Skip to content
2000
image of MicroRNA: A Novel Class of Potential Biomarkers and Therapeutic Target for Non-Alcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis

Abstract

Non-alcoholic fatty liver disease (NAFLD) is commonly related to metabolic-associated chronic liver disease, which has a pathological spectrum from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). It is mainly associated with other disease conditions, such as obesity, type 2 diabetes mellitus (T2DM), and cardiovascular disease. MicroRNAs (miRs) are small non-coding RNAs, having 22 nucleotides in length, that play an important role in epigenetic modulation for disease. miRs act by targeting mRNA and altering its expression. Alteration of miRs regulates different stages of NAFLD and NASH. A liver biopsy is the gold standard diagnosis for NASH. However, it is an invasive diagnostic process, so it is not feasible to screen a large number of NASH patients. Consequently, it is imperative to develop new non-invasive diagnosis strategies to detect NAFLD to NASH progression. Circulating miR can be a novel diagnostic marker for NAFLD/NASH. This review explains the role of miRs in the pathogenesis and miR-based targeted therapy in NAFLD/NASH.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366364599250604050335
2025-06-16
2025-09-26
Loading full text...

Full text loading...

References

  1. Prevalence of non-alcoholic fatty liver disease in urban adult population in a tertiary care center. Indian J. Community Med. 2023 48 4 601 604 10.4103/ijcm.ijcm_437_22 37662140
    [Google Scholar]
  2. Cardio-metabolic disorders in non-alcoholic fatty liver disease. Int. J. Mol. Sci. 2019 20 9 2215 10.3390/ijms20092215 31064058
    [Google Scholar]
  3. Non-alcoholic steatohepatitis: A review of its mechanism, models and medical treatments. Front. Pharmacol. 2020 11 603926 10.3389/fphar.2020.603926 33343375
    [Google Scholar]
  4. Silibinin targeting heat shock protein 90 represents a novel approach to alleviate nonalcoholic fatty liver disease by simultaneously lowering hepatic lipotoxicity and enhancing gut barrier function. ACS Pharmacol. Transl. Sci. 2024 7 7 2110 2124 10.1021/acsptsci.4c00185 39022366
    [Google Scholar]
  5. Mitochondrial cholesterol metabolites in a bile acid synthetic pathway drive nonalcoholic fatty liver disease: A revised “Two-Hit” hypothesis. Cells 2023 12 10 1434 10.3390/cells12101434 37408268
    [Google Scholar]
  6. New insight of obesity-associated NAFLD: Dysregulated “crosstalk” between multi-organ and the liver? Genes Dis. 2023 10 3 799 812 10.1016/j.gendis.2021.12.013 37396503
    [Google Scholar]
  7. Multiple parallel hits hypothesis in nonalcoholic fatty liver disease: Revisited after a decade. Hepatology 2021 73 2 833 842 10.1002/hep.31518 32780879
    [Google Scholar]
  8. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv. Drug Deliv. Rev. 2021 176 113869 10.1016/j.addr.2021.113869 34280515
    [Google Scholar]
  9. The emerging role of microRNAS in NAFLD: Highlight of microrna-29a in modulating oxidative stress, inflammation, and beyond. Cells 2020 9 4 1041 10.3390/cells9041041 32331364
    [Google Scholar]
  10. From NAFLD to MASLD Updated naming and diagnosis criteria for fatty liver disease. J. Lipid Res. 2024 65 1 100485 10.1016/j.jlr.2023.100485 38103785
    [Google Scholar]
  11. Multi-tissue profiling of oxylipins reveal a conserved up-regulation of epoxide:diol ratio that associates with white adipose tissue inflammation and liver steatosis in obesity. EBioMedicine 2024 103 105127 10.1016/j.ebiom.2024.105127 38677183
    [Google Scholar]
  12. A crosstalk between epigenetic modulations and non-alcoholic fatty liver disease progression. Pathol. Res. Pract. 2023 251 154809 10.1016/j.prp.2023.154809 37797383
    [Google Scholar]
  13. Metabolic-associated fatty liver disease regulation through nutri epigenetic methylation. Mini Rev. Med. Chem. 2023 23 17 1680 1690 10.2174/1389557523666230130093512 36718062
    [Google Scholar]
  14. The biogenesis and regulation of animal microRNAs. Nat. Rev. Mol. Cell Biol. 2024 26 276 296 10.1038/s41580‑024‑00805‑0 39702526
    [Google Scholar]
  15. Implications of SNP-triggered miRNA dysregulation in Schizophrenia development. Front. Genet. 2024 15 1321232 10.3389/fgene.2024.1321232 38343691
    [Google Scholar]
  16. Gene silencing by RNA interference: A review. Genome Instab Disease 2024 5 5 225 241 10.1007/s42764‑024‑00135‑7
    [Google Scholar]
  17. Oocyte maturation and miRNAs: Studying a complicate interaction to reveal possible biomarkers for female infertility. Diseases 2024 12 6 121 10.3390/diseases12060121 38920553
    [Google Scholar]
  18. MicroRNAs Biomarkers, diagnostics, and therapeutics. Methods Mol. Biol. 2017 1617 57 67 10.1007/978‑1‑4939‑7046‑9_4 28540676
    [Google Scholar]
  19. ‘Micro‐managers’ of hepatic lipid metabolism and NAFLD. Wiley Interdiscip. Rev. RNA 2015 6 5 581 593 10.1002/wrna.1295 26198708
    [Google Scholar]
  20. Homeostasis of glucose and lipid in non-alcoholic fatty liver disease. Int. J. Mol. Sci. 2019 20 2 298 10.3390/ijms20020298 30642126
    [Google Scholar]
  21. Exosomal miR‐122, miR‐128, miR‐200, miR‐298, and miR‐342 as novel diagnostic biomarkers in NAFL/NASH: Impact of LPS/TLR‐4/FoxO3 pathway. Arch Pharm 2024 357 4 2300631 10.1002/ardp.202300631 38574101
    [Google Scholar]
  22. miR ‐21‐5p promotes NASH ‐related hepatocarcinogenesis. Liver Int. 2023 43 10 2256 2274 10.1111/liv.15682 37534739
    [Google Scholar]
  23. Critical Role of microRNA-21 in the Pathogenesis of Liver Diseases. Front. Med. 2020 7 7 10.3389/fmed.2020.00007 32083086
    [Google Scholar]
  24. Emerging role of miR-21 in non-alcoholic fatty liver disease. Gut 2016 65 11 1781 1783 10.1136/gutjnl‑2015‑310044 27436271
    [Google Scholar]
  25. A circulating microRNA signature as noninvasive diagnostic and prognostic biomarkers for nonalcoholic steatohepatitis. BMC Genomics 2018 19 1 188 10.1186/s12864‑018‑4575‑3 29523084
    [Google Scholar]
  26. Role and mechanisms of action of microRNA 21 as regards the regulation of the WNT/β catenin signaling pathway in the pathogenesis of non alcoholic fatty liver disease. Int. J. Mol. Med. 2019 44 6 2201 2212 10.3892/ijmm.2019.4375 31638173
    [Google Scholar]
  27. Stress-activated miR-21/miR-21* in hepatocytes promotes lipid and glucose metabolic disorders associated with high-fat diet consumption. Gut 2016 65 11 1871 1881 10.1136/gutjnl‑2015‑310822 27222533
    [Google Scholar]
  28. Resveratrol attenuates against high-fat-diet-promoted non-alcoholic fatty liver disease in rats mainly by targeting the miR-34a/SIRT1 axis. Arch. Physiol. Biochem. 2024 130 3 300 315 10.1080/13813455.2022.2046106 35254877
    [Google Scholar]
  29. Trimethylamine-N-oxide, a new risk factor for non-alcoholic fatty liver disease changes the expression of miRNA-34a, and miRNA-122 in the Fatty Liver Cell Model. Biochem. Genet. 2024 63 2 1298 1309 10.1007/s10528‑024‑10754‑0 38536569
    [Google Scholar]
  30. A metabolic stress-inducible miR-34a-HNF4α pathway regulates lipid and lipoprotein metabolism. Nat. Commun. 2015 6 1 7466 10.1038/ncomms8466 26100857
    [Google Scholar]
  31. Pinocembrin’s protective effect against acute pancreatitis in a rat model: The correlation between TLR4/NF-κB/NLRP3 and miR-34a-5p/SIRT1/Nrf2/HO-1 pathways. Biomed. Pharmacother. 2024 176 116854 10.1016/j.biopha.2024.116854 38824834
    [Google Scholar]
  32. Biological role and related natural products of sirt1 in nonalcoholic fatty liver. Diabetes Metab. Syndr. Obes. 2023 16 4043 4064 10.2147/DMSO.S437865 38089432
    [Google Scholar]
  33. Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease. Sci. Rep. 2015 5 1 13729 10.1038/srep13729 26330104
    [Google Scholar]
  34. Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo. BMC Syst. Biol. 2009 3 1 31 10.1186/1752‑0509‑3‑31 19284563
    [Google Scholar]
  35. miR-122, a paradigm for the role of microRNAs in the liver. J. Hepatol. 2008 48 4 648 656 10.1016/j.jhep.2008.01.019 18291553
    [Google Scholar]
  36. Significance of serum and hepatic micro RNA ‐122 levels in patients with non‐alcoholic fatty liver disease. Liver Int. 2014 34 7 e302 e307 10.1111/liv.12429 24313922
    [Google Scholar]
  37. Metabolic circuit involving free fatty acids, microrna 122, and triglyceride synthesis in liver and muscle tissues. Gastroenterology 2017 153 5 1404 1415 10.1053/j.gastro.2017.08.013 28802563
    [Google Scholar]
  38. Adipose may actively delay progression of NAFLD by releasing tumor‐suppressing, anti‐fibrotic miR ‐122 into circulation. Obes. Rev. 2019 20 1 108 118 10.1111/obr.12765 30248223
    [Google Scholar]
  39. miRNAs and NAFLD: From pathophysiology to therapy. Gut 2019 68 11 2065 2079 10.1136/gutjnl‑2018‑318146 31300518
    [Google Scholar]
  40. FoxO3 increases miR-34a to cause palmitate-induced cholangiocyte lipoapoptosis. J. Lipid Res. 2017 58 5 866 875 10.1194/jlr.M071357 28250026
    [Google Scholar]
  41. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013 12 12 931 947 10.1038/nrd4002 24287781
    [Google Scholar]
  42. Role of oxidative stress in liver disorders. Livers 2022 2 4 283 314 10.3390/livers2040023
    [Google Scholar]
  43. FOXA3 induction under endoplasmic reticulum stress contributes to non-alcoholic fatty liver disease. J. Hepatol. 2021 75 1 150 162 10.1016/j.jhep.2021.01.042 33548387
    [Google Scholar]
  44. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J. Clin. Invest. 2015 125 6 2497 2509 10.1172/JCI75438 25961460
    [Google Scholar]
  45. An endoplasmic reticulum stress–microRNA‐26a feedback circuit in NAFLD. Hepatology 2021 73 4 1327 1345 10.1002/hep.31428 32567701
    [Google Scholar]
  46. MicroRNA-421 induces hepatic mitochondrial dysfunction in non-alcoholic fatty liver disease mice by inhibiting sirtuin 3. Biochem. Biophys. Res. Commun. 2016 474 1 57 63 10.1016/j.bbrc.2016.04.065 27107702
    [Google Scholar]
  47. High-content hydrogen water-induced downregulation of miR-136 alleviates non-alcoholic fatty liver disease by regulating Nrf2 via targeting MEG3. Biol. Chem. 2018 399 4 397 406 10.1515/hsz‑2017‑0303 29261513
    [Google Scholar]
  48. Targeting of miR-96-5p by catalpol ameliorates oxidative stress and hepatic steatosis in LDLr-/- mice via p66shc/cytochrome C cascade. Aging (Albany NY) 2020 12 3 2049 2069 10.18632/aging.102721 32023549
    [Google Scholar]
  49. Insulin resistance in nonalcoholic fatty liver disease. Curr. Pharm. Des. 2010 16 17 1941 1951 10.2174/138161210791208875 20370677
    [Google Scholar]
  50. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016 65 8 1038 1048 10.1016/j.metabol.2015.12.012 26823198
    [Google Scholar]
  51. Circulating miRNAs associated with nonalcoholic fatty liver disease. Am. J. Physiol. Cell Physiol. 2023 324 2 C588 C602 10.1152/ajpcell.00253.2022
    [Google Scholar]
  52. Inhibition of miRNA-152-3p enhances diabetic wound repair via upregulation of PTEN. Aging (Albany NY) 2020 12 14 14978 14989 10.18632/aging.103557 32620711
    [Google Scholar]
  53. Targeted delivery of microRNA 146b mimic to hepatocytes by lac-tosylated PDMAEMA nanoparticles for the treatment of NAFLD. Artif Cells Nanomed Biotechnol 2018 846 sup2 217 28 10.1080/21691401.2018.1453830
    [Google Scholar]
  54. Micro R.N.A. 152 regulates hepatic glycogenesis by targeting PTEN. FEBS J. 2016 283 10 1935 1946 10.1111/febs.13713 26996529
    [Google Scholar]
  55. MicroRNAs in the pathogenesis of nonalcoholic fatty liver disease. Int. J. Biol. Sci. 2021 17 7 1851 1863 10.7150/ijbs.59588 33994867
    [Google Scholar]
  56. MiR-499-5p contributes to hepatic insulin resistance by suppressing PTEN. Cell. Physiol. Biochem. 2015 36 6 2357 2365 10.1159/000430198 26279439
    [Google Scholar]
  57. Obesity‐induced miR‐15b is linked causally to the development of insulin resistance through the repression of the insulin receptor in hepatocytes. Mol. Nutr. Food Res. 2015 59 11 2303 2314 10.1002/mnfr.201500107 26179126
    [Google Scholar]
  58. MicroRNA‐30b regulates insulin sensitivity by targeting SERCA2b in non‐alcoholic fatty liver disease. Liver Int. 2019 39 8 1504 1513 10.1111/liv.14067 30721562
    [Google Scholar]
  59. MicroRNA-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis. J. Hepatol. 2017 66 4 816 824 10.1016/j.jhep.2016.12.016 28025059
    [Google Scholar]
  60. MicroRNA‐190b regulates lipid metabolism and insulin sensitivity by targeting IGF‐1 and ADAMTS9 in non‐alcoholic fatty liver disease. J. Cell. Biochem. 2018 119 7 5864 5874 10.1002/jcb.26776 29575055
    [Google Scholar]
  61. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022 7 1 135 10.1038/s41392‑022‑00974‑4 35461318
    [Google Scholar]
  62. Gut dysbiosis in nonalcoholic fatty liver disease: Pathogenesis, diagnosis, and therapeutic implications. Front. Cell. Infect. Microbiol. 2022 12 997018 10.3389/fcimb.2022.997018 36425787
    [Google Scholar]
  63. MicroRNA-582-3p knockdown alleviates non-alcoholic steatohepatitis by altering the gut microbiota composition and moderating TMBIM1. Ir. J. Med. Sci. 2024 193 2 909 916 10.1007/s11845‑023‑03529‑w 37823951
    [Google Scholar]
  64. Cross talk between the liver microbiome and epigenome in patients with metabolic dysfunction-associated steatotic liver disease. EBioMedicine 2024 101 104996 10.1016/j.ebiom.2024.104996 38320344
    [Google Scholar]
  65. Inflammation in liver diseases. Mediators Inflamm. 2018 2018 1 2 10.1155/2018/3927134 29618944
    [Google Scholar]
  66. Pathogenesis of nonalcoholic steatohepatitis. Cell. Mol. Life Sci. 2016 73 10 1969 1987 10.1007/s00018‑016‑2161‑x 26894897
    [Google Scholar]
  67. Triggering and resolution of inflammation in NASH. Nat. Rev. Gastroenterol. Hepatol. 2018 15 6 349 364 10.1038/s41575‑018‑0009‑6 29740166
    [Google Scholar]
  68. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell. Mol. Life Sci. 2019 76 1 99 128 10.1007/s00018‑018‑2947‑0
    [Google Scholar]
  69. Role of miR-223 in the pathophysiology of liver diseases. Exp. Mol. Med. 2018 50 9 1 12 10.1038/s12276‑018‑0153‑7 30258086
    [Google Scholar]
  70. MicroRNA‐223 ameliorates nonalcoholic steatohepatitis and cancer by targeting multiple inflammatory and oncogenic genes in hepatocytes. Hepatology 2019 70 4 1150 1167 10.1002/hep.30645 30964207
    [Google Scholar]
  71. Myeloid‐cell–specific IL‐6 signaling promotes microRNA‐223‐enriched exosome production to attenuate nafld‐associated fibrosis. Hepatology 2021 74 1 116 132 10.1002/hep.31658 33236445
    [Google Scholar]
  72. Non-alcoholic fatty liver disease and microRNAs expression, how it affects the development and progression of the disease. Ann. Hepatol. 2021 21 100212 10.1016/j.aohep.2020.04.012 32533953
    [Google Scholar]
  73. MiRNA-194 regulates palmitic acid-induced toll-like receptor 4 inflammatory responses in THP-1 cells. Nutrients 2015 7 5 3483 3496 10.3390/nu7053483 25984739
    [Google Scholar]
  74. The role of miRNAs in liver diseases: Potential therapeutic and clinical applications. Pathol. Res. Pract. 2023 243 154375 10.1016/j.prp.2023.154375 36801506
    [Google Scholar]
  75. Lipotoxic hepatocyte‐derived exosomal microRNA 192‐5p activates macrophages through rictor/akt/forkhead box transcription factor o1 signaling in nonalcoholic fatty liver disease. Hepatology 2020 72 2 454 469 10.1002/hep.31050 31782176
    [Google Scholar]
  76. MicroRNA-378 promotes hepatic inflammation and fibrosis via modulation of the NF-κB-TNFα pathway. J. Hepatol. 2019 70 1 87 96 10.1016/j.jhep.2018.08.026 30218679
    [Google Scholar]
  77. Protective role of trans-chalcone against the progression from simple steatosis to non-alcoholic steatohepatitis: Regulation of miR-122, 21, 34a, and 451. Adv. Pharm. Bull. 2022 12 1 200 205 35517895
    [Google Scholar]
  78. Apoptosis and necroptosis in the liver: A matter of life and death. Nat. Rev. Gastroenterol. Hepatol. 2018 15 12 738 752 10.1038/s41575‑018‑0065‑y 30250076
    [Google Scholar]
  79. Apoptosis and non-alcoholic fatty liver diseases. World J. Gastroenterol. 2018 24 25 2661 2672 10.3748/wjg.v24.i25.2661 29991872
    [Google Scholar]
  80. miR-223 Deficiency protects against fas-induced hepatocyte apoptosis and liver injury through targeting insulin-like growth factor 1 receptor. Am. J. Pathol. 2015 185 12 3141 3151 10.1016/j.ajpath.2015.08.020 26598234
    [Google Scholar]
  81. Mir-24 regulates hepatocyte apoptosis via BIM during acute liver failure. Am. J. Transl. Res. 2017 9 11 4925 4935 29218090
    [Google Scholar]
  82. Role of the microRNA 214/Bax axis in the progression of acute liver failure. Mol. Med. Rep. 2020 22 1 117 126 10.3892/mmr.2020.11123 32377732
    [Google Scholar]
  83. Liver fibrosis – from bench to bedside. J. Hepatol. 2003 38 Suppl. 1 38 53 10.1016/S0168‑8278(02)00429‑4 12591185
    [Google Scholar]
  84. Fibrosis in nonalcoholic fatty liver disease: Mechanisms and clinical implications. Semin. Liver Dis. 2015 35 2 132 145 10.1055/s‑0035‑1550065 25974899
    [Google Scholar]
  85. Determinants of fibrosis progression and regression in NASH. J. Hepatol. 2018 68 2 238 250 10.1016/j.jhep.2017.11.012 29154966
    [Google Scholar]
  86. miRNA signature in NAFLD: A turning point for a non-invasive diagnosis. Int. J. Mol. Sci. 2018 19 12 3966 10.3390/ijms19123966 30544653
    [Google Scholar]
  87. High-throughput sequencing reveals altered expression of hepatic microRNAs in nonalcoholic fatty liver disease–related fibrosis. Transl. Res. 2015 166 3 304 314 10.1016/j.trsl.2015.04.014 26001595
    [Google Scholar]
  88. Micro-RNA 21 inhibition of SMAD7 enhances fibrogenesis via leptin-mediated NADPH oxidase in experimental and human nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2015 308 4 G298 G312 10.1152/ajpgi.00346.2014 25501551
    [Google Scholar]
  89. MicroRNA‐21 and Dicer are dispensable for hepatic stellate cell activation and the development of liver fibrosis. Hepatology 2018 67 6 2414 2429 10.1002/hep.29627 29091291
    [Google Scholar]
  90. micro RNA ‐122 regulates hypoxia‐inducible factor‐1 and vimentin in hepatocytes and correlates with fibrosis in diet‐induced steatohepatitis. Liver Int. 2015 35 2 532 541 10.1111/liv.12633 25040043
    [Google Scholar]
  91. MiR-146a-5p suppresses activation and proliferation of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis through directly targeting Wnt1 and Wnt5a. Sci. Rep. 2015 5 1 16163 10.1038/srep16163 26537990
    [Google Scholar]
  92. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2008 294 1 G39 G49 10.1152/ajpgi.00263.2007 18006602
    [Google Scholar]
  93. MicroRNA-214 promotes hepatic stellate cell activation and liver fibrosis by suppressing Sufu expression. Cell Death Dis. 2018 9 7 718 10.1038/s41419‑018‑0752‑1 29915227
    [Google Scholar]
  94. Inhibition of micro RNA ‐214 ameliorates hepatic fibrosis and tumor incidence in platelet‐derived growth factor C transgenic mice. Cancer Sci. 2015 106 9 1143 1152 10.1111/cas.12730 26122702
    [Google Scholar]
  95. MiR-130a-3p attenuates activation and induces apoptosis of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis by directly targeting TGFBR1 and TGFBR2. Cell Death Dis. 2017 8 5 2792 10.1038/cddis.2017.10 28518142
    [Google Scholar]
  96. Hepatocyte-specific suppression of microRNA-221-3p mitigates liver fibrosis. J. Hepatol. 2019 70 4 722 734 10.1016/j.jhep.2018.12.016 30582979
    [Google Scholar]
  97. MicroRNAs in non-alcoholic fatty liver disease: Progress and perspectives. Mol. Metab. 2022 65 101581 10.1016/j.molmet.2022.101581 36028120
    [Google Scholar]
  98. miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis. J. Hepatol. 2018 69 6 1335 1348 10.1016/j.jhep.2018.08.008 30142428
    [Google Scholar]
  99. Liver-derived exosomal miRNA in NAFLD: Mechanisms of action, biomarkers, and therapeutic applications. Curr. Med. Chem. 2024 ••• 1 8 10.2174/0109298673276581231210170332 38299293
    [Google Scholar]
  100. Efficacy of serum miRNA test as a non-invasive method to diagnose nonalcoholic steatohepatitis: A systematic review and meta-analysis. BMC Gastroenterol. 2020 20 1 186 10.1186/s12876‑020‑01334‑8 32532204
    [Google Scholar]
  101. Applying non-invasive fibrosis measurements in nafld/nash: Progress to date. Pharmaceut. Med. 2019 33 6 451 463 10.1007/s40290‑019‑00305‑z 31933238
    [Google Scholar]
  102. Comprehensive profiling of serum microRNAs in normal and non-alcoholic fatty liver disease (NAFLD) patients. Sci. Rep. 2025 15 1 3766 10.1038/s41598‑025‑87791‑1 39885249
    [Google Scholar]
  103. Circulating microRNA expression and nonalcoholic fatty liver disease in adolescents with severe obesity. World J. Gastroenterol. 2024 30 4 332 345 10.3748/wjg.v30.i4.332 38313232
    [Google Scholar]
  104. miRNAs and hematological markers in non-alcoholic fatty liver disease-a new diagnostic path? Biomedicines 2025 13 1 230 10.3390/biomedicines13010230 39857813
    [Google Scholar]
  105. Serum miR-29a and miR-122 as potential biomarkers for non-alcoholic fatty liver disease (NAFLD). MicroRNA 2018 7 3 215 222 10.2174/2211536607666180531093302 29848284
    [Google Scholar]
  106. miRNA‐221: A Potential biomarker of progressive liver injury in chronic liver disease (CLD) due to hepatitis b virus (HBV) and nonalcoholic fatty liver disease (NAFLD). Int. J. Hepatol. 2024 2024 1 4221368 10.1155/2024/4221368 39185365
    [Google Scholar]
  107. Evaluation of the diagnostic role of circulating miR-16, miR-10b, and miR-21 expression in patients with nonalcoholic fatty liver disease. Gene Rep. 2024 36 101964 10.1016/j.genrep.2024.101964
    [Google Scholar]
  108. Circulating miR-122-5p, miR-151a-3p, miR-126-5p and miR-21-5p as potential predictive biomarkers for Metabolic Dysfunction-Associated Steatotic Liver Disease assessment. J. Physiol. Biochem. 2024 ••• 1 9 10.1007/s13105‑024‑01037‑8 39138826
    [Google Scholar]
  109. Significance of MiRNA-34a and MiRNA-192 as a risk factor for nonalcoholic fatty liver disease. J. Genet. Eng. Biotechnol. 2023 21 1 13 10.1186/s43141‑023‑00467‑z 36757530
    [Google Scholar]
  110. NAFLD mark: An accurate model based on microRNA-34 for diagnosis of non-alcoholic fatty liver disease patients. J. Genet. Eng. Biotechnol. 2021 19 1 157 10.1186/s43141‑021‑00257‑5 34661762
    [Google Scholar]
  111. Association of circulating miR-20a, miR-27a, and miR-126 with non-alcoholic fatty liver disease in general population. Sci. Rep. 2019 9 1 18856 10.1038/s41598‑019‑55076‑z 31827150
    [Google Scholar]
  112. Circulating microRNAs in breast cancer: Novel diagnostic and prognostic biomarkers. Cell Death Dis. 2017 8 9 e3045 e5 10.1038/cddis.2017.440 28880270
    [Google Scholar]
  113. The promise of microRNA replacement therapy. Cancer Res. 2010 70 18 7027 7030 10.1158/0008‑5472.CAN‑10‑2010 20807816
    [Google Scholar]
  114. Circulating microRNAs as biomarkers for Sepsis secondary to pneumonia diagnosed via Sepsis 3.0. BMC Pulm. Med. 2019 19 1 93 10.1186/s12890‑019‑0836‑4 31088429
    [Google Scholar]
  115. Lnc R.N.A-H. 19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγ axis in non-alcoholic fatty liver disease. Biosci. Rep. 2019 39 7 BSR20181722 10.1042/BSR20181722
    [Google Scholar]
  116. LncRNA HOTAIR regulates the lipid accumulation in non-alcoholic fatty liver disease via miR-130b-3p/ROCK1 axis. Cell. Signal. 2022 90 110190 10.1016/j.cellsig.2021.110190
    [Google Scholar]
  117. miR-21 ablation and obeticholic acid ameliorate nonalcoholic steatohepatitis in mice. Cell Death Dis. 2017 8 4 e2748 10.1038/cddis.2017.172
    [Google Scholar]
  118. MicroRNA-103 represses hepatic de novo lipogenesis and alleviates NAFLD via targeting FASN and SCD1. Biochem. Biophys. Res. Commun. 2020 524 3 716 722 10.1016/j.bbrc.2020.01.143
    [Google Scholar]
  119. MicroRNA-122 inhibits the production of inflammatory cytokines by targeting the PKR activator PACT in human hepatic stellate cells. PLoS One 2015 10 12 e0144295 10.1371/journal.pone.0144295
    [Google Scholar]
  120. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut 2021 70 4 784 795 10.1136/gutjnl‑2020‑322526 33127832
    [Google Scholar]
  121. m6A modification prevents formation of endogenous double-stranded RNAs and deleterious innate immune responses during hematopoietic development. Immunity 2020 52 6 1007 1021.e8 10.1016/j.immuni.2020.05.003 32497523
    [Google Scholar]
  122. Micro R.N.A. 29a alleviates mitochondrial stress in diet-induced NAFLD by inhibiting the MAVS pathway. Eur. J. Pharmacol. 2024 982 176955 10.1016/j.ejphar.2024.176955 39209098
    [Google Scholar]
  123. LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ROCK1 in nonalcoholic fatty liver disease. Life Sci. 2019 235 116829 10.1016/j.lfs.2019.116829 31484042
    [Google Scholar]
  124. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005 438 7068 685 689 10.1038/nature04303 16258535
    [Google Scholar]
  125. Silencing of microRNA families by seed-targeting tiny LNAs. Nat. Genet. 2011 43 4 371 378 10.1038/ng.786 21423181
    [Google Scholar]
  126. miRNA delivery for skin wound healing. Adv. Drug Deliv. Rev. 2018 129 308 318 10.1016/j.addr.2017.12.011 29273517
    [Google Scholar]
  127. Pterostilbene improves hepatic lipid accumulation via the MiR-34a/Sirt1/SREBP-1 pathway in fructose-fed rats. J. Agric. Food Chem. 2020 68 5 1436 1446 10.1021/acs.jafc.9b04259 31927917
    [Google Scholar]
  128. Functional role of miR-34 family in human cancer. Curr. Drug Targets 2013 14 10 1185 1191 10.2174/13894501113149990191 23834144
    [Google Scholar]
  129. lincRNA00907 promotes NASH progression by targeting miRNA-942-5p/TAOK1. Aging 2024 16 8 6868 6882 10.18632/aging.205730 38613803
    [Google Scholar]
  130. MicroRNA-34a: Potent tumor suppressor, cancer stem cell inhibitor, and potential anticancer therapeutic. Front. Cell Dev. Biol. 2021 9 640587 10.3389/fcell.2021.640587 33763422
    [Google Scholar]
  131. Oligochitosan-based nanovesicles for nonalcoholic fatty liver disease treatment via the FXR/miR-34a/SIRT1 regulatory loop. Acta Biomater. 2023 164 435 446 10.1016/j.actbio.2023.04.002 37040811
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366364599250604050335
Loading
/content/journals/mirna/10.2174/0122115366364599250604050335
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: NAFLD ; Cirrhosis ; liver biopsy ; miRNA ; fibrosis ; NASH
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test