Recent Patents on Mechanical Engineering - Volume 17, Issue 4, 2024
Volume 17, Issue 4, 2024
-
-
Railroad Catenary Insulator Fault Detection Based on Improved Faster R-CNN
Authors: Lingzhi Yi, Tengfei Dong, Yahui Wang, Haixiang She, Chuyang Yi and Guo YuBackground: The railroad catenary insulator, which is a crucial component of the catenary system and is situated between the pillar and wrist arm, is crucial for electrical conductor isolation, electrical equipment insulation, mechanical load bearing, anti-fouling, and anti-leakage. The catenary insulators will experience tarnished flash, breakage, insulation strength deterioration, and other issues as a result of the long-term outside unfavorable working circumstances. The train electrical system's ability to operate normally is greatly hampered by these problems. Although there are many patents and articles related to insulator fault detection, the precision is not high enough. Therefore, it is crucial to improve the precision of catenary insulator fault detection. Objective: An improved region-based convolutional neural networks (Faster R-CNN)-based fault detection method for railway catenary insulators is proposed in response to the long detection time of the conventional railroad catenary insulator fault, the low precision of the catenary insulator fault detection for occlusion and truncation, the poor performance of multi-scale object detection, and the processing of class unbalance problem. Methods: The Faster R-CNN is optimized from four perspectives: feature extraction, feature fusion, candidate box screening, and loss function, in accordance with the properties of the catenary insulator. First, to solve the problem of multi-scale catenary insulator fault detection, convolutional block attention module (CBAM) and feature pyramid network (FPN) are used to fuse the deep feature and shallow features of the image. This results in a feature map with more critical semantic information and higher resolution. After that, the weighted non-maximum suppression (WNMS) algorithm improved by distance-intersection over union (DIOU) and Gaussian weighting function is used instead of the traditional NMS algorithm, which effectively introduces the overlap of detection frames into the confidence level and makes full use of the effective information of the detection frames. Finally, the improved Focal loss is used as the classification loss, and the focusing parameter and the balance factor of the Focal Loss are adjusted dynamically to solve the problem of sample imbalance and difficult sample identification in the model better. Results: The effects of SSD, YOLOV3, traditional Faster R-CNN and improved Faster R-CNN models are tested on the contact network insulator fault detection dataset constructed in this paper, and the experimental results show that the improved Faster R-CNN has higher precision, recall, and mAP compared to the other detection models, which reach 94.31%, 96.68% and 95.22%, respectively. Conclusion: The results of the experiments demonstrate that this method may successfully detect the faults in different scale catenary insulators. It can effectively detect truncated, obscured faulty catenary insulators. It has higher precision and recall and provides a reliable reference for maintaining faulty insulators in railway catenary.
-
-
-
Position Control of Electro-hydraulic Servo System Based on Repetitive Control Strategy
Authors: Bing Zhang, Michael Enyan, Rao Junsen, Zhang Xinxing and Liu HongyuBackground: When performing repetitive work in an electro-hydraulic servo system, the expected tracking signals are often periodic signals, such as trigonometric functions. For this kind of electro-hydraulic servo system, repetitive control is one of the most ideal control strategies. Objective: The objective of this patent technology is to improve the position-tracking performance of the electro-hydraulic servo system and minimize tracking errors by designing and implementing a repetitive control strategy. Methods: The study models an electro-hydraulic servo system, designs a stabilizing controller, and develops a plug-in repetitive controller to enhance EHSS tracking. The regeneration spectrum is used as a stability criterion, and performance is evaluated using statistical metrics like Mean Square Error (MSE), Root Mean Square Error (RMSE), and standard deviation of the tracking error along with tracking performance and steady-state error. Results: The developed controller, validated through simulation analysis and real-time experiments, significantly reduces tracking error and enhances system position tracking accuracy, demonstrating its effectiveness. For instance, the repetitive control strategy outperforms PID and backstepping controllers at 30 mm with 0.5 Hz, achieving an error of 0.2 with an RMSE of 0.0924 and σ of 0.0878. Similar trends are observed at various test conditions, highlighting the consistent and robust performance of the designed repetitive controller. Additionally, the designed repetitive controller demonstrates an average improvement of 75.175% and 62.97% compared to the proportional- integral-derivative and backstepping controllers, respectively. Conclusion: The designed controller provides technical support for position control of the electrohydraulic servo system, achieves position control requirements, and significantly improves positioning accuracy and response.
-
-
-
A Study on the Steady and Dynamic Performance of Dry Gas Seals with Combined Superelliptical Grooves and Holes on the End Face
Authors: Yushi Li, Yuan Chen, Yuntang Li, Xiaolu Li, Bingqing Wang and Jie JinBackground: Enhancing the stability and leakage control of Dry Gas Seals (DGS) under high parameters has been a crucial research focus. The design of end-face groove structures and surface texture shapes has been an essential aspect of DGS studies aimed at improving performance. Objective: The proposed end-face gas seal utilizes superelliptical grooves and holes to improve its performance, aiming to obtain a patent. The use of superelliptical curves allows for a more precise and efficient geometric representation, resulting in a better sealing effect. Methods: A theoretical analysis model for the steady and dynamic behavior of the seal is established using the lubrication theory and perturbation methods. The study investigates the distribution patterns of gas film pressure on the sealing end-face and gas flow characteristics within the film. This approach provides a new perspective for understanding seal performance and offers a theoretical basis for optimizing seal design. Results: The results indicate that the combined end-face structure with grooves and holes ensures good sealing stability and effectively enhances leakage control performance. By optimizing the design of the superelliptical groove and holes on the end face, the performance of DGS can be significantly improved. Conclusion: Within the parameter range studied, better steady-state performance is achieved for θ=40~80°, v=1.3~1.4, u=1~2, β=0.6~0.7, and λ=1.0~1.5. In addition, better dynamic performance is observed for θ=80~120°, v=1.1~1.2, u=2~3, β=0.9~1.0, and λ=2.0~2.5.
-
-
-
Energy Consumption Optimization for the Cold Source System of a Hospital in Shanghai - Part II: Operation Control Strategy Using EnergyPlus
Authors: Minglu Qu, Xinlin Zhang, Xiang Luo, Xufeng Yan, Zhao Li and Lihui WangBackground: Energy consumption is a common problem in hospital buildings, which consume twice that of other public buildings. Therefore, it is of great significance to study the control strategy for the efficient operation of the cold source system. Objective: The study aimed to explore an efficient operation control strategy for cold source system, and new technologies and patents have emerged for the same. This work, utilizing EnergyPlus, modelled and analyzed the cold source system in a Shanghai hospital to optimize its operation. Methods: The accuracy of the simulation was verified by comparing it with experimental data. Based on the simulation results, the factors influencing the energy efficiency of the cold source system were analyzed, and then the operation control strategy of the cold source system was obtained. The XGBoost was used to fit the simulation results, and the operation strategy under full operating conditions was obtained. Results: The simulated results indicated the average energy saving rates during the summer season of the chillers, the chilled water pumps, the cooling water pumps, and the cooling towers to be 6.5%, -4.0%, 38.3%, and 5.4%, respectively, under the optimal operation control strategy. The average system Coefficient of Performance (COP) of the cold source system was 5.9, and the total energy consumption was 957016.3 kW·h, which was 7.1 % energy saving compared to that under the original operation. Conclusion: The conclusions of this study could provide references for the hospital buildings’ cold source system and group control method. This study has important practical significance for the efficient control strategy of cold source systems.
-
-
-
Thermal Characteristics of Oil Film in Critical Lubrication State of Heavy Hydrostatic Bearing
Authors: Zhang Yanqin, Wu Ye, Li Jiabao, Wang Mulan and Quan ZhenBackground: Lubrication failure has always been a concern in the research of heavy hydrostatic bearings. A preliminary study found that under a certain working condition, the heavy hydrostatic bearing will appear in the condition of zero local flow of oil film, which is called a critical lubrication state. It produces a significant thermal accumulation effect and affects the lubrication performance of the bearing. Objective: This paper takes Q1-205 double rectangular cavity hydrostatic thrust bearing as the research object and adopts the research method combining theoretical analysis, simulation, and experimental test to analyze the temperature rise and characteristics of the bearing when it is in critical lubrication state under different working conditions. Methods: The finite volume method is used to simulate the critical lubrication state under the condition of common load and rotating speed, and the corresponding operating parameters of the critical lubrication of heavy static support are obtained. Results: It is found that when the oil film is in the critical lubrication state, the low temperature zone is concentrated at the bearing position of the oil film, while the high temperature zone is concentrated at the counter-current side sealing edge. Conclusion: The oil film's local temperature rise is intensified, and the heat accumulation phenomenon is serious because the heat cannot be taken away in time.
-
-
-
Modeling Pressure Effect of Circular Tourniquet Based on Digital Arm
Authors: Yuping Qin, Man Zhang, Jiangming Kuang and Shuang ZhangBackground: This study aims to investigate displacement deformation of human tissue in the force region subjected to annular pressure. Methods: In this patent, 727 images of a Chinese digital human arm, captured from shoulder to fingertip, were used as the reconstruction data. The geometric entities of tissue structure were obtained after tissue segmentation, three-dimensional modeling, and reverse engineering to establish the working mechanism model of the tourniquet of the human forearm in the finite element simulation software (COMSOL Multiphysics 5.5). By setting different parameter models (tourniquet pressure and width models), we analyzed the force conduction mechanism and the displacement deformation mechanism of the viscoelastic and rigid tissues of the forearm when subjected to annular pressure. Results: Modeling analysis showed that when a pressure of 800 kPa was applied on a width of 40 mm, the annular pressure on the viscoelastic tissues was converted into displacement deformation, thus changing the tissue structure in the body and realizing the hemostatic effect of the tourniquet. In the case of fixed tourniquet width but variable tourniquet pressure, with the gradual increase of the pressure, displacement deformation showed an increasing trend. When the externally applied pressure was fixed and the tourniquet width was different, with the gradual increase of the tourniquet width, the displacement deformation showed a decreasing trend. Conclusion: This patent study demonstrates that both the amount of externally applied pressure and the width of the tourniquet affect the hemostatic effect of the tourniquet. The hemostatic effect on the damaged body will be more obvious under a small tourniquet width and large pressure.
-
Volumes & issues
Most Read This Month
