Skip to content
2000
Volume 14, Issue 2
  • ISSN: 2211-5366
  • E-ISSN: 2211-5374

Abstract

MicroRNA abundance as a particular biomarker for precisely identifying cancer metastases has emerged in recent years. The expression levels of miRNA are analyzed to get insights into cancer tissue detection and subtypes. Similar to other cancer types, the miRNA shows high levels of target mRNA dysregulation in association with non-small cell lung carcinoma (NSCLC). Among many promising cancer biomarkers for NSCLC, miR-7-5p has shown significant downregulation in the NSCLC tissues and targets proto-oncogenes like PAK2 and NOVA2. The expression levels of different proto-oncogenes targeting the miR-7-5p in NSCLC showed that the EGFR-mutated NSCLC has an experimental validation. The target validation of the miR-7-5p could be analyzed using SPR (Surface plasmon resonance) based sensors at a single nanoparticle level, such as Au nanocube, due to its high specificity and accountability. Despite being an accountable tool for cancer diagnosis, miRNA-based biomarkers sometimes cause poor diagnostic specificity and reproducibility due to their heterogenicity and immunogenicity in cancer detection. To overcome these shortcomings, the biomarkers need to be validated according to recent clinical studies.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366325862241031071038
2025-07-01
2025-12-16
Loading full text...

Full text loading...

References

  1. Cancer tomorrowAvailable from: https://gco.iarc.fr/tomorrow/en/dataviz/isotype?types=0&sexes=0&mode=population&group_populations=1&multiple_populations=1&multiple_cancers=1&cancers=15&populations=935&apc=cat_ca20v1.5_ca23v-1.5&group_cancers=1&single_unit=500000
  2. IhdeD.C. MinnaJ.D. Non-small cell lung cancer part: I biology, diagnosis, and staging.Curr. Probl. Cancer19911526510410.1016/0147‑0272(91)90014‑21649734
    [Google Scholar]
  3. MalaraN.M. SgambatoA. GranoneP. Biological characterization of central and peripheral primary non small cell lung cancers (NSCLC).Anticancer Res.1999193B22492252[PMID: 10472338
    [Google Scholar]
  4. KadaraH. WistubaI.I. Field cancerization in non-small cell lung cancer: implications in disease pathogenesis.Proc. Am. Thorac. Soc.201292384210.1513/pats.201201‑004MS22550239
    [Google Scholar]
  5. BrandaoG.D.A. BregaE.F. SpatzA. The role of molecular pathology in non-small-cell lung carcinoma-now and in the future.Curr. Oncol.20121911Suppl. 1243210.3747/co.19.105822787408
    [Google Scholar]
  6. NurwidyaF. TakahashiF. MurakamiA. Acquired resistance of non-small cell lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors.Respir. Investig.2014522829110.1016/j.resinv.2013.07.00724636263
    [Google Scholar]
  7. LeonettiA. AssarafY.G. VeltsistaP.D. El HassouniB. TiseoM. GiovannettiE. MicroRNAs as a drug resistance mechanism to targeted therapies in EGFR-mutated NSCLC: Current implications and future directions.Drug Resist. Updat.20194211110.1016/j.drup.2018.11.00230544036
    [Google Scholar]
  8. WeissC.N. ItoK. A macro view of microRNAs: The discovery of microRNAs and their role in hematopoiesis and hematologic disease.Int. Rev. Cell Mol. Biol.20173349917510.1016/bs.ircmb.2017.03.00728838543
    [Google Scholar]
  9. GravesP. ZengY. Biogenesis of mammalian microRNAs: A global view.Genom Proteom Bioinf201210523924510.1016/j.gpb.2012.06.00423200133
    [Google Scholar]
  10. ZhouQ. HuangS.X. ZhangF. MicroRNA: A novel potential biomarker for diagnosis and therapy in patients with non‐small cell lung cancer.Cell Prolif.2017506e1239410.1111/cpr.1239428990243
    [Google Scholar]
  11. EggerG. LiangG. AparicioA. JonesP.A. Epigenetics in human disease and prospects for epigenetic therapy.Nature2004429699045746310.1038/nature0262515164071
    [Google Scholar]
  12. NegriniM. NicolosoM.S. CalinG.A. MicroRNAs and cancer—new paradigms in molecular oncology.Curr. Opin. Cell Biol.200921347047910.1016/j.ceb.2009.03.00219411171
    [Google Scholar]
  13. GanjuA. KhanS. HafeezB.B. miRNA nanotherapeutics for cancer.Drug Discov. Today201722242443210.1016/j.drudis.2016.10.01427815139
    [Google Scholar]
  14. De PalmaF.D.E. SalvatoreF. PolJ.G. KroemerG. MaiuriM.C. Circular RNAs as potential biomarkers in breast cancer.Biomedicines202210372510.3390/biomedicines1003072535327527
    [Google Scholar]
  15. LeeY.S. DuttaA. MicroRNAs in cancer.Annu. Rev. Pathol.20094119922710.1146/annurev.pathol.4.110807.09222218817506
    [Google Scholar]
  16. ShaoX HuangP ShiL MicroRNA and LncRNA expression profiles in human estrogen receptor positive breast cancer. Clin Lab201965(01+02/2019)10.7754/Clin.Lab.2018.18034030775882
    [Google Scholar]
  17. LampignanoR. KlotenV. KrahnT. SchlangeT. Integrating circulating miRNA analysis in the clinical management of lung cancer: Present or future?Mol. Aspects Med.20207210084410.1016/j.mam.2020.10084431959359
    [Google Scholar]
  18. KlotenV. NeumannM.H.D. Di PasqualeF. Multicenter evaluation of circulating plasma microRNA extraction technologies for the development of clinically feasible reverse transcription quantitative PCR and next-generation sequencing analytical work flows.Clin. Chem.20196591132114010.1373/clinchem.2019.30327131235535
    [Google Scholar]
  19. LuS. KongH. HouY. Two plasma microRNA panels for diagnosis and subtype discrimination of lung cancer.Lung Cancer2018123445110.1016/j.lungcan.2018.06.02730089594
    [Google Scholar]
  20. PozniakT. ShcharbinD. BryszewskaM. Circulating microRNAs in medicine.Int. J. Mol. Sci.2022237399610.3390/ijms2307399635409354
    [Google Scholar]
  21. LangevinS.M. KratzkeR.A. KelseyK.T. Epigenetics of lung cancer.Transl. Res.20151651749010.1016/j.trsl.2014.03.00124686037
    [Google Scholar]
  22. GuanP. YinZ. LiX. WuW. ZhouB. Meta-analysis of human lung cancer microRNA expression profiling studies comparing cancer tissues with normal tissues.J. Exp. Clin. Cancer Res.20123115410.1186/1756‑9966‑31‑5422672859
    [Google Scholar]
  23. VõsaU. VooderT. KoldeR. ViloJ. MetspaluA. AnniloT. Meta‐analysis of microRNA expression in lung cancer.Int. J. Cancer2013132122884289310.1002/ijc.2798123225545
    [Google Scholar]
  24. CaoJ. SongY. BiN. DNA methylation-mediated repression of miR-886-3p predicts poor outcome of human small cell lung cancer.Cancer Res.201373113326333510.1158/0008‑5472.CAN‑12‑305523592755
    [Google Scholar]
  25. ZhaoW. ZhaoJ.J. ZhangL. Serum miR-21 level: a potential diagnostic and prognostic biomarker for non-small cell lung cancer.Int. J. Clin. Exp. Med.2015891475914763[PMID: 26628958
    [Google Scholar]
  26. LvS. XueJ. WuC. Identification of a panel of serum microRNAs as biomarkers for early detection of lung adenocarcinoma.J. Cancer201781485610.7150/jca.1664428123597
    [Google Scholar]
  27. XuS. ShiL. High expression of miR-155 and miR-21 in the recurrence or metastasis of non-small cell lung cancer.Oncol. Lett.201918175876310.3892/ol.2019.1033731289551
    [Google Scholar]
  28. FranchinaT. AmodeoV. BronteG. Circulating miR-22, miR-24 and miR-34a as novel predictive biomarkers to pemetrexed-based chemotherapy in advanced non small cell lung cancer.J. Cell. Physiol.2013229110.1002/jcp.2442223794259
    [Google Scholar]
  29. KimJ.S. KimE.J. LeeS. MiR-34a and miR-34b/c have distinct effects on the suppression of lung adenocarcinomas.Exp. Mol. Med.201951111010.1038/s12276‑018‑0203‑130700696
    [Google Scholar]
  30. GuoL. WangJ. YangP. LuQ. ZhangT. YangY. Micro RNA ‐200 promotes lung cancer cell growth through FOG2 ‐independent AKT activation.IUBMB Life201567972072510.1002/iub.141226314828
    [Google Scholar]
  31. LeeJ.S. AhnY.H. WonH.S. SunD.S. KimY.H. KoY.H. Prognostic role of the microRNA-200 family in various carcinomas: A systematic review and meta-analysis.BioMed Res. Int.2017201711110.1155/2017/192802128321402
    [Google Scholar]
  32. JiK.X. CuiF. QuD. MiR-378 promotes the cell proliferation of non-small cell lung cancer by inhibiting FOXG1.Eur. Rev. Med. Pharmacol. Sci.20182241011101910.26355/eurrev_201802_1438329509249
    [Google Scholar]
  33. HoC.S. NoorS.M. NagoorN.H. MiR-378 and MiR-1827 regulate tumor invasion, migration and angiogenesis in human lung adenocarcinoma by targeting RBX1 and CRKL, respectively.J. Cancer20189233134510.7150/jca.1818829344280
    [Google Scholar]
  34. NiY. YangY. RanJ. miR-15a-5p inhibits metastasis and lipid metabolism by suppressing histone acetylation in lung cancer.Free Radic. Biol. Med.202016115016210.1016/j.freeradbiomed.2020.10.00933059020
    [Google Scholar]
  35. LiY. LiangM. ZhangY. miR-93, miR-373, and miR-17-5p negatively regulate the expression of TBP2 in lung cancer.Front. Oncol.20201052610.3389/fonc.2020.0052632426273
    [Google Scholar]
  36. ShaoL. LuX. ZhouY. Altered miR-93-5p/miR-18a expression in serum for diagnosing non-small cell lung cancer.Am. J. Transl. Res.202113550735079[PMID: 34150094
    [Google Scholar]
  37. LinC.W. ChangY.L. ChangY.C. MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1.Nat. Commun.201341187710.1038/ncomms287623695671
    [Google Scholar]
  38. ErgunS. GüneyS. TemizE. PetrovicN. GunesS. 2018; Significance of miR-15a-5p and CNKSR3 as novel prognostic biomarkers in non-small cell lung cancer.Anticancer. Agents Med. Chem.201818121695170110.2174/1871520618666180718100656
    [Google Scholar]
  39. YangT. ThakurA. ChenT. MicroRNA-15a induces cell apoptosis and inhibits metastasis by targeting BCL2L2 in non-small cell lung cancer.Tumour Biol.20153664357436510.1007/s13277‑015‑3075‑125874488
    [Google Scholar]
  40. GuoS. LiM. LiJ. LvY. Inhibition mechanism of lung cancer cell metastasis through targeted regulation of Smad3 by miR 15a.Oncol. Lett.20191921516152210.3892/ol.2019.1119431966076
    [Google Scholar]
  41. LiuZ. LiuY. LiL. MiR-7-5p is frequently downregulated in glioblastoma microvasculature and inhibits vascular endothelial cell proliferation by targeting RAF1.Tumour Biol.20143510101771018410.1007/s13277‑014‑2318‑x25027403
    [Google Scholar]
  42. LaiJ. YangH. ZhuY. RuanM. HuangY. ZhangQ. MiR-7-5p-mediated downregulation of PARP1 impacts DNA homologous recombination repair and resistance to doxorubicin in small cell lung cancer.BMC Cancer201919160210.1186/s12885‑019‑5798‑731215481
    [Google Scholar]
  43. KumarS. SharawatS.K. AliA. Identification of differentially expressed circulating serum microRNA for the diagnosis and prognosis of Indian non–small cell lung cancer patients.Curr. Probl. Cancer202044410054010.1016/j.currproblcancer.2020.10054032007320
    [Google Scholar]
  44. MohamedM.A. MohamedE.I. El-KareamS.A.A. BadawiM.I. DarwishS.H. Underexpression of miR-486-5p but not overexpression of miR-155 is associated with lung cancer stages.MicroRNA20187212012710.2174/221153660766618021212453229437031
    [Google Scholar]
  45. TianF. WangJ. OuyangT. MiR-486-5p serves as a good biomarker in nonsmall cell lung cancer and suppresses cell growth with the involvement of a target PIK3R1.Front. Genet.20191068810.3389/fgene.2019.0068831402930
    [Google Scholar]
  46. MengW. YeZ. CuiR. MicroRNA-31 predicts the presence of lymph node metastases and survival in patients with lung adenocarcinoma.Clin. Cancer Res.201319195423543310.1158/1078‑0432.CCR‑13‑032023946296
    [Google Scholar]
  47. EdmondsM.D. BoydK.L. MoyoT. MicroRNA-31 initiates lung tumorigenesis and promotes mutant KRAS-driven lung cancer.J. Clin. Invest.2015126134936410.1172/JCI8272026657862
    [Google Scholar]
  48. XueX. LiuY. WangY. MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN.Oncotarget2016751845088451910.18632/oncotarget.1302227811366
    [Google Scholar]
  49. WanJ. YangX. RenY. Inhibition of miR-155 reduces impaired autophagy and improves prognosis in an experimental pancreatitis mouse model.Cell Death Dis.201910430310.1038/s41419‑019‑1545‑x30944299
    [Google Scholar]
  50. WeiF. MaC. ZhouT. Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p.Mol. Cancer201716113210.1186/s12943‑017‑0694‑828743280
    [Google Scholar]
  51. QinQ. WeiF. ZhangJ. WangX. LiB. miR‐134 inhibits non‐small cell lung cancer growth by targeting the epidermal growth factor receptor.J. Cell. Mol. Med.201620101974198310.1111/jcmm.1288927241841
    [Google Scholar]
  52. ZhangC. GeS. HuC. YangN. ZhangJ. MiRNA-218, a new regulator of HMGB1, suppresses cell migration and invasion in non-small cell lung cancer.Acta Biochim. Biophys. Sin. (Shanghai)201345121055106110.1093/abbs/gmt10924247270
    [Google Scholar]
  53. ZhuK. DingH. WangW. Tumor-suppressive miR-218-5p inhibits cancer cell proliferation and migration via EGFR in non-small cell lung cancer.Oncotarget2016719280752808510.18632/oncotarget.857627057632
    [Google Scholar]
  54. YangY. DingL. HuQ. MicroRNA-218 functions as a tumor suppressor in lung cancer by targeting IL-6/STAT3 and negatively correlates with poor prognosis.Mol. Cancer201716114110.1186/s12943‑017‑0710‑z28830450
    [Google Scholar]
  55. HuangX. XiaoS. ZhuX. miR-196b-5p-mediated downregulation of FAS promotes NSCLC progression by activating IL6-STAT3 signaling.Cell Death Dis.202011978510.1038/s41419‑020‑02997‑732963220
    [Google Scholar]
  56. LiangG. MengW. HuangX. miR-196b-5p–mediated downregulation of TSPAN12 and GATA6 promotes tumor progression in non-small cell lung cancer.Proc. Natl. Acad. Sci. USA202011784347435710.1073/pnas.191753111732041891
    [Google Scholar]
  57. WangH. ZhuL-J. YangY-C. WangZ-X. WangR. MiR-224 promotes the chemoresistance of human lung adenocarcinoma cells to cisplatin via regulating G1/S transition and apoptosis by targeting p21WAF1/CIP1.Br. J. Cancer2014111233935410.1038/bjc.2014.15724921914
    [Google Scholar]
  58. CuiR. MengW. SunH.L. MicroRNA-224 promotes tumor progression in nonsmall cell lung cancer.Proc. Natl. Acad. Sci. USA201511231E4288E429710.1073/pnas.150206811226187928
    [Google Scholar]
  59. JeonY.J. KimT. ParkD. miRNA-mediated TUSC3 deficiency enhances UPR and ERAD to promote metastatic potential of NSCLC.Nat. Commun.201891511010.1038/s41467‑018‑07561‑830504895
    [Google Scholar]
  60. CornettA.L. LutzC.S. Regulation of COX-2 expression by miR-146a in lung cancer cells.RNA20142091419143010.1261/rna.044149.11325047043
    [Google Scholar]
  61. YinZ. CuiZ. RenY. XiaL. LiH. ZhouB. MiR-146a polymorphism correlates with lung cancer risk in Chinese nonsmoking females.Oncotarget2017822275228310.18632/oncotarget.1372227911870
    [Google Scholar]
  62. PavelA.B. CampbellJ.D. LiuG. Alterations in bronchial airway miRNA expression for lung cancer detection.Cancer Prev. Res. (Phila.)2017101165165910.1158/1940‑6207.CAPR‑17‑009828877936
    [Google Scholar]
  63. CuiH. SeubertB. StahlE. Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes.Oncogene201534283640365010.1038/onc.2014.30025263437
    [Google Scholar]
  64. PengY. DaiY. HitchcockC. Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer.Proc. Natl. Acad. Sci. USA201311037150431504810.1073/pnas.130710711023980150
    [Google Scholar]
  65. PangW. TianX. BaiF. Pim-1 kinase is a target of miR-486-5p and eukaryotic translation initiation factor 4E, and plays a critical role in lung cancer.Mol. Cancer201413124010.1186/1476‑4598‑13‑24025342548
    [Google Scholar]
  66. JinB. JinH. WuH.B. XuJ.J. LiB. Long non‐coding RNA SNHG15 promotes CDK14 expression via miR‐486 to accelerate non‐small cell lung cancer cells progression and metastasis.J. Cell. Physiol.201823397164717210.1002/jcp.2654329630731
    [Google Scholar]
  67. CaoX. LaiS. HuF. miR-19a contributes to gefitinib resistance and epithelial mesenchymal transition in non-small cell lung cancer cells by targeting c-Met.Sci. Rep.201771293910.1038/s41598‑017‑01153‑028592790
    [Google Scholar]
  68. BaumgartnerU. BergerF. Hashemi GheinaniA. BurgenerS.S. MonastyrskayaK. VassellaE. miR-19b enhances proliferation and apoptosis resistance via the EGFR signaling pathway by targeting PP2A and BIM in non-small cell lung cancer.Mol. Cancer20181714410.1186/s12943‑018‑0781‑529455644
    [Google Scholar]
  69. WatanabeK. EmotoN. HamanoE. Genome structure‐based screening identified epigenetically silenced microRNA associated with invasiveness in non‐small‐cell lung cancer.Int. J. Cancer2012130112580259010.1002/ijc.2625421702040
    [Google Scholar]
  70. LujambioA. CalinG.A. VillanuevaA. A microRNA DNA methylation signature for human cancer metastasis.Proc. Natl. Acad. Sci. USA200810536135561356110.1073/pnas.080305510518768788
    [Google Scholar]
  71. KimY.H. LeeW.K. LeeE.B. SonJ.W. KimD.S. ParkJ.Y. Combined effect of metastasis-related microRNA, miR-34 and miR-124 family, methylation on prognosis of non–small-cell lung cancer.Clin. Lung Cancer2017181e13e2010.1016/j.cllc.2016.06.00527444357
    [Google Scholar]
  72. HellerG. WeinzierlM. NollC. Genome-wide miRNA expression profiling identifies miR-9-3 and miR-193a as targets for DNA methylation in non-small cell lung cancers.Clin. Cancer Res.20121861619162910.1158/1078‑0432.CCR‑11‑245022282464
    [Google Scholar]
  73. HellerG. AltenbergerC. SteinerI. DNA methylation of microRNA‐coding genes in non‐small‐cell lung cancer patients.J. Pathol.2018245438739810.1002/path.507929570800
    [Google Scholar]
  74. BruecknerB. StresemannC. KunerR. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function.Cancer Res.20076741419142310.1158/0008‑5472.CAN‑06‑407417308078
    [Google Scholar]
  75. ShiY. LuoX. LiP. miR-7-5p suppresses cell proliferation and induces apoptosis of breast cancer cells mainly by targeting REGγ.Cancer Lett.20153581273610.1016/j.canlet.2014.12.01425511742
    [Google Scholar]
  76. GilesK.M. BrownR.A.M. EpisM.R. KalinowskiF.C. LeedmanP.J. miRNA-7-5p inhibits melanoma cell migration and invasion.Biochem. Biophys. Res. Commun.2013430270671010.1016/j.bbrc.2012.11.08623206698
    [Google Scholar]
  77. MaC. QiY. ShaoL. LiuM. LiX. TangH. Downregulation of miR-7 upregulates Cullin 5 (CUL5) to facilitate G1/S transition in human hepatocellular carcinoma cells.IUBMB Life201365121026103410.1002/iub.123124339204
    [Google Scholar]
  78. LiQ. WuX. GuoL. ShiJ. LiJ. MicroRNA‐7‐5p induces cell growth inhibition, cell cycle arrest and apoptosis by targeting PAK2 in non‐small cell lung cancer.FEBS Open Bio20199111983199310.1002/2211‑5463.1273831587474
    [Google Scholar]
  79. PheeH. Au-YeungB.B. PryshchepO. Pak2 is required for actin cytoskeleton remodeling, TCR signaling, and normal thymocyte development and maturation.eLife20143e0227010.7554/eLife.0227024843022
    [Google Scholar]
  80. XiaoH. MiR-7-5p suppresses tumor metastasis of non-small cell lung cancer by targeting NOVA2.Cell. Mol. Biol. Lett.20192416010.1186/s11658‑019‑0188‑331832068
    [Google Scholar]
  81. SuT. HuangS. ZhangY. miR-7/TGF-β2 axis sustains acidic tumor microenvironment-induced lung cancer metastasis.Acta Pharm. Sin. B202212282183710.1016/j.apsb.2021.06.00935251919
    [Google Scholar]
  82. HynesN.E. LaneH.A. ERBB receptors and cancer: The complexity of targeted inhibitors.Nat. Rev. Cancer20055534135410.1038/nrc160915864276
    [Google Scholar]
  83. HerbstR.S. Review of epidermal growth factor receptor biology.Int. J. Radiat. Oncol. Biol. Phys.2004592Suppl.S21S2610.1016/j.ijrobp.2003.11.04115142631
    [Google Scholar]
  84. SharmaS.V. BellD.W. SettlemanJ. HaberD.A. Epidermal growth factor receptor mutations in lung cancer.Nat. Rev. Cancer20077316918110.1038/nrc208817318210
    [Google Scholar]
  85. HsuP.C. JablonsD.M. YangC.T. YouL. Epidermal growth factor receptor (EGFR) pathway, yes-associated protein (YAP) and the regulation of programmed Death-Ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC).Int. J. Mol. Sci.20192015382110.3390/ijms2015382131387256
    [Google Scholar]
  86. HaS.Y. ChoiS.J. ChoJ.H. Lung cancer in never-smoker Asian females is driven by oncogenic mutations, most often involving EGFR.Oncotarget2015675465547410.18632/oncotarget.292525760072
    [Google Scholar]
  87. ChapmanA.M. SunK.Y. RuestowP. CowanD.M. MadlA.K. Lung cancer mutation profile of EGFR, ALK, and KRAS: Meta-analysis and comparison of never and ever smokers.Lung Cancer201610212213410.1016/j.lungcan.2016.10.01027987580
    [Google Scholar]
  88. EckM.J. YunC.H. Structural and mechanistic underpinnings of the differential drug sensitivity of EGFR mutations in non-small cell lung cancer.Biochim. Biophys. Acta. Proteins Proteomics20101804355956610.1016/j.bbapap.2009.12.01020026433
    [Google Scholar]
  89. CostaD.B. More than just an oncogene translocation and a kinase inhibitor: Kevin’s story.J. Clin. Oncol.201230111011210.1200/JCO.2011.39.448622067391
    [Google Scholar]
  90. SoriaJ.C. OheY. VansteenkisteJ. Osimertinib in untreated EGFR-mutated advanced non–small-cell lung cancer.N. Engl. J. Med.2018378211312510.1056/NEJMoa171313729151359
    [Google Scholar]
  91. HashidaS. SohJ. ToyookaS. Presence of the minor EGFR T790M mutation is associated with drug-sensitive EGFR mutations in lung adenocarcinoma patients.Oncol. Rep.201432114515210.3892/or.2014.319724842519
    [Google Scholar]
  92. LimS.M. SynN.L. ChoB.C. SooR.A. Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies.Cancer Treat. Rev.20186511010.1016/j.ctrv.2018.02.00629477930
    [Google Scholar]
  93. VergoulisT. KanellosI. KostoulasN. mirPub: A database for searching microRNA citations.Bioinformatics20153191502150410.1093/bioinformatics/btu81925527833
    [Google Scholar]
  94. ParaskevopoulouM.D. GeorgakilasG. KostoulasN. DIANA-microT web server v5.0: Service integration into miRNA functional analysis workflows.Nucleic Acids Res.201341W1W169-7310.1093/nar/gkt39323680784
    [Google Scholar]
  95. VlachosI.S. ParaskevopoulouM.D. KaragkouniD. DIANA-TarBase v7.0: Indexing more than half a million experimentally supported miRNA:mRNA interactions.Nucleic Acids Res.201543D1D153D15910.1093/nar/gku121525416803
    [Google Scholar]
  96. HunterJ.D. Matplotlib: A 2D graphics environment.Comput. Sci. Eng.200793909510.1109/MCSE.2007.55
    [Google Scholar]
  97. MontaniF. MarziM.J. DeziF. miR-Test: a blood test for lung cancer early detection.J. Natl. Cancer Inst.20151076djv06310.1093/jnci/djv06325794889
    [Google Scholar]
  98. ZhouZ. WeiW. ZhangY. LiuS. DNA-responsive disassembly of AuNP aggregates: Influence of nonbase-paired regions and colorimetric DNA detection by exonuclease III aided amplification.J. Mater. Chem. B Mater. Biol. Med.20131222851285810.1039/c3tb20206b32260871
    [Google Scholar]
  99. ChenB. ShawS.R. MeinertzhagenI.A. Circadian rhythms in light-evoked responses of the fly’s compound eye, and the effects of neuromodulators 5-HT and the peptide PDF.J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol.1999185539340410.1007/s00359005040010573867
    [Google Scholar]
  100. BraunG. LeeS.J. DanteM. NguyenT.Q. MoskovitsM. ReichN. Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films.J. Am. Chem. Soc.2007129206378637910.1021/ja070514z17469825
    [Google Scholar]
  101. DrummondT.G. HillM.G. BartonJ.K. Electrochemical DNA sensors.Nat. Biotechnol.200321101192119910.1038/nbt87314520405
    [Google Scholar]
  102. BiswasP. ChoS.R. KimJ.W. BaekS.D. MyoungJ.M. Improved UV response of ZnO nanotubes by resonant coupling of anchored plasmonic silver nanoparticles.Nanotechnology2017282222550210.1088/1361‑6528/aa6ce028402290
    [Google Scholar]
  103. ZouZ HuY LiW GuY CaoY ZengB. Near infrared plasmonic 2D semimetals for applications in communication and biologyAdv Func Mat 20162611179380210.1002/adfm.201504884
    [Google Scholar]
  104. FongK.E. YungL.Y.L. Localized surface plasmon resonance: A unique property of plasmonic nanoparticles for nucleic acid detection.Nanoscale2013524120431207110.1039/c3nr02257a24166199
    [Google Scholar]
  105. ThakurA. QiuG. NgS.P. Direct detection of two different tumor-derived extracellular vesicles by SAM-AuNIs LSPR biosensor.Biosens. Bioelectron.20179440040710.1016/j.bios.2017.03.03628324860
    [Google Scholar]
  106. PapoN. ShaiY. Exploring peptide membrane interaction using surface plasmon resonance: Differentiation between pore formation versus membrane disruption by lytic peptides.Biochemistry200342245846610.1021/bi026784612525173
    [Google Scholar]
  107. AnkriR. MeiriA. LauS.I. MotieiM. PopovtzerR. FixlerD. Intercoupling surface plasmon resonance and diffusion reflection measurements for real‐time cancer detection.J. Biophotonics20136218819610.1002/jbio.20120001622461296
    [Google Scholar]
  108. JainP.K. El-SayedI.H. El-SayedM.A. Au nanoparticles target cancer.Nano Today200721182910.1016/S1748‑0132(07)70016‑6
    [Google Scholar]
  109. ZhuJ. LiJ. ZhaoJ. Optimizing the plasmonic sensing of RNA folding based on local refractive index change of gold nanorod.Appl. Surf. Sci.201327526426810.1016/j.apsusc.2012.12.111
    [Google Scholar]
  110. NoguezC. Surface plasmons on metal nanoparticles: The influence of shape and physical environment.J. Phys. Chem. C2007111103806381910.1021/jp066539m
    [Google Scholar]
  111. TianY. ZhangL. ShenJ. An individual nanocube-based plasmonic biosensor for real-time monitoring the structural switch of the telomeric G-Quadruplex.Small201612212913292010.1002/smll.20160004127106517
    [Google Scholar]
  112. HuY. ZhangL. ZhangY. Plasmonic nanobiosensor based on hairpin DNA for detection of trace oligonucleotides biomarker in cancers.ACS Appl. Mater. Interfaces2015742459246610.1021/am507218g25546579
    [Google Scholar]
  113. CharkiewiczR. SulewskaA. MrozR. Serum Insights: Leveraging the power of miRNA profiling as an early diagnostic tool for non-small cell lung cancer.Cancers20231520491010.3390/cancers1520491037894277
    [Google Scholar]
  114. CacheuxJ. BancaudA. LeichléT. CordelierP. Technological challenges and future issues for the detection of circulating microRNAs in patients with cancer.Front Chem.2019781510.3389/fchem.2019.0081531850308
    [Google Scholar]
  115. GajdaE. GodlewskaM. MariakZ. NazarukE. GawelD. Combinatory treatment with miR-7-5p and drug-loaded cubosomes effectively impairs cancer cells.Int. J. Mol. Sci.20202114503910.3390/ijms2114503932708846
    [Google Scholar]
  116. MoldovanL. BatteK.E. TrgovcichJ. WislerJ. MarshC.B. PiperM. Methodological challenges in utilizing miRNA as circulating biomarkers.J. Cell. Mol. Med.201418337139010.1111/jcmm.1223624533657
    [Google Scholar]
  117. UsmanF. DennisJ.O. AljameelA.I. Plasmonic biosensors for the detection of lung cancer biomarkers: A review.Chemosensors202191132610.3390/chemosensors9110326
    [Google Scholar]
  118. BeeramR. VepaK.R. SomaV.R. Recent trends in SERS-based plasmonic sensors for disease diagnostics, biomolecules detection, and machine learning techniques.Biosensors202313332810.3390/bios1303032836979540
    [Google Scholar]
  119. Blanco-FormosoM. Alvarez-PueblaR.A. Cancer diagnosis through SERS and other related techniques.Int. J. Mol. Sci.2020216225310.3390/ijms2106225332214017
    [Google Scholar]
  120. KyriakidesT.R. RajA. TsengT.H. 2021; Biocompatibility of nanomaterials and their immunological properties.Biomed. Mater.202116404200510.1088/1748‑605X/abe5fa
    [Google Scholar]
  121. AnikM.I. MahmudN. Al MasudA. HasanM. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review.Nano Select20223479282810.1002/nano.202100255
    [Google Scholar]
  122. ChiuN.F. YangH.T. High-sensitivity detection of the lung cancer biomarker CYFRA21-1 in serum samples using a Carboxyl-MoS2 functional film for SPR-based immunosensors.Front. Bioeng. Biotechnol.2020823410.3389/fbioe.2020.0023432274382
    [Google Scholar]
  123. ZhangH. SaloD. KimD.M. KomarovS. TaiY.C. BerezinM.Y. Penetration depth of photons in biological tissues from hyperspectral imaging in shortwave infrared in transmission and reflection geometries.J. Biomed. Opt.2016211212600610.1117/1.JBO.21.12.12600627930773
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366325862241031071038
Loading
/content/journals/mirna/10.2174/0122115366325862241031071038
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Au-Nanocube; biomarker validation; EGFR; microRNA; miR-7-5p; NSCLC; SPR-based probe
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test