroenterol.202430433234510.3748/wjg.v30.i4.332 38313232
    [Google Scholar]
  104. MichalakA. GuzM. KozickaJ. miRNAs and hematological markers in non-alcoholic fatty liver disease—a new diagnostic path?Biomedicines202513123010.3390/biomedicines13010230 39857813
    [Google Scholar]
  105. JampokaK. MuangpaisarnP. KhongnomnanK. TreeprasertsukS. TangkijvanichP. PayungpornS. Serum miR-29a and miR-122 as potential biomarkers for non-alcoholic fatty liver disease (NAFLD).MicroRNA20187321522210.2174/2211536607666180531093302 29848284
    [Google Scholar]
  106. SutradharP.R. SultanaN. NessaA. miRNA‐221: A Potential biomarker of progressive liver injury in chronic liver disease (CLD) due to hepatitis b virus (HBV) and nonalcoholic fatty liver disease (NAFLD).Int. J. Hepatol.202420241422136810.1155/2024/4221368 39185365
    [Google Scholar]
  107. AmaniF. SahebkarA. Aghaee-BakhtiariS.H. FarzanehfarM. AskarianS. OskueeR.K. Evaluation of the diagnostic role of circulating miR-16, miR-10b, and miR-21 expression in patients with nonalcoholic fatty liver disease.Gene Rep.20243610196410.1016/j.genrep.2024.101964
    [Google Scholar]
  108. Tobaruela-ResolaA.L. MilagroF.I. ElorzM. Circulating miR-122-5p, miR-151a-3p, miR-126-5p and miR-21-5p as potential predictive biomarkers for Metabolic Dysfunction-Associated Steatotic Liver Disease assessment.J. Physiol. Biochem.20241910.1007/s13105‑024‑01037‑8 39138826
    [Google Scholar]
  109. RagabH.M. EzzatW.M. HassanE.M. Significance of MiRNA-34a and MiRNA-192 as a risk factor for nonalcoholic fatty liver disease.J. Genet. Eng. Biotechnol.20232111310.1186/s43141‑023‑00467‑z 36757530
    [Google Scholar]
  110. MohamedA.A. El-DemeryA. Al-HussainE. NAFLD mark: An accurate model based on microRNA-34 for diagnosis of non-alcoholic fatty liver disease patients.J. Genet. Eng. Biotechnol.202119115710.1186/s43141‑021‑00257‑5 34661762
    [Google Scholar]
  111. AndoY. YamazakiM. YamadaH. Association of circulating miR-20a, miR-27a, and miR-126 with non-alcoholic fatty liver disease in general population.Sci. Rep.2019911885610.1038/s41598‑019‑55076‑z 31827150
    [Google Scholar]
  112. HamamR. HamamD. AlsalehK.A. Circulating microRNAs in breast cancer: Novel diagnostic and prognostic biomarkers.Cell Death Dis.201789e3045e510.1038/cddis.2017.440 28880270
    [Google Scholar]
  113. BaderA.G. BrownD. WinklerM. The promise of microRNA replacement therapy.Cancer Res.201070187027703010.1158/0008‑5472.CAN‑10‑2010 20807816
    [Google Scholar]
  114. ZhangW. JiaJ. LiuZ. SiD. MaL. ZhangG. Circulating microRNAs as biomarkers for Sepsis secondary to pneumonia diagnosed via Sepsis 3.0.BMC Pulm. Med.20191919310.1186/s12890‑019‑0836‑4 31088429
    [Google Scholar]
  115. JunL. TangT.T. TaoT.J.B.R. LncRNA-H19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγ axis in non-alcoholic fatty liver disease.Biosci. Rep.2019397BSR2018172210.1042/BSR20181722
    [Google Scholar]
  116. GuoB. LncRNA HOTAIR regulates the lipid accumulation in non-alcoholic fatty liver disease via miR-130b-3p/ROCK1 axis.Cell Sig20229011019010.1016/j.cellsig.2021.110190
    [Google Scholar]
  117. RodriguesP.M. miR-21 ablation and obeticholic acid ameliorate nonalcoholic steatohepatitis in mice.Cell Death Dis.201784e274810.1038/cddis.2017.172
    [Google Scholar]
  118. ZhangM. MicroRNA-103 represses hepatic de novo lipogenesis and alleviates NAFLD via targeting FASN and SCD1.Biochem. Biophys. Res. Commun.2020524371672210.1016/j.bbrc.2020.01.143
    [Google Scholar]
  119. NakamuraM. MicroRNA-122 inhibits the production of inflammatory cytokines by targeting the PKR activator PACT in human hepatic stellate cells.PLoS One20151012e014429510.1371/journal.pone.0144295
    [Google Scholar]
  120. WangX. HeY. MackowiakB. GaoB. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases.Gut202170478479510.1136/gutjnl‑2020‑322526 33127832
    [Google Scholar]
  121. GaoY. VasicR. SongY. m6A modification prevents formation of endogenous double-stranded RNAs and deleterious innate immune responses during hematopoietic development.Immunity202052610071021.e810.1016/j.immuni.2020.05.003 32497523
    [Google Scholar]
  122. YangY.L. ChuangY.T. HuangY.H. MicroRNA 29a alleviates mitochondrial stress in diet-induced NAFLD by inhibiting the MAVS pathway.Eur. J. Pharmacol.202498217695510.1016/j.ejphar.2024.176955 39209098
    [Google Scholar]
  123. ChenX. TanX.R. LiS.J. ZhangX.X. LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ROCK1 in nonalcoholic fatty liver disease.Life Sci.201923511682910.1016/j.lfs.2019.116829 31484042
    [Google Scholar]
  124. KrützfeldtJ. RajewskyN. BraichR. Silencing of microRNAs in vivo with ‘antagomirs’.Nature2005438706868568910.1038/nature04303 16258535
    [Google Scholar]
  125. ObadS. dos SantosC.O. PetriA. Silencing of microRNA families by seed-targeting tiny LNAs.Nat. Genet.201143437137810.1038/ng.786 21423181
    [Google Scholar]
  126. MengZ. ZhouD. GaoY. ZengM. WangW. miRNA delivery for skin wound healing.Adv. Drug Deliv. Rev.201812930831810.1016/j.addr.2017.12.011 29273517
    [Google Scholar]
  127. WuW.Y. DingX.Q. GuT.T. Pterostilbene improves hepatic lipid accumulation via the MiR-34a/Sirt1/SREBP-1 pathway in fructose-fed rats.J. Agric. Food Chem.20206851436144610.1021/acs.jafc.9b04259 31927917
    [Google Scholar]
  128. WangR. MaJ. WuQ. Functional role of miR-34 family in human cancer.Curr. Drug Targets201314101185119110.2174/13894501113149990191 23834144
    [Google Scholar]
  129. DuG. JiangZ. XiaT. lincRNA00907 promotes NASH progression by targeting miRNA-942-5p/TAOK1.Aging20241686868688210.18632/aging.205730 38613803
    [Google Scholar]
  130. LiW.J. WangY. LiuR. MicroRNA-34a: Potent tumor suppressor, cancer stem cell inhibitor, and potential anticancer therapeutic.Front. Cell Dev. Biol.2021964058710.3389/fcell.2021.640587 33763422
    [Google Scholar]
  131. KongM. PengY. QiuL. Oligochitosan-based nanovesicles for nonalcoholic fatty liver disease treatment via the FXR/miR-34a/SIRT1 regulatory loop.Acta Biomater.202316443544610.1016/j.actbio.2023.04.002 37040811
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366364599250604050335
Loading
/content/journals/mirna/10.2174/0122115366364599250604050335
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cirrhosis; fibrosis; liver biopsy; miRNA; NAFLD; NASH
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test