Skip to content
2000
image of Extrahepatic and Circulating miR-122: Diagnostic Implications and Future Directions

Abstract

Research on microRNAs is constantly expanding and evolving due to their role in the regulation of gene expression. miR-122, a 22-nucleotide microRNA, was first discovered as a liver-specific miRNA. Subsequently, it was found to be present in a wide range of tissues, such as the breast, testes, ovaries, and heart. The research on miR-122 in the liver has been extensive over the past few decades, leading to several important discoveries. However, its role in extrahepatic tissues is largely incompletely understood. Therefore, in light of the established clinical relevance of miR-122 as a potential biomarker and/or drug target in the liver, available information on miR-122 is compiled as it pertains to health and disease. This review discusses novel information generated in recent years and the corresponding progress in our understanding of the physiology of extrahepatic miR-122.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366334187250116164121
2025-01-23
2025-09-26
Loading full text...

Full text loading...

References

  1. Bhaskaran M. Mohan M. MicroRNAs. Vet. Pathol. 2014 51 4 759 774 10.1177/0300985813502820 24045890
    [Google Scholar]
  2. O’Brien J. Hayder H. Zayed Y. Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne) 2018 9 402 402 10.3389/fendo.2018.00402 30123182
    [Google Scholar]
  3. Tétreault N. De Guire V. miRNAs: Their discovery, biogenesis and mechanism of action. Clin. Biochem. 2013 46 10-11 842 845 10.1016/j.clinbiochem.2013.02.009 23454500
    [Google Scholar]
  4. Fu G. Brkić J. Hayder H. Peng C. MicroRNAs in human placental development and pregnancy complications. Int. J. Mol. Sci. 2013 14 3 5519 5544 10.3390/ijms14035519 23528856
    [Google Scholar]
  5. Paul P. Chakraborty A. Sarkar D. Langthasa M. Rahman M. Bari M. Singha R.K.S. Malakar A.K. Chakraborty S. Interplay between miRNAs and human diseases. J. Cell. Physiol. 2018 233 3 2007 2018 10.1002/jcp.25854 28181241
    [Google Scholar]
  6. Ando W. Kikuchi K. Uematsu T. Yokomori H. Takaki T. Sogabe M. Kohgo Y. Otori K. Ishikawa S. Okazaki I. Novel breast cancer screening: Combined expression of miR-21 and MMP-1 in urinary exosomes detects 95% of breast cancer without metastasis. Sci. Rep. 2019 9 1 13595 10.1038/s41598‑019‑50084‑5 31537868
    [Google Scholar]
  7. Monteleone N.J. Moore A.E. Iacona J.R. Lutz C.S. Dixon D.A. miR-21-mediated regulation of 15-hydroxyprostaglandin dehydrogenase in colon cancer. Sci. Rep. 2019 9 1 5405 10.1038/s41598‑019‑41862‑2 30931980
    [Google Scholar]
  8. Cardozo E.R. Foster R. Karmon A.E. Lee A.E. Gatune L.W. Rueda B.R. Styer A.K. MicroRNA 21a-5p overexpression impacts mediators of extracellular matrix formation in uterine leiomyoma. Reprod. Biol. Endocrinol. 2018 16 1 46 10.1186/s12958‑018‑0364‑8 29747655
    [Google Scholar]
  9. Fomison-Nurse I. Saw E.E.L. Gandhi S. Munasinghe P.E. Van Hout I. Williams M.J.A. Galvin I. Bunton R. Davis P. Cameron V. Katare R. Diabetes induces the activation of pro-ageing miR-34a in the heart, but has differential effects on cardiomyocytes and cardiac progenitor cells. Cell Death Differ. 2018 25 7 1336 1349 10.1038/s41418‑017‑0047‑6 29302057
    [Google Scholar]
  10. Kong L. Zhu J. Han W. Jiang X. Xu M. Zhao Y. Dong Q. Pang Z. Guan Q. Gao L. Zhao J. Zhao L. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: A clinical study. Acta Diabetol. 2011 48 1 61 69 10.1007/s00592‑010‑0226‑0 20857148
    [Google Scholar]
  11. Shen Y. Xu H. Pan X. Wu W. Wang H. Yan L. Zhang M. Liu X. Xia S. Shao Q. miR‑34a and miR‑125b are upregulated in peripheral blood mononuclear cells from patients with type 2 diabetes mellitus. Exp. Ther. Med. 2017 14 6 5589 5596 10.3892/etm.2017.5254 29285097
    [Google Scholar]
  12. Zhang L. He S. Guo S. Xie W. Xin R. Yu H. Yang F. Qiu J. Zhang D. Zhou S. Zhang K. Down-regulation of miR-34a alleviates mesangial proliferation in-vitro and glomerular hypertrophy in early diabetic nephropathy mice by targeting GAS1. J. Diabetes Complications 2014 28 3 259 264 10.1016/j.jdiacomp.2014.01.002 24560136
    [Google Scholar]
  13. Zhang X. Song S. Luo H. Regulation of podocyte lesions in diabetic nephropathy via miR-34a in the Notch signaling pathway. Medicine (Baltimore) 2016 95 44 e5050 10.1097/MD.0000000000005050 27858840
    [Google Scholar]
  14. Lin Y. Shen J. Li D. Ming J. Liu X. Zhang N. Lai J. Shi M. Ji Q. Xing Y. MiR-34a contributes to diabetes-related cochlear hair cell apoptosis via SIRT1/HIF-1α signaling. Gen. Comp. Endocrinol. 2017 246 63 70 10.1016/j.ygcen.2017.02.017 28263817
    [Google Scholar]
  15. Yan T. Ooi W.F. Qamra A. Cheung A. Ma D. Sundaram G.M. Xu C. Xing M. Poon L. Wang J. Loh Y.P. Ho J.H.J. Ng J.J.Q. Ramlee M.K. Aswad L. Rozen S.G. Ghosh S. Bard F.A. Sampath P. Tergaonkar V. Davies J.O.J. Hughes J.R. Goh E. Bi X. Fullwood M.J. Tan P. Li S. HoxC5 and miR-615-3p target newly evolved genomic regions to repress hTERT and inhibit tumorigenesis. Nat. Commun. 2018 9 1 100 10.1038/s41467‑017‑02601‑1 29311615
    [Google Scholar]
  16. Pu H.Y. Xu R. Zhang M.Y. Yuan L.J. Hu J.Y. Huang G.L. Wang H.Y. Identification of microRNA-615-3p as a novel tumor suppressor in non-small cell lung cancer. Oncol. Lett. 2017 13 4 2403 2410 10.3892/ol.2017.5684 28454411
    [Google Scholar]
  17. Liu J. Jia Y. Jia L. Li T. Yang L. Zhang G. MicroRNA 615-3p inhibits the tumor growth and metastasis of NSCLC via inhibiting IGF2. Oncol. Res. 2019 27 2 269 279 10.3727/096504018X15215019227688 29562959
    [Google Scholar]
  18. De Guire V. Robitaille R. Tétreault N. Guérin R. Ménard C. Bambace N. Sapieha P. Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: Promises and challenges. Clin. Biochem. 2013 46 10-11 846 860 10.1016/j.clinbiochem.2013.03.015 23562576
    [Google Scholar]
  19. Sugimachi K. Matsumura T. Hirata H. Uchi R. Ueda M. Ueo H. Shinden Y. Iguchi T. Eguchi H. Shirabe K. Ochiya T. Maehara Y. Mimori K. Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. Br. J. Cancer 2015 112 3 532 538 10.1038/bjc.2014.621 25584485
    [Google Scholar]
  20. Ganepola G.A.P. Rutledge J.R. Suman P. Yiengpruksawan A. Chang D.H. Novel blood-based microRNA biomarker panel for early diagnosis of pancreatic cancer. World J. Gastrointest. Oncol. 2014 6 1 22 33 10.4251/wjgo.v6.i1.22 24578785
    [Google Scholar]
  21. Hanna J. Hossain G.S. Kocerha J. The potential for microRNA therapeutics and clinical research. Front. Genet. 2019 10 478 10.3389/fgene.2019.00478 31156715
    [Google Scholar]
  22. Grant M.J. Booth A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Info. Libr. J. 2009 26 2 91 108 10.1111/j.1471‑1842.2009.00848.x 19490148
    [Google Scholar]
  23. Lagos-Quintana M. Rauhut R. Yalcin A. Meyer J. Lendeckel W. Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 2002 12 9 735 739 10.1016/S0960‑9822(02)00809‑6 12007417
    [Google Scholar]
  24. Landgraf P. Rusu M. Sheridan R. Sewer A. Iovino N. Aravin A. Pfeffer S. Rice A. Kamphorst A.O. Landthaler M. Lin C. Socci N.D. Hermida L. Fulci V. Chiaretti S. Foà R. Schliwka J. Fuchs U. Novosel A. Müller R.U. Schermer B. Bissels U. Inman J. Phan Q. Chien M. Weir D.B. Choksi R. De Vita G. Frezzetti D. Trompeter H.I. Hornung V. Teng G. Hartmann G. Palkovits M. Di Lauro R. Wernet P. Macino G. Rogler C.E. Nagle J.W. Ju J. Papavasiliou F.N. Benzing T. Lichter P. Tam W. Brownstein M.J. Bosio A. Borkhardt A. Russo J.J. Sander C. Zavolan M. Tuschl T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007 129 7 1401 1414 10.1016/j.cell.2007.04.040 17604727
    [Google Scholar]
  25. Jopling C. Liver-specific microRNA-122: Biogenesis and function. RNA Biol. 2012 9 2 137 142 10.4161/rna.18827 22258222
    [Google Scholar]
  26. Ward J. Kanchagar C. Veksler-Lublinsky I. Lee R.C. McGill M.R. Jaeschke H. Curry S.C. Ambros V.R. Circulating microRNA profiles in human patients with acetaminophen hepatotoxicity or ischemic hepatitis. Proc. Natl. Acad. Sci. USA 2014 111 33 12169 12174 10.1073/pnas.1412608111 25092309
    [Google Scholar]
  27. Coulouarn C. Factor V.M. Andersen J.B. Durkin M.E. Thorgeirsson S.S. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 2009 28 40 3526 3536 10.1038/onc.2009.211 19617899
    [Google Scholar]
  28. Xu J. Wu C. Che X. Wang L. Yu D. Zhang T. Huang L. Li H. Tan W. Wang C. Lin D. Circulating MicroRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol. Carcinog. 2011 50 2 136 142 10.1002/mc.20712 21229610
    [Google Scholar]
  29. Closs E.I. Boissel J.P. Habermeier A. Rotmann A. Structure and function of cationic amino acid transporters (CATs). J. Membr. Biol. 2006 213 2 67 77 10.1007/s00232‑006‑0875‑7 17417706
    [Google Scholar]
  30. Yan W. Cao M. Ruan X. Jiang L. Lee S. Lemanek A. Ghassemian M. Pizzo D.P. Wan Y. Qiao Y. Chin A.R. Duggan E. Wang D. Nolan J.P. Esko J.D. Schenk S. Wang S.E. Cancer-cell-secreted miR-122 suppresses O-GlcNAcylation to promote skeletal muscle proteolysis. Nat. Cell. Biol. 2022 24 5 793 804 10.1038/s41556‑022‑00893‑0 35469018
    [Google Scholar]
  31. Chahal J. Gebert L.F.R. Camargo C. MacRae I.J. Sagan S.M. miR-122–based therapies select for three distinct resistance mechanisms based on alterations in RNA structure. Proc. Natl. Acad. Sci. USA 2021 118 33 e2103671118 10.1073/pnas.2103671118 34385308
    [Google Scholar]
  32. Kunden R.D. Khan J.Q. Ghezelbash S. Wilson J.A. The role of the liver-specific microRNA, miRNA-122 in the HCV replication cycle. Int. J. Mol. Sci. 2020 21 16 5677 10.3390/ijms21165677 32784807
    [Google Scholar]
  33. Wei X. Ding J. Tian W. Yu Y.C. MicroRNA-122 as a diagnostic biomarker for hepatocellular carcinoma related to hepatitis C virus: A meta-analysis and systematic review. J. Int. Med. Res. 2020 48 8 0300060520941634 10.1177/0300060520941634 32790532
    [Google Scholar]
  34. Faramin Lashkarian M. Hashemipour N. Niaraki N. Soghala S. Moradi A. Sarhangi S. Hatami M. Aghaei-Zarch F. Khosravifar M. Mohammadzadeh A. Najafi S. Majidpoor J. Farnia P. Aghaei-Zarch S.M. MicroRNA-122 in human cancers: From mechanistic to clinical perspectives. Cancer. Cell. Int. 2023 23 1 29 10.1186/s12935‑023‑02868‑z 36803831
    [Google Scholar]
  35. Howell L.S. Ireland L. Park B.K. Goldring C.E. MiR-122 and other microRNAs as potential circulating biomarkers of drug-induced liver injury. Expert Rev. Mol. Diagn. 2018 18 1 47 54 10.1080/14737159.2018.1415145 29235390
    [Google Scholar]
  36. Murray D.D. Suzuki K. Law M. Trebicka J. Neuhaus Nordwall J. Johnson M. Vjecha M.J. Kelleher A.D. Emery S. Circulating miR-122 and miR-200a as biomarkers for fatal liver disease in ART-treated, HIV-1-infected individuals. Sci. Rep. 2017 7 1 10934 10.1038/s41598‑017‑11405‑8 28883647
    [Google Scholar]
  37. Moosa M.S. Russomanno G. Dorfman J.R. Gunter H. Patel C. Costello E. Carr D. Maartens G. Pirmohamed M. Goldring C. Cohen K. Analysis of serum microRNA‐122 in a randomized controlled trial of N‐acetylcysteine for treatment of antituberculosis drug‐induced liver injury. Br. J. Clin. Pharmacol. 2023 89 6 1844 1851 10.1111/bcp.15661 36639145
    [Google Scholar]
  38. Chang J. Nicolas E. Marks D. Sander C. Lerro A. Buendia M.A. Xu C. Mason W.S. Moloshok T. Bort R. Zaret K.S. Taylor J.M. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 2004 1 2 106 113 10.4161/rna.1.2.1066 17179747
    [Google Scholar]
  39. Denzler R. Agarwal V. Stefano J. Bartel D.P. Stoffel M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 2014 54 5 766 776 10.1016/j.molcel.2014.03.045 24793693
    [Google Scholar]
  40. Burchard J. Zhang C. Liu A.M. Poon R.T.P. Lee N.P.Y. Wong K.F. Sham P.C. Lam B.Y. Ferguson M.D. Tokiwa G. Smith R. Leeson B. Beard R. Lamb J.R. Lim L. Mao M. Dai H. Luk J.M. microRNA‐122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma. Mol. Syst. Biol. 2010 6 1 402 10.1038/msb.2010.58 20739924
    [Google Scholar]
  41. Valdmanis P.N. Kim H.K. Chu K. Zhang F. Xu J. Munding E.M. Shen J. Kay M.A. miR-122 removal in the liver activates imprinted microRNAs and enables more effective microRNA-mediated gene repression. Nat. Commun. 2018 9 1 5321 10.1038/s41467‑018‑07786‑7 30552326
    [Google Scholar]
  42. Tsai W.C. Hsu S.D. Hsu C.S. Lai T.C. Chen S.J. Shen R. Huang Y. Chen H.C. Lee C.H. Tsai T.F. Hsu M.T. Wu J.C. Huang H.D. Shiao M.S. Hsiao M. Tsou A.P. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest. 2012 122 8 2884 2897 10.1172/JCI63455 22820290
    [Google Scholar]
  43. Esau C. Davis S. Murray S.F. Yu X.X. Pandey S.K. Pear M. Watts L. Booten S.L. Graham M. McKay R. Subramaniam A. Propp S. Lollo B.A. Freier S. Bennett C.F. Bhanot S. Monia B.P. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006 3 2 87 98 10.1016/j.cmet.2006.01.005 16459310
    [Google Scholar]
  44. Kim N. Kim H. Jung I. Kim Y. Kim D. Han Y.M. Expression profiles of miRNAs in human embryonic stem cells during hepatocyte differentiation. Hepatol. Res. 2011 41 2 170 183 10.1111/j.1872‑034X.2010.00752.x 21269386
    [Google Scholar]
  45. Castoldi M. Vujic Spasic M. Altamura S. Elmén J. Lindow M. Kiss J. Stolte J. Sparla R. D’Alessandro L.A. Klingmüller U. Fleming R.E. Longerich T. Gröne H.J. Benes V. Kauppinen S. Hentze M.W. Muckenthaler M.U. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. J. Clin. Invest. 2011 121 4 1386 1396 10.1172/JCI44883 21364282
    [Google Scholar]
  46. Elmén J. Lindow M. Schütz S. Lawrence M. Petri A. Obad S. Lindholm M. Hedtjärn M. Hansen H.F. Berger U. Gullans S. Kearney P. Sarnow P. Straarup E.M. Kauppinen S. LNA-mediated microRNA silencing in non-human primates. Nature 2008 452 7189 896 899 10.1038/nature06783 18368051
    [Google Scholar]
  47. Elmén J. Lindow M. Silahtaroglu A. Bak M. Christensen M. Lind-Thomsen A. Hedtjärn M. Hansen J.B. Hansen H.F. Straarup E.M. McCullagh K. Kearney P. Kauppinen S. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic. Acids. Res. 2008 36 4 1153 1162 10.1093/nar/gkm1113 18158304
    [Google Scholar]
  48. Krützfeldt J. Rajewsky N. Braich R. Rajeev K.G. Tuschl T. Manoharan M. Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005 438 7068 685 689 10.1038/nature04303 16258535
    [Google Scholar]
  49. Mitchell P.S. Parkin R.K. Kroh E.M. Fritz B.R. Wyman S.K. Pogosova-Agadjanyan E.L. Peterson A. Noteboom J. O’Briant K.C. Allen A. Lin D.W. Urban N. Drescher C.W. Knudsen B.S. Stirewalt D.L. Gentleman R. Vessella R.L. Nelson P.S. Martin D.B. Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008 105 30 10513 10518 10.1073/pnas.0804549105 18663219
    [Google Scholar]
  50. Arroyo J.D. Chevillet J.R. Kroh E.M. Ruf I.K. Pritchard C.C. Gibson D.F. Mitchell P.S. Bennett C.F. Pogosova-Agadjanyan E.L. Stirewalt D.L. Tait J.F. Tewari M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA 2011 108 12 5003 5008 10.1073/pnas.1019055108 21383194
    [Google Scholar]
  51. El-Hefnawy T. Raja S. Kelly L. Bigbee W.L. Kirkwood J.M. Luketich J.D. Godfrey T.E. Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin. Chem. 2004 50 3 564 573 10.1373/clinchem.2003.028506 14718398
    [Google Scholar]
  52. Vogt J. Sheinson D. Katavolos P. Irimagawa H. Tseng M. Alatsis K.R. Proctor W.R. Variance component analysis of circulating miR-122 in serum from healthy human volunteers. PLoS. One. 2019 14 7 e0220406 10.1371/journal.pone.0220406 31348817
    [Google Scholar]
  53. Kyrmizi I. Hatzis P. Katrakili N. Tronche F. Gonzalez F.J. Talianidis I. Plasticity and expanding complexity of the hepatic transcription factor network during liver development. Genes. Dev. 2006 20 16 2293 2305 10.1101/gad.390906 16912278
    [Google Scholar]
  54. Laudadio I. Manfroid I. Achouri Y. Schmidt D. Wilson M.D. Cordi S. Thorrez L. Knoops L. Jacquemin P. Schuit F. Pierreux C.E. Odom D.T. Peers B. Lemaigre F.P. A feedback loop between the liver-enriched transcription factor network and miR-122 controls hepatocyte differentiation. Gastroenterology 2012 142 1 119 129 10.1053/j.gastro.2011.09.001 21920465
    [Google Scholar]
  55. Yamada H. Suzuki K. Ichino N. Ando Y. Sawada A. Osakabe K. Sugimoto K. Ohashi K. Teradaira R. Inoue T. Hamajima N. Hashimoto S. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin. Chim. Acta 2013 424 99 103 10.1016/j.cca.2013.05.021 23727030
    [Google Scholar]
  56. Henke J.I. Goergen D. Zheng J. Song Y. Schüttler C.G. Fehr C. Jünemann C. Niepmann M. microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J. 2008 27 24 3300 3310 10.1038/emboj.2008.244 19020517
    [Google Scholar]
  57. Kojima K. Takata A. Vadnais C. Otsuka M. Yoshikawa T. Akanuma M. Kondo Y. Kang Y.J. Kishikawa T. Kato N. Xie Z. Zhang W.J. Yoshida H. Omata M. Nepveu A. Koike K. MicroRNA122 is a key regulator of α-fetoprotein expression and influences the aggressiveness of hepatocellular carcinoma. Nat. Commun. 2011 2 1 338 10.1038/ncomms1345 21654638
    [Google Scholar]
  58. Antoine D.J. Dear J.W. Lewis P.S. Platt V. Coyle J. Masson M. Thanacoody R.H. Gray A.J. Webb D.J. Moggs J.G. Bateman N.D. Goldring C.E. Park K.B. Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital. Hepatology 2013 58 2 777 787 10.1002/hep.26294 23390034
    [Google Scholar]
  59. Wu Y. Gao C. Cai S. Xia M. Liao G. Zhang X. Peng J. Circulating miR-122 is a predictor for virological response in chb patients with high viral load treated with nucleos(t)ide analogs. Front. Genet. 2019 10 243 243 10.3389/fgene.2019.00243 30967899
    [Google Scholar]
  60. Tsai W.C. Hsu P.W.C. Lai T.C. Chau G.Y. Lin C.W. Chen C.M. Lin C.D. Liao Y.L. Wang J.L. Chau Y.P. Hsu M.T. Hsiao M. Huang H.D. Tsou A.P. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma . Hepatology 2009 49 5 1571 1582 10.1002/hep.22806 19296470
    [Google Scholar]
  61. Kutay H. Bai S. Datta J. Motiwala T. Pogribny I. Frankel W. Jacob S.T. Ghoshal K. Downregulation of miR‐122 in the rodent and human hepatocellular carcinomas. J. Cell. Biochem. 2006 99 3 671 678 10.1002/jcb.20982 16924677
    [Google Scholar]
  62. Bai S. Nasser M.W. Wang B. Hsu S.H. Datta J. Kutay H. Yadav A. Nuovo G. Kumar P. Ghoshal K. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J. Biol. Chem. 2009 284 46 32015 32027 10.1074/jbc.M109.016774 19726678
    [Google Scholar]
  63. Pei Z.J. Zhang Z.G. Hu A.X. Yang F. Gai Y. miR-122-5p inhibits tumor cell proliferation and induces apoptosis by targeting MYC in gastric cancer cells. Pharmazie 2017 72 6 344 347 29442023
    [Google Scholar]
  64. Rao M. Zhu Y. Zhou Y. Cong X. Feng L. MicroRNA-122 inhibits proliferation and invasion in gastric cancer by targeting CREB1. Am. J. Cancer Res. 2017 7 2 323 333 28337380
    [Google Scholar]
  65. Xu X. Gao F. Wang J. Tao L. Ye J. Ding L. Ji W. Chen X. MiR-122-5p inhibits cell migration and invasion in gastric cancer by down-regulating DUSP4. Cancer Biol. Ther. 2018 19 5 427 435 10.1080/15384047.2018.1423925 29509059
    [Google Scholar]
  66. Duan Y. Dong Y. Dang R. Hu Z. Yang Y. Hu Y. Cheng J. MiR‐122 inhibits epithelial mesenchymal transition by regulating P4HA1 in ovarian cancer cells. Cell Biol. Int. 2018 42 11 1564 1574 10.1002/cbin.11052 30136751
    [Google Scholar]
  67. Yang Y. Liu Y. Liu W. Li C. Liu Y. Hu W. Song H. miR-122 inhibits the cervical cancer development by targeting the oncogene RAD21. Biochem. Genet. 2022 60 1 303 314 10.1007/s10528‑021‑10098‑z 34191246
    [Google Scholar]
  68. Wang S. Zheng W. Ji A. Zhang D. Zhou M. Overexpressed miR-122-5p promotes cell >viability, proliferation, migration and glycolysis of renal cancer by negatively regulating PKM2. Cancer Manag. Res. 2019 11 9701 9713 10.2147/CMAR.S225742 31814765
    [Google Scholar]
  69. Fan Y. Ma X. Li H. Gao Y. Huang Q. Zhang Y. Bao X. Du Q. Luo G. Liu K. Meng Q. Zhao C. Zhang X. miR‐122 promotes metastasis of clear‐cell renal cell carcinoma by downregulating Dicer. Int. J. Cancer. 2018 142 3 547 560 10.1002/ijc.31050 28921581
    [Google Scholar]
  70. Jingushi K. Kashiwagi Y. Ueda Y. Kitae K. Hase H. Nakata W. Fujita K. Uemura M. Nonomura N. Tsujikawa K. High miR-122 expression promotes malignant phenotypes in ccRCC by targeting occludin. Int. J. Oncol. 2017 51 1 289 297 10.3892/ijo.2017.4016 28534944
    [Google Scholar]
  71. Hu Z. Shen W.J. Cortez Y. Tang X. Liu L.F. Kraemer F.B. Azhar S. Hormonal regulation of microRNA expression in steroid producing cells of the ovary, testis and adrenal gland. PLoS. One. 2013 8 10 e78040 10.1371/journal.pone.0078040 24205079
    [Google Scholar]
  72. Liu T. Huang Y. Liu J. Zhao Y. Jiang L. Huang Q. Cheng W. Guo L. MicroRNA-122 influences the development of sperm abnormalities from human induced pluripotent stem cells by regulating TNP2 expression. Stem. Cells. Dev. 2013 22 12 1839 1850 10.1089/scd.2012.0653 23327642
    [Google Scholar]
  73. Menon B. Sinden J. Franzo-Romain M. Botta R.B. Menon K.M.J. Regulation of LH receptor mRNA binding protein by miR-122 in rat ovaries. Endocrinology 2013 154 12 4826 4834 10.1210/en.2013‑1619 24064360
    [Google Scholar]
  74. Menon B. Gulappa T. Menon K.M.J. Molecular regulation of LHCGR expression by miR-122 during follicle growth in the rat ovary. Mol. Cell. Endocrinol. 2017 442 81 89 10.1016/j.mce.2016.12.002 27940300
    [Google Scholar]
  75. Jeon T.I. Osborne T.F. miRNA and cholesterol homeostasis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2016 1861 12 12 Pt B 2041 2046 10.1016/j.bbalip.2016.01.005 26778752
    [Google Scholar]
  76. Toran-Allerand C.D. Tinnikov A.A. Singh R.J. Nethrapalli I.S. 17α-estradiol: A brain-active estrogen? Endocrinology. 2005 146 9 3843 3850 10.1210/en.2004‑1616 15947006
    [Google Scholar]
  77. Menon B. Guo X. Garcia N. Gulappa T. Menon K.M.J. miR-122 regulates LHR expression in rat granulosa cells by targeting Insig1 mRNA. Endocrinology 2018 159 5 2075 2082 10.1210/en.2017‑03270 29579170
    [Google Scholar]
  78. Menon B. Gulappa T. Menon K.M.J. miR-122 regulates LH receptor expression by activating sterol response nlm binding protein in rat ovaries. Endocrinology 2015 156 9 3370 3380 10.1210/en.2015‑1121 26125464
    [Google Scholar]
  79. Agarwal V. Bell G.W. Nam J.W. Bartel D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015 4 e05005 10.7554/eLife.05005 26267216
    [Google Scholar]
  80. Abouhamed M. Grobe K. Leefa Chong San I.V. Thelen S. Honnert U. Balda M.S. Matter K. Bähler M. Myosin IXa regulates epithelial differentiation and its deficiency results in hydrocephalus. Mol. Biol. Cell 2009 20 24 5074 5085 10.1091/mbc.e09‑04‑0291 19828736
    [Google Scholar]
  81. Bozal-Basterra L. Gonzalez-Santamarta M. Muratore V. Bermejo-Arteagabeitia A. Da Fonseca C. Barroso-Gomila O. Azkargorta M. Iloro I. Pampliega O. Andrade R. Martín-Martín N. Branon T.C. Ting A.Y. Rodríguez J.A. Carracedo A. Elortza F. Sutherland J.D. Barrio R. LUZP1, a novel regulator of primary cilia and the actin cytoskeleton, is a contributing factor in Townes-Brocks Syndrome. eLife 2020 9 e55957 10.7554/eLife.55957 32553112
    [Google Scholar]
  82. Singh K. Jayaram M. Kaare M. Leidmaa E. Jagomäe T. Heinla I. Hickey M.A. Kaasik A. Schäfer M.K. Innos J. Lilleväli K. Philips M.A. Vasar E. Neural cell adhesion molecule Negr1 deficiency in mouse results in structural brain endophenotypes and behavioral deviations related to psychiatric disorders. Sci. Rep. 2019 9 1 5457 10.1038/s41598‑019‑41991‑8 30932003
    [Google Scholar]
  83. Schizophrenia Working Group of the Psychiatric Genomics Consortium Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014 511 7510 421 427 10.1038/nature13595 25056061
    [Google Scholar]
  84. Hyde C.L. Nagle M.W. Tian C. Chen X. Paciga S.A. Wendland J.R. Tung J.Y. Hinds D.A. Perlis R.H. Winslow A.R. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat. Genet. 2016 48 9 1031 1036 10.1038/ng.3623 27479909
    [Google Scholar]
  85. Kara M. Axton R.A. Jackson M. Ghaffari S. Buerger K. Watt A.J. Taylor A.H. Orr B. Hardy W.R. Peault B. Forrester L.M. A role for MOSPD1 in mesenchymal stem cell proliferation and differentiation. Stem Cells 2015 33 10 3077 3086 10.1002/stem.2102 26175344
    [Google Scholar]
  86. Bonneau E. Neveu B. Kostantin E. Tsongalis G.J. De Guire V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC 2019 30 2 114 127 31263388
    [Google Scholar]
  87. Lindow M. Kauppinen S. Discovering the first microRNA-targeted drug. J. Cell Biol. 2012 199 3 407 412 10.1083/jcb.201208082 23109665
    [Google Scholar]
  88. Baek J. Kang S. Min H. MicroRNA-targeting therapeutics for hepatitis C. Arch. Pharm. Res. 2014 37 3 299 305 10.1007/s12272‑013‑0318‑9 24385319
    [Google Scholar]
  89. Liu Y. Li P. Liu L. Zhang Y. The diagnostic role of miR-122 in drug-induced liver injury. Medicine (Baltimore) 2018 97 49 e13478 10.1097/MD.0000000000013478 30544438
    [Google Scholar]
  90. Cione E. Abrego Guandique D.M. Caroleo M.C. Luciani F. Colosimo M. Cannataro R. Liver damage and microRNAs: An Update. Curr. Issues Mol. Biol. 2022 45 1 78 91 10.3390/cimb45010006 36661492
    [Google Scholar]
  91. Fu S. Wu D. Jiang W. Li J. Long J. Jia C. Zhou T. Molecular biomarkers in drug-induced liver injury: Challenges and future perspectives. Front. Pharmacol. 2020 10 1667 10.3389/fphar.2019.01667 32082163
    [Google Scholar]
  92. Salamin O. Jaggi L. Baume N. Robinson N. Saugy M. Leuenberger N. Circulating microRNA-122 as potential biomarker for detection of testosterone abuse. PLoS. One. 2016 11 5 e0155248 10.1371/journal.pone.0155248 27171140
    [Google Scholar]
  93. Cortez-Dias N. Costa M.C. Carrilho-Ferreira P. Silva D. Jorge C. Calisto C. Pessoa T. Robalo Martins S. de Sousa J.C. da Silva P.C. Fiúza M. Diogo A.N. Pinto F.J. Enguita F.J. Circulating miR-122-5p/miR-133b ratio is a specific early prognostic biomarker in acute myocardial infarction. Circ. J. 2016 80 10 2183 2191 10.1253/circj.CJ‑16‑0568 27593229
    [Google Scholar]
  94. Maged A.M. Deeb W.S. El Amir A. Zaki S.S. El Sawah H. Al Mohamady M. Metwally A.A. Katta M.A. Diagnostic accuracy of serum miR‐122 and miR‐199a in women with endometriosis. Int. J. Gynaecol. Obstet. 2018 141 1 14 19 10.1002/ijgo.12392 29149541
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366334187250116164121
Loading
/content/journals/mirna/10.2174/0122115366334187250116164121
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: micro-RNA ; miR-122 ; non-coding RNAs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test