Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Background

Bone external fixation technology is an important therapeutic approach for limb correction, primarily involving a class of external fixation correction mechanisms. It has achieved good results in limb lengthening and correcting deformities to restore limb function. In clinical practice, existing correction mechanisms face challenges such as high resistance between components, complex installation procedures, and high precision requirements for installation, requiring manual adjustment by physicians, which limits precise control and quantification of correction parameters.

Objective

To address these issues, an automated correction bone external fixation robot was designed based on traditional Ilizarov external fixation devices (TIEFD).

Methods

By increasing the number of unidirectional hinge connections, the robot can effectively reduce motion resistance. Subsequently, the robot was combined with the tibia for correction motion simulation, obtaining the motion parameters of the deformed bones during the correction process based on the trajectory of the tibia's point mass. Finally, correction motion experiments and finite element analysis (FEA) were conducted on the robot combined with a control system.

Results

The results showed that the robot could precisely control correction parameters, with the error range for rotational correction not exceeding 0.5 radians and the error range for traction correction not exceeding 0.2 mm. FAE, based on corrective force data, concluded that compared to (TIEFD), the robot could reduce bone stress by 16 MPa during the correction process.

Conclusion

The robot effectively reduces patient discomfort, this provides a reliable theoretical basis for bone external fixation technology and holds positive significance for the treatment of skeletal deformities. The application of patent-worthy robotic design represents a forward step in orthopedic corrective systems.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976328647240815065103
2024-08-29
2025-09-24
Loading full text...

Full text loading...

References

  1. XiaH.T. Practical bone external fixation.People's Health Publishing House2013
    [Google Scholar]
  2. SuP. WangS. LaiY. ZhangQ. ZhangL. Screw analysis, modeling and experiment on the mechanics of tibia orthopedic with the ilizarov external fixator.Micromachines (Basel)2022136932210.3390/mi13060932 35744545
    [Google Scholar]
  3. GubinA.V. BorzunovD.Y. MalkovaT.A. The Ilizarov paradigm: Thirty years with the Ilizarov method, current concerns and future research.Int. Orthop.20133781533153910.1007/s00264‑013‑1935‑0 23712212
    [Google Scholar]
  4. KaniK.K. PorrinoJ.A. ChewF.S. External fixators: Looking beyond the hardware maze.Skeletal Radiol.202049335937410.1007/s00256‑019‑03306‑w 31515594
    [Google Scholar]
  5. MartyniukB. MorasiewiczP. WudarczykS. DraganS.F. FilipiakJ. The impact of configuration of the Ilizarov fixator on its stiffness and the degree of loading of distraction rods.Clin. Biomech. (Bristol, Avon)201963798410.1016/j.clinbiomech.2019.02.020 30849649
    [Google Scholar]
  6. LapidusL. OdesskyJ. ShitritR. CopeliovichL. Design of ilizarov fixator permitting simultaneous and independent clubfoot correction.Orthopaedic Proceedings200890513
    [Google Scholar]
  7. QinS.H. Ilizarov technique advances the development of external fixed limb reconstruction.Orthopedics20211203193194
    [Google Scholar]
  8. YaoY.F. YangY.L. GuoJ.L. PeiS. SunL.N. A review of post-operative knee rehabilitation robot research.Jixie Gongcheng Xuebao2021570511810.3901/JME.2021.05.001
    [Google Scholar]
  9. ChenX. LiZ. ZhangX. A new robotically assisted system for total knee arthroplasty: A sheep model study.Int. J. Med. Robot.2021174e226410.1002/rcs.2264 33855810
    [Google Scholar]
  10. AydiI.N.A. U Ü N MK. A new ring fixator system for automated bone fixation.Int. J. Med. Robot.2024203e2637e710.1002/rcs.2637 38783626
    [Google Scholar]
  11. ZhouN. ZhangX. WangZ. MaM. Application of Ilizarov technique on the treatment of radius bone defect after open fracture.Asian J. Surg.20234631343134510.1016/j.asjsur.2022.08.105 36114067
    [Google Scholar]
  12. MengL. DongH.T. HouJ. LiuY. MingD. Soft exoskeleton robot facing to lower-limb rehabilitation: A narrative review.Yiqi Yibiao Xuebao20215705118
    [Google Scholar]
  13. GessmannJ. FrielerS. KönigshausenM. Accuracy of radiographic measurement techniques for the Taylor spatial frame mounting parameters.BMC Musculoskelet. Disord.202122128410.1186/s12891‑021‑04084‑0 33736621
    [Google Scholar]
  14. MeselhyM.A. EssawyO.M. Outcome of correction of complex femoral rotational deformities using Taylor Spatial Frame in skeletally immature patients: A retrospective case series.Curr. Orthop. Pract.202132659159610.1097/BCO.0000000000001044
    [Google Scholar]
  15. VilenskyV.A. PozdeevA.P. BukharevE.V. Orthopedic hexapods: History, present and prospects. Pediatric Traumatology.Orthopedics and Reconstructive Surgery201516169
    [Google Scholar]
  16. TaoY. LiuH.T. WangT.M. HanD.M. ZhaoG. China’s service robot technology research progress and industrialization development trend.J Mech Engin20220906119
    [Google Scholar]
  17. ZhengY. JingX.B. LiG.L. Human-machine intelligent synergy in the field of medical rehabilitation robotics.J. Instrum.2017381023732380
    [Google Scholar]
  18. GantsoudesG.D. FragomenA.T. RozbruchS.R. Intraoperative measurement of mounting parameters for the Taylor Spatial Frame.J. Orthop. Trauma201024425826210.1097/BOT.0b013e3181c2f7f0 20335762
    [Google Scholar]
  19. SibbelJ. AbdulkarimA. FisherR. KrkovicM. Eccentric Taylor spatial frame placement for the correction of femoral fracture deformity: A novel technique.Eur. J. Orthop. Surg. Traumatol.202030586987510.1007/s00590‑020‑02639‑w 32124073
    [Google Scholar]
  20. WuY.Y. PlakseychukA. ShimadaK. Compact two degrees-of-freedom external fixator system for correction of persistent clubfoot deformity.J. Med. Device.201913202100510.1115/1.4043109
    [Google Scholar]
  21. SunM. WangS. LiB. SongZ. HuY. A new parallel external fixator design for correcting ankle and foot sagittal plane deformities1.J. Med. Device.201610303093210.1115/1.4033738
    [Google Scholar]
  22. XuS. MominM. AhmedS. Illuminating the brain: Advances and perspectives in optoelectronics for neural activity monitoring and modulation.Adv. Mater.20233542230326710.1002/adma.202303267 37726261
    [Google Scholar]
  23. XuS. ScottK. ManshaiiF. ChenJ. Heart-brain connection: How can heartbeats shape our minds?Matter2024751684168710.1016/j.matt.2024.03.015
    [Google Scholar]
  24. XuS. LiuY. LeeH. LiW. Neural interfaces: Bridging the brain to the world beyond healthcare.Exploration20242023014610.1002/EXP.20230146
    [Google Scholar]
  25. HaoZ.X. LengH.J. QuC.Y. WanC. Study of the biomechanical behaviour of the bone and knee joint.J Solid Mechanics2010316603612
    [Google Scholar]
  26. Fantini PaganiC.H. PotthastW. BrüggemannG.P. The effect of valgus bracing on the knee adduction moment during gait and running in male subjects with varus alignment.Clin. Biomech. (Bristol, Avon)2010251707610.1016/j.clinbiomech.2009.08.010 19758735
    [Google Scholar]
  27. MitousoudisA.S. MagnissalisE.A. KourkoulisS.K. A biomechanical analysis of the Ilizarov external fixator.EPJ Web of Conf.201062100210.1051/epjconf/20100621002
    [Google Scholar]
  28. SuP. LaiY.L. ZhangL. LiuL. LiJ. Design and analysis of centering orthopedic bone external fixation robot.Yiqi Yibiao Xuebao20224311262273
    [Google Scholar]
  29. ZhangQ. WuZ.D. LiuL. WeiG.H. PengL. Finite element analysis of an externally rotated spiral fracture of the middle and lower tibia fixed with medial and lateral anatomical locking plates.Tissue Eng Res China2022263657505754
    [Google Scholar]
  30. ZhangG.J. WangL.L. DengX.P. A multi-case optimization modeling approach for the finite element model of the 50~(th) human calf in China.Zhongguo Shengwu Yixue Gongcheng Xuebao20173602195204
    [Google Scholar]
  31. LiH. GaoS. ChenZ. YinY. Structural design and dynamic characteristic analysis of short-column micro piezoelectric power actuator.Recent Pat. Mech. Eng.202417214315610.2174/0122127976284214231220051410
    [Google Scholar]
  32. AhmadianM.T. JafarishadH. Design and analysis of a 3-link micro-manipulator actuated by piezoelectric layers.Mechanism Mach. Theory2017112436010.1016/j.mechmachtheory.2016.12.002
    [Google Scholar]
  33. XieB. LiuJ. ChenY. Recent patents on control system of EDM machine tool.Recent Pat. Mech. Eng.202013432833910.2174/2212797613999200604154918
    [Google Scholar]
  34. ZhengJ.J. SunZ.J. YanH. YangJ.L. GuoY. QianF. Master slave controlled robotic system based on hollow ultrasonic motor for vascular interventional surgery.J Vibr Measure Diag2021415976983
    [Google Scholar]
  35. HuangH.P. ChiG.X. WangZ.L. Research on data flow control technology of EDM CNC system software.Manuf Technol Mach Tools2018104952
    [Google Scholar]
  36. ZhangH. MaS. LiM. JiangH. LiJ. Recent reviews on machine vision-based 3D reconstruction.Recent Pat. Mech. Eng.2022151122410.2174/2212797614666210308123252
    [Google Scholar]
  37. LiZ. ZhangX. DingL. Deep learning approach for guiding three‐dimensional computed tomography reconstruction of lower limbs for robotically‐assisted total knee arthroplasty.Int. J. Med. Robot.2021175e2300e010.1002/rcs.2300 34109730
    [Google Scholar]
  38. Le MoalJ. PeillonC. DacherJ.N. BasteJ.M. Three-dimensional computed tomography reconstruction for operative planning in robotic segmentectomy: A pilot study.J. Thorac. Dis.201810119620110.21037/jtd.2017.11.144 29600049
    [Google Scholar]
  39. XuS.M. XiaoX. ManshaiiF. ChenJ. Injectable fluorescent neural interfaces for cell-specific stimulating and Imaging.Nano Lett.2024241647034716
    [Google Scholar]
  40. RoscaS.D. LebaM. Using brain-computer-interface for robot arm control.MATEC Web of Conf201712108006
    [Google Scholar]
  41. JiangH. WangR. ZhengZ. Short report: Surgery for implantable brain-computer interface assisted by robotic navigation system.Acta Neurochir. (Wien)202216492299230210.1007/s00701‑022‑05235‑5 35604492
    [Google Scholar]
  42. QuilesE. SuayF. CandelaG. ChioN. JiménezM. Álvarez-KurogiL. Low-cost robotic guide based on a motor imagery brain–computer interface for arm assisted rehabilitation.Int. J. Environ. Res. Public Health202017369910.3390/ijerph17030699 31973155
    [Google Scholar]
  43. CromackD.T. HandT.L. HellingD. SandovalP. WiggintonR.E. External fixation for the correction of bone deformity and trauma.US Patent 119508082024
/content/journals/meng/10.2174/0122127976328647240815065103
Loading
/content/journals/meng/10.2174/0122127976328647240815065103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test