Skip to content
2000
Volume 14, Issue 3
  • ISSN: 2211-5366
  • E-ISSN: 2211-5374

Abstract

Introduction

Gaucher disease (GD) occurs due to a mutation in the glucosylceramidase (GBA) gene and is a common lysosomal storage disease. It is well known that there is a strong association between the abnormal expression of miRNAs and various diseases including cancer. These abnormally expressed miRNAs can be used as biomarkers. Interestingly, several studies have reported a linkage between GD with an increased risk of cancer. Therefore, in the current study, we investigated the expression levels of selected miRNAs that are associated with cancers that might have potential use as biomarkers in GD.

Methods

Blood samples were collected from 24 healthy volunteers, 6 carriers, and 20 treated patients with type 1 GD. A reverse transcription-quantitative real-time PCR (RT-qPCR) platform was used to analyze the miRNA expression levels.

Results

While carriers had lower relative expressions of miRNA-15a with tumor suppressor effect, and miRNA-150 and miRNA-181b with oncogene effect, treated patients with type 1 GD had lower relative expressions of miRNA-15a and miRNA-125b with tumor suppressor effect and higher relative expression miRNA-21 with oncogene effect (<0.001, <0.05, <0.01, <0.05, <0.001, and <0.05, respectively).

Conclusion

The results suggested that the downregulation of miRNA-15a and miRNA-125b expressions with tumor suppressor effect and the upregulation of miRNA-21 expression with oncogene effect can be indicated to an increased risk for cancers such as multiple myeloma (MM), B-cell lymphoma, leukemia, and hepatocellular carcinoma (HCC) in GD.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366342286250216032611
2025-11-01
2025-12-08
Loading full text...

Full text loading...

References

  1. StirnemannJ. BelmatougN. CamouF. A review of gaucher disease pathophysiology, clinical presentation and treatments.Int. J. Mol. Sci.201718244110.3390/ijms18020441 28218669
    [Google Scholar]
  2. HuangY. JiaX. TangC. High risk screening for Gaucher disease in patients with splenomegaly and/or thrombocytopenia in China: 55 cases identified.Clin. Chim. Acta2020506February222710.1016/j.cca.2020.03.016 32165122
    [Google Scholar]
  3. CostelloR. O’CallaghanT. SébahounG. Gaucher disease and multiple myeloma.Leuk. Lymphoma20064771365136810.1080/10428190600565453 16923570
    [Google Scholar]
  4. MistryP.K. TaddeiT. vom DahlS. RosenbloomB.E. Gaucher disease and malignancy: A model for cancer pathogenesis in an inborn error of metabolism.Crit. Rev. Oncog.201318323524610.1615/CritRevOncog.2013006145 23510066
    [Google Scholar]
  5. ArendsM. van DussenL. BiegstraatenM. HollakC.E.M. Malignancies and monoclonal gammopathy in G aucher disease; a systematic review of the literature.Br. J. Haematol.2013161683284210.1111/bjh.12335 23594419
    [Google Scholar]
  6. BarthB.M. ShanmugavelandyS.S. TaceloskyD.M. KesterM. MoradS.A.F. CabotM.C. Gaucher’s disease and cancer: A sphingolipid perspective.Crit. Rev. Oncog.201318322123410.1615/CritRevOncog.2013005814 23510065
    [Google Scholar]
  7. WątekM. PiktelE. WollnyT. Defective sphingolipids metabolism and tumor associated macrophages as the possible links between gaucher disease and blood cancer development.Int. J. Mol. Sci.201920484310.3390/ijms20040843 30781349
    [Google Scholar]
  8. DubotP. AstudilloL. ThervilleN. Are glucosylceramide-related sphingolipids involved in the increased risk for cancer in gaucher disease patients? Review and hypotheses.Cancers202012247510.3390/cancers12020475 32085512
    [Google Scholar]
  9. LuT.X. RothenbergM.E. MicroRNA.J. Allergy Clin. Immunol.201814141202120710.1016/j.jaci.2017.08.034 29074454
    [Google Scholar]
  10. BudakotiM. PanwarA.S. MolpaD. Micro-RNA: The darkhorse of cancer.Cell. Signal.202183January10999510.1016/j.cellsig.2021.109995 33785398
    [Google Scholar]
  11. HassanS. SidranskyE. TayebiN. The role of epigenetics in lysosomal storage disorders: Uncharted territory.Mol. Genet. Metab.20171223101810.1016/j.ymgme.2017.07.012
    [Google Scholar]
  12. ZhouS. JinJ. WangJ. miRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges.Acta Pharmacol. Sin.20183971073108410.1038/aps.2018.30 29877320
    [Google Scholar]
  13. KhezriM.R. YousefiK. ZolbaninN.M. Ghasemnejad-BerenjiM. MicroRNAs in the pathophysiology of Alzheimer’s disease and Parkinson’s disease: An overview.Mol. Neurobiol.20225931589160310.1007/s12035‑022‑02727‑4 35001356
    [Google Scholar]
  14. SaquibM. AgnihotriP. Monu, Biswas S. Exogenous miRNA: A perspective role as therapeutic in rheumatoid arthritis.Curr. Rheumatol. Rep.20212364310.1007/s11926‑021‑01009‑7 33939021
    [Google Scholar]
  15. SohelM.M.H. Circulating microRNAs as biomarkers in cancer diagnosis.Life Sci.2020248January11747310.1016/j.lfs.2020.117473 32114007
    [Google Scholar]
  16. PawlińskiŁ. PolusA. TobórE. MiRNA expression in patients with Gaucher disease treated with enzyme replacement therapy.Life2020111210.3390/life11010002 33375048
    [Google Scholar]
  17. AlzrigatM. PárragaA.A. Jernberg-WiklundH. Epigenetics in multiple myeloma: From mechanisms to therapy.Semin. Cancer Biol.20185110111510.1016/j.semcancer.2017.09.007
    [Google Scholar]
  18. KhareS. ZhangQ. IbdahJ.A. Epigenetics of hepatocellular carcinoma: Role of microRNA.World J. Gastroenterol.201319335439544510.3748/wjg.v19.i33.5439 24023486
    [Google Scholar]
  19. LeiH. LiuW. SiJ. WangJ. ZhangT. Analyzing the regulation of miRNAs on protein-protein interaction network in Hodgkin lymphoma.BMC Bioinformatics201920144910.1186/s12859‑019‑3041‑9 31477006
    [Google Scholar]
  20. MusilovaK. MrazM. MicroRNAs in B-cell lymphomas: How a complex biology gets more complex.Leukemia20152951004101710.1038/leu.2014.351 25541152
    [Google Scholar]
  21. TaoJ. JiangL. ChenX. Roles of microRNA in liver cancer.Liver Res.201822617210.1016/j.livres.2018.06.002
    [Google Scholar]
  22. UltimoS. MartelliA.M. ZauliG. VitaleM. CalinG.A. NeriL.M. Roles and clinical implications of microRNAs in acute lymphoblastic leukemia.J. Cell. Physiol.201823385642565410.1002/jcp.26290 29154447
    [Google Scholar]
  23. ZhengB. XiZ. LiuR. The function of microRNAs in B-cell development, lymphoma, and their potential in clinical practice.Front. Immunol.20189APR93610.3389/fimmu.2018.00936 29760712
    [Google Scholar]
  24. ZhuB. JuS. ChuH. The potential function of microRNAs as biomarkers and therapeutic targets in multiple myeloma (Review).Oncol. Lett.20181556094610610.3892/ol.2018.8157 29731841
    [Google Scholar]
  25. SartoriusK. SartoriusB. WinklerC. ChuturgoonA. MakarovaJ. The biological and diagnostic role of miRNA’s in hepatocellular carcinoma.Front. Biosci. (Landmark Ed.)20182391701172010.2741/4668
    [Google Scholar]
  26. UzenR. BayramF. DursunH. Oxidative and chromosomal DNA damage in patients with type I Gaucher disease and carriers.Clin. Biochem.2023111263110.1016/j.clinbiochem.2022.10.009 36257477
    [Google Scholar]
  27. miRBase: The microRNA database the archive for microRNA sequences and annotations.www.mirbase.org
  28. ZhengR. JiangY. WangX. Role of microRNAs on therapy resistance in Non-Hodgkin ’ s lymphoma.Int. J. Clin. Exp. Med.20147113818 25550890
    [Google Scholar]
  29. MardaniR. MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential.J. Cell. Physiol.20182346846510.1002/jcp.27776
    [Google Scholar]
  30. Di MarcoM. RamassoneA. PagottoS. AnastasiadouE. VeroneseA. VisoneR. MicroRNAs in autoimmunity and hematological malignancies.Int. J. Mol. Sci.20181910313910.3390/ijms19103139
    [Google Scholar]
  31. GlaveySV ManierS SaccoA Epigenetics in multiple myeloma.Cancer Treat Res2016169354910.1007/978‑3‑319‑40320‑5
    [Google Scholar]
  32. AlzrigatM. PárragaA.A. Jernberg-wiklundH. Seminars in cancer biology epigenetics in multiple myeloma: From mechanisms to therapy.Semin. Cancer Biol.20185110110.1016/j.semcancer.2017.09.007
    [Google Scholar]
  33. TagawaH. IkedaS. SawadaK. Role of microRNA in the pathogenesis of malignant.Cancer Sci.2013104780180910.1111/cas.12160
    [Google Scholar]
  34. MeiM. ZhangM. Non-coding RNAs in natural killer/T-cell lymphoma.Front. Oncol.2019951510.3389/fonc.2019.00515
    [Google Scholar]
  35. MedinaP.P. NoldeM. SlackF.J. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma.Nature20104677311869010.1038/nature09284 20693987
    [Google Scholar]
  36. TohT.B. LimJ.J. ChowE.K.H. ChowH. Epigenetics of hepatocellular carcinoma.Clin. Transl. Med.201981e1310.1186/s40169‑019‑0230‑0 31056726
    [Google Scholar]
  37. WatanabeA. TagawaH. YamashitaJ. The role of microRNA-150 as a tumor suppressor in malignant lymphoma.Leukemia20112581324133410.1038/leu.2011.81 21502955
    [Google Scholar]
  38. HanT. BanH.S. HurK. The epigenetic regulation of HCC metastasis.J. Exp. Clin. Cancer Res.20184110710.3390/ijms19123978
    [Google Scholar]
  39. BidarraD. ConstâncioV. Barros-SilvaD. Circulating MicroRNAs as biomarkers for prostate cancer detection and metastasis development prediction.Front. Oncol.20199September90010.3389/fonc.2019.00900 31572685
    [Google Scholar]
  40. BraconiC. HenryJ.C. KogureT. SchmittgenT. PatelT. The role of microRNAs in human liver cancers.Semin. Oncol.201138675276310.1053/j.seminoncol.2011.08.001 22082761
    [Google Scholar]
  41. FangC. ZhuD.X. DongH.J. Serum microRNAs are promising novel biomarkers for diffuse large B cell lymphoma.Ann. Hematol.201291455355910.1007/s00277‑011‑1350‑9 21987025
    [Google Scholar]
  42. Hershkovitz-RokahO. GevaP. Salmon-DivonM. ShpilbergO. Liberman-AronovS. Network analysis of microRNAs, genes and their regulation in diffuse and follicular B-cell lymphomas.Oncotarget2018987928794110.18632/oncotarget.23974 29487703
    [Google Scholar]
  43. MaoB. WangG.E. MicroRNAs involved with hepatocellular carcinoma (Review).Oncol. Rep.20153462811282010.3892/or.2015.4275 26398882
    [Google Scholar]
  44. VasuriF. VisaniM. AcquavivaG. Role of microRNAs in the main molecular pathways of hepatocellular carcinoma.World J. Gastroenterol.201824252647266010.3748/wjg.v24.i25.2647 29991871
    [Google Scholar]
  45. YanJ.J. ChangY. ZhangY.N. LinJ.S. HeX.X. HuangH.J. miR-195 inhibits cell proliferation via targeting AEG-1 in hepatocellular carcinoma.Oncol. Lett.20171353118312610.3892/ol.2017.5826 28529562
    [Google Scholar]
  46. ZhangH. ChenX. YuanY. Investigation of the miRNA and mRNA coexpression network and their prognostic value in hepatocellular carcinoma.BioMed Res. Int.202020201872656710.1155/2020/8726567 33274225
    [Google Scholar]
  47. XuY. HeY. HuH. The increased miRNA-150-5p expression of the tonsil tissue in patients with IgA nephropathy may be related to the pathogenesis of disease.Int. Immunopharmacol.202110010812410.1016/j.intimp.2021.108124 34600394
    [Google Scholar]
  48. SiebertM. WestbroekW. ChenY.C. Identification of miRNAs that modulate glucocerebrosidase activity in Gaucher disease cells.RNA Biol.201411101291130010.1080/15476286.2014.996085 25584808
    [Google Scholar]
  49. WatsonL. KeatingeM. GeggM. Ablation of the pro-inflammatory master regulator miR-155 does not mitigate neuroinflammation or neurodegeneration in a vertebrate model of Gaucher’s disease.Neurobiol. Dis.2019127April56356910.1016/j.nbd.2019.04.008 30981829
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366342286250216032611
Loading
/content/journals/mirna/10.2174/0122115366342286250216032611
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): cancer; Gaucher disease; miRNA-125b; miRNA-15a; miRNA-181b; miRNA-21; miRNA150
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test