Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Background

Plasma spraying, a surface modification technology, was performed to deposit Inconel718 and CNT-reinforced Inconel718 coatings on T91 boiler steels. The coatings were expected to improve the corrosion resistance of boiler steels, thus extending their service life at high temperatures. The deposited coatings were characterized in terms of microstructure, porosity, microhardness, SEM, and EDAX.

Materials and Methods

Through this representative patent method, the deposited coatings brought about a considerable porosity reduction and had an impact on the microhardness. Moreover, it was observed that in Inconel718 coatings reinforced by CNTs, the carbon nanotubes were homogeneously distributed, increasing the uniformity of the coatings, as well as their strength. Additionally, the uniformity of the coating represents a testimony to its enhanced resistance to corrosion.

Results

Based on the testing results, the thickness of the coating achieved was 215 ± 5 microns. The addition of CNTs to Inconel718 coatings had reduced the porosity of the coatings to 2.2% from 3.8% and improved the microhardness of the coatings to 968 Hv from 679 Hv. This further improved the corrosion protection of T91 boiler steels. A uniform distribution of CNTs throughout the coating matrix was observed.

Conclusion

Therefore, based on the analysis conducted, it possible to ascertain that the plasma-sprayed CNT-reinforced Inconel718 coatings have a veritable impact on promoting the corrosion resistance of boiler steels. It follows that such technology reduces the dormant functionality of boilers in industries and facilitates efficient service and industry development for a variety of industries.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976325010240813053321
2024-08-28
2025-09-24
Loading full text...

Full text loading...

References

  1. LiN. TariqN.H. CheY. Corrosion-resistant thermal spray coatings for low-alloy steel in contact with molten nitrate salts in solar power plants.Sol. Energy Mater. Sol. Cells202325911243210.1016/j.solmat.2023.112432
    [Google Scholar]
  2. JafariR. SadeghimereshtE. ShahrabiF.T. MarkocsanN. JoshiS. KCI-induced corrosion behavior of HVAF-sprayed Ni-based coatings in ambient air International Thermal Spray Conference and Exposition.7 Jun 2017, Düsseldorf, pp.946 - 950
    [Google Scholar]
  3. NaveenaB.E. KeshavamurthyR. MuthiyaS.J. Effect of plasma sprayed flyash based composite coatings on corrosion resistance.Heliyon202394e1555210.1016/j.heliyon.2023.e15552 37151688
    [Google Scholar]
  4. SadeghimereshtE. MarkocsanN. NylénP. BjörklundS. Corrosion performance of bi-layer Ni/Cr2 C3 –NiCr HVAF thermal spray coating.Appl. Surf. Sci.201636947048110.1016/j.apsusc.2016.02.002
    [Google Scholar]
  5. Smuga-OttoI SzklarzKE Developing a methodology for performance evaluation of metallic thermal spray coatings for oil and gas industry service.CORROSION 98March 1998, San Diego, California, pp.NACE-98508
    [Google Scholar]
  6. FenderT.D. Thermal spray high performance polymer coatings.Mater. Technol.1996111162010.1080/10667857.1996.11752653
    [Google Scholar]
  7. SinghP. PanditN. KeshriA.K. Plasma-sprayed GNP/CNT reinforced lanthanum-cerate coatings: Hot corrosion assessment in Na2SO4-V2O environment.Surf. Coat. Tech.202448113067610.1016/j.surfcoat.2024.130676
    [Google Scholar]
  8. WuD. LiY. YuanZ. XiangL. WeiX. ZhangC. Mechanism of Mo content on improving the high-temperature corrosion performance of APS sprayed Ni-clad Al coatings in simulated biomass corrosion condition.Surf. Coat. Tech.202347513011710.1016/j.surfcoat.2023.130117
    [Google Scholar]
  9. TinneaJ. Field performance of sprayed zinc anodes in controlling corrosion of steel reinforced concrete.CORROSION 98March 22 1998, San Diego, California, pp.NACE-98510
    [Google Scholar]
  10. BalanK.N. ManimaranS. Prediction of best combination of process parameters for detonation gun coating process through Taguchi technique.AMR2014984–98552052510.4028/www.scientific.net/AMR.984‑985.520
    [Google Scholar]
  11. KulkarniS. SinghN.S. TiwariJ. SrinivasaV.B. KumarP.R. KumarS.A. Study of high temperature coatings using various substrate materials.IOP Conference Series Earth and Environmental Science20231110101209510.1088/1755‑1315/1110/1/012095
    [Google Scholar]
  12. OksaM. AuerkariP. SalonenJ. VarisT. Nickel-based HVOF coatings promoting high temperature corrosion resistance of biomass-fired power plant boilers.Fuel Process. Technol.201412523624510.1016/j.fuproc.2014.04.006
    [Google Scholar]
  13. AbbasiZ.A. MateenA. NiazA. Ur RehmanM.A. WadoodA. Development and characterization of natural chromite coating on metal substrate using the plasma spray process.ACS Omega2023817151931520210.1021/acsomega.3c00194 37151503
    [Google Scholar]
  14. GopalS. SoundararajanR. SakthivelV. Investigation of High-Velocity Oxy-Fuel Thermal Spray Coating over Mild Steel Surface as Replacement for Stainless Steel Material.SAE Technical Paper2021-28-0261202110.4271/2021‑28‑0261
    [Google Scholar]
  15. HearleyJ.A. LiuC. LittleJ.A. SturgeonA.J. Corrosion of Ni–Al high velocity oxyfuel (HVOF) thermal spray coating by fly ash and synthetic biomass ash deposits.Br. Corros. J.200136211112010.1179/000705901101501532
    [Google Scholar]
  16. GuptaN. SinghS.K. PandeyS.M. Tribological characterisation of thermal sprayed CrC alloyed coating–A review.Adv Mater Process Technol2020202012410.1080/2374068X.2020.1793262
    [Google Scholar]
  17. WaldiM. BasukiE.A. PrawaraB. Quality characterization of HVOF thermal spray coating with NiCr matrix composite for protection application of coal fired boiler tubes.IOP Conf Ser Mater Sci Eng2018432101201110.1088/1757‑899X/432/1/012011
    [Google Scholar]
  18. TakataniY. Surface treatment.Zairyo2019681748010.2472/jsms.68.74
    [Google Scholar]
  19. KrishnaL.R. SenD. RaoY.S. RaoG.V.N. SundararajanG. Thermal spray coating of aluminum nitride utilizing the detonation spray technique.J. Mater. Res.200217102514252310.1557/JMR.2002.0366
    [Google Scholar]
  20. KimW.J. KimJ.G. KimY.S. OzdemirI. TsunekawaY. Wear-corrosion of cast iron thermal spray coating on Al alloy for automotive components.Met. Mater. Int.200713431732110.1007/BF03027888
    [Google Scholar]
  21. Di MarzioD. ChuS. KleinJ. PoveromoL. BroganJ. Liquid crystalline polymer (LCP) hybrid coating process development.SAMPE 2002May 12-16, 2002, Long Beach, CA, pp. 1-8
    [Google Scholar]
  22. IshikawaK. SuzukiT. TobeS. KitamuraY. Resistance of thermal sprayed duplex coating composed of Al and Ni-Cr alloy against aqueous corrosion.J Therm Spray Tech199810520525
    [Google Scholar]
  23. BluniS.T. MarderA.R. Effects of thermal spray coating composition and microstructure on coating response and substrate protection at high temperatures.Corrosion199652321321810.5006/1.3292116
    [Google Scholar]
  24. PadmavathiG. SaradaB.N. ShanmuganathanS.P. PadminiB.V. MohanN. Effects of high velocity oxy fuel thermal spray coating on mechanical and tribological properties of materials-A review.Mater. Today; Proceed2019272152215710.1016/j.matpr.2019.09.085
    [Google Scholar]
  25. KimY-J. AndresenP.L. MoranE. GrayD. Modification of surface property for controlling the type 304 stainless steel electrochemical corrosion potential in 288°C water.Corrosion200561764865410.5006/1.3278200
    [Google Scholar]
  26. KiapeS. GlavaM. GeorgatisE. KamnisS. MatikasT.E. KarantzalisA.E. CoCrFeMnNi0.8V/Cr3C2-Ni20Cr high-entropy alloy composite thermal spray coating: Comparison with monolithic CoCrFeMnNi0.8V and Cr3C2-Ni20Cr coatings.Coatings202414440210.3390/coatings14040402
    [Google Scholar]
  27. CaminhaI ZengC PaesMP MonteiroM RizzoF Internal oxidation of an aluminum coated steel under oxidant atmosphere in a fluid catalytic cracking regeneratorJ Corrosion Sci Engin200366
    [Google Scholar]
  28. SadeghimereshtE. MarkocsanN. NylénP. A comparative study of corrosion resistance for HVAF-sprayed Fe- and Co-based coatings.Coatings2016621610.3390/coatings6020016
    [Google Scholar]
  29. PrasharG. VasudevH. High-temperature oxidation behavior of direct-aged bimodal Al2O3-reinforced Inconel625 plasma sprayed composite coatings.Surf. Coat. Tech.202347513015610.1016/j.surfcoat.2023.130156
    [Google Scholar]
  30. KamalS. SharmaK.V. Srinivasa RaoP. MamatO. Thermal Spray Coatings for Hot Corrosion Resistance.In: Engineering Applications of Nanotechnology Topics in Mining, Metallurgy and Materials Engineering.Springer201710.1007/978‑3‑319‑29761‑3_10
    [Google Scholar]
  31. LiC.J. LuoX.T. DongX.Y. ZhangL. LiC.X. Recent research advances in plasma spraying of bulk-like dense metal coatings with metallurgically bonded lamellae.J Thermal Spray Technol2022311-252710.1007/s11666‑022‑01327‑x 37520913
    [Google Scholar]
  32. SinghS. GoyalK. BhatiaR. A review on protection of boiler tube steels with thermal spray coatings from hot corrosion.Mater. Today Proc.20225637938310.1016/j.matpr.2022.01.219
    [Google Scholar]
  33. El RayesM.M. AbdoH.S. KhalilK.A. Erosion - Corrosion of cermet coating.Int. J. Electrochem. Sci.201381117113710.1016/S1452‑3981(23)14085‑5
    [Google Scholar]
  34. HsiungJ.C. KungH.K. ChenH.S. ChangK.Y. Applications of thermal spray coating in artificial knee joints.Life Sci. J.2012917
    [Google Scholar]
  35. GoyalR. SidhuB.S. ChawlaV. Hot corrosion performance of plasma-sprayed multiwalled carbon nanotube-Al2O3 composite coatings in a coal-fired boiler at 900°C.J. Mater. Eng. Perform.20202995738574910.1007/s11665‑020‑05070‑8
    [Google Scholar]
  36. MatthewsS. JamesB. Review of thermal spray coating applications in the steel industry: Part 2 - Zinc pot hardware in the continuous galvanizing line.J Thermal Spray Technol20101961277128610.1007/s11666‑010‑9519‑7
    [Google Scholar]
  37. WangJ. Research progress on performance optimization methods and controlling mechanisms of HVOF coatings.Tribology202343121486150410.16078/j.tribology.2022207
    [Google Scholar]
  38. WenJ. LiH. Thermal spray coatings for protection against microbiologically induced corrosion: Recent advances and future perspectives.J Thermal Spray Technol202231482984710.1007/s11666‑022‑01345‑9
    [Google Scholar]
  39. BakkerW.T. BloughJ.L. KungS.C. BanfieldT.L. CunninghamP. Long term testing of protective coatings and weld overlays in a supercritical boiler, retrofitted with low nox burners.CORROSION 2002April 07 2002, Denver, Colorado, pp.NACE-02384
    [Google Scholar]
  40. ShawB.A. Study of the protection mechanisms in aluminum and zinc-aluminum thermal spray coatings on steel in artificial ocean water.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021608579&partnerID=40&md5=438227b55aee7cf58dff36d6c935e259(accessed on 17-7-2024)1984
  41. MaliH.S. MannaA. Optimum selection of abrasive flow machining conditions during fine finishing of Al/15 wt% SiC-MMC using Taguchi method.Int. J. Adv. Manuf. Technol.2010509-121013102410.1007/s00170‑010‑2565‑y
    [Google Scholar]
  42. SchüleinR.W. BornM. KorbJ. Thermal spray coatings to reduce corrosion and erosionAvailable from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33747078735&partnerID=40&md5=4ecb063a5afb2db4a380f0f92453422c(accessed on 17-7-2024)2006
  43. NascimentoM.P. SouzaR.C. MiguelI.M. PigatinW.L. VoorwaldH.J.C. Effects of tungsten carbide thermal spray coating by HP/HVOF and hard chromium electroplating on AISI 4340 high strength steel.Surf. Coat. Tech.20011382-311312410.1016/S0257‑8972(00)01148‑8
    [Google Scholar]
  44. MudgilM. GuptaN. NagpalM. PawarP. Nanotechnology: A new approach for ocular drug delivery system.Int. J. Pharm. Pharm. Sci.201242105112
    [Google Scholar]
  45. FukubayashiH.H. Thermal spray coatings, failure and prevention.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-11144305044&partnerID=40&md5=e37a1c0eed330e5ec52618a6af8fbafb(accessed on 17-7-2024)2003
  46. SadeghiE. MarkocsanN. JoshiS. Advances in corrosion-resistant thermal spray coatings for renewable energy power plants: Part II—effect of environment and outlook.J Thermal Spray Technol20192881789185010.1007/s11666‑019‑00939‑0
    [Google Scholar]
  47. DixitS. RodriguezS. JonesM.R. Refractory high-entropy alloy coatings for high-temperature aerospace and energy applications.J Thermal Spray Technol20223141021103110.1007/s11666‑022‑01324‑0
    [Google Scholar]
  48. van EschH. LovelaceJ.B. NassD.E. Refurbishment extends gas turbine bucket service life.Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0029322833&partnerID=40&md5=28d8c899621071dad94bb5ba78eec388(accessed on 17-7-2024)1995
  49. TiwariS. MishraS.B. Post annealing effect on corrosion behavior, bacterial adhesion, and bioactivity of LVOF sprayed hydroxyapatite coating.Surf. Coat. Tech.202140512650010.1016/j.surfcoat.2020.126500
    [Google Scholar]
  50. SinghH. SidhuT.S. KalsiS.B.S. KarthikeyanJ. Development of cold spray from innovation to emerging future coating technology.J. Braz. Soc. Mech. Sci. Eng.201335323124510.1007/s40430‑013‑0030‑1
    [Google Scholar]
  51. HarishU. MruthunjayaM. NareshaK. MadhuG. Effect of the coating material compositions on the life of gas turbine hot section components.AIP Conf. Proceed20212316103003510.1063/5.0038314
    [Google Scholar]
  52. SuidzuT. NishizakoS. AraiM. Influence of thermal spray process on high temperature oxidation property of CoNiCrAlY coatings.Zairyo201665431331810.2472/jsms.65.313
    [Google Scholar]
  53. BhandariS. ChakravarthyY. MisraV.C. Investigating atmospheric pressure plasma spray coating of YPO4 and its performance as a corrosion barrier protective layer against molten uranium.J Thermal Spray Technol20223151568158010.1007/s11666‑022‑01367‑3
    [Google Scholar]
  54. IijimaS. Helical microtubules of graphitic carbon.Nature19913546348565810.1038/354056a0
    [Google Scholar]
  55. BukvićM. GajevićS. SkulićA. SavićS. AšonjaA. StojanovićB. Tribological application of nanocomposite additives in industrial oils.Lubricants2023121610.3390/lubricants12010006
    [Google Scholar]
  56. KravchenkoI. KartsevI. KartsevS. The study of characteristics of elasticity and residual stresses in coatings applied by plasma methods.Applied Engineering Letters: J Eng Appl Sci202271253110.18485/aeletters.2022.7.1.4
    [Google Scholar]
  57. KravchenkoI. KuznetsovY. YarinaS. DobychinA. SpasićD. KalashnikovaL. Model for evaluating the plasma coating method.Adv Eng Lett202321212710.46793/adeletters.2023.2.1.4
    [Google Scholar]
  58. Tejero-MartinD. Rezvani RadM. McDonaldA. HussainT. Beyond traditional coatings: a review on thermal-sprayed functional and smart coatings.J Thermal Spray Technol201928459864410.1007/s11666‑019‑00857‑1
    [Google Scholar]
  59. MuthuS.M. AnantR.V. RaghulD. IshwaryaM. ArivazhaganN. ArivarasuM. Comparison of hot corrosion performance of bare and nicocraly-coated austenitic stainless Steel AISI 347 in aggressive waste heat incinerator environment at 650°C.Surf. Rev. Lett.2020277195016810.1142/S0218625X19501683
    [Google Scholar]
  60. SouzaV.A.D. NevilleA. Mechanisms and kinetics of WC-Co-Cr high velocity oxy-fuel thermal spray coating degradation in corrosive environments.J Thermal Spray Technol200615110611710.1361/105996306X92677
    [Google Scholar]
  61. SinghP. KumarP. VirdiR.L. Burnishing with grinding wheel-shaped alloy tool and its effect on surface integrity and erosion behavior of WC-10Co-4Cr HVOF coating.J Thermal Spray Technol20223172172219010.1007/s11666‑022‑01435‑8
    [Google Scholar]
  62. YangH. KainumaS. YangM. AsanoT. Evaluation on deterioration and blister progression of duplex layers between Al-5 Mg Thermal Sprayed Coating and Heavy-Duty Paint Coating.Proceedings of the 2nd International Civil Engineering and Architecture Conference CEAC 2022Springer, Singapore, 202310.1007/978‑981‑19‑4293‑8_38
    [Google Scholar]
  63. SankarK. SelvamK. Joy AshwinK. Sathya PrasanthS.P. Analysis of Corrosion Resistance in Domestic Water Geysers by Coating Nano-Film Using Thermal Spray Coating.In: Trends in Manufacturing and Engineering Management.Springer202110.1007/978‑981‑15‑4745‑4_12
    [Google Scholar]
  64. BarrJ. EstradaC. VictoriaN. WhiteB. HarrisonJ. Influence of metal bond coat thickness on adhesion strength of APS ceramic coatings.Thermal Spray ProceedingsMay 11–14, 2015, Long Beach, California, pp. 1039-1046
    [Google Scholar]
  65. ConnollyB.J. MengQ. MoranA.L. McCawR.L. Mechanical and precorroded fatigue properties of coated aluminium aircraft skin system as function of various thermal spray processes.Corros. Eng. Sci. Technol.200439213714210.1179/147842204225016958
    [Google Scholar]
  66. GopiR. SaravananI. DevarajuA. PonnusamyP. Tribological behaviour of thermal sprayed high velocity oxy-fuel coatings on tungsten carbide – A review.Mater. Today Proceed20203929229510.1016/j.matpr.2020.07.133
    [Google Scholar]
  67. GüneyB. Corrosion and wear behaviour of HVOF spraying WC-12% Ni coating on gray cast-iron.Indian J. Engin Mater. Sci.20212817381
    [Google Scholar]
  68. SeptianissaS. PrawaraB. BasukiE.A. MartidesE. RiyantoE. Improving the hot corrosion resistance of γ/γ′ in Fe-Ni superalloy coated with Cr3C2-20NiCr and NiCrAlY using HVOF thermal spray coating.Int. J. Electrochem. Sci.2022171222123110.20964/2022.12.27
    [Google Scholar]
  69. BolelliG. BonilauriM.F. SassatelliP. Pre-treatment of Selective Laser Melting (SLM) surfaces for thermal spray coating.Surf. Coat. Tech.202244112853310.1016/j.surfcoat.2022.128533
    [Google Scholar]
  70. LeeH.S. SinghJ.K. Deposition and corrosion studies of plasma arc thermal sprayed Zn and 85Zn–15Al films on steel surface.J. Mater. Sci.20225741196501966510.1007/s10853‑022‑07815‑3
    [Google Scholar]
  71. KainumaS. YangM. YangH. MutoK. MiyataH. Deterioration and anti-corrosion behaviors of overlapped layer between al-5 mg alloy thermal spray coating and heavy-duty paint coating in highly corrosive atmospheric environment.AIP Conference Proceed20202309102004810.1063/5.0035401
    [Google Scholar]
  72. LiuX. ZengD. WuY. ZhengZ. QiuZ. Microstructure and corrosion behavior of HVAF-sprayed Fe-based composite coatings doped TiB2 and CNTs.Corros. Sci.202220811062910.1016/j.corsci.2022.110629
    [Google Scholar]
  73. BinalG. Isothermal oxidation and hot corrosion behavior of HVOF sprayed 80Ni-20Cr coatings at 750°C.Surf. Coat. Tech.202345412914110.1016/j.surfcoat.2022.129141
    [Google Scholar]
  74. GoyalK. GoyalR. Improving hot corrosion resistance of Cr3C2 –20NiCr coatings with CNT reinforcements.Surf. Eng.202036111200120910.1080/02670844.2019.1662645
    [Google Scholar]
  75. GoyalR. SidhuB.S. ChawlaV. Characterization of plasma-sprayed carbon nanotube (CNT)-reinforced alumina coatings on ASME-SA213-T11 boiler tube steel.Int. J. Adv. Manuf. Technol.2017929-123225323510.1007/s00170‑017‑0405‑z
    [Google Scholar]
  76. LimD.S. YouD.H. ChoiH.J. LimS.H. JangH. Effect of CNT distribution on tribological behavior of alumina–CNT composites.Wear20052591-653954410.1016/j.wear.2005.02.031
    [Google Scholar]
  77. Gutierrez-GonzalezC.F. SmirnovA. CentenoA. Wear behavior of graphene/alumina composite.Ceram. Int.20154167434743810.1016/j.ceramint.2015.02.061
    [Google Scholar]
  78. ChenX.H. ChenC.S. XiaoH.N. ChengF.Q. ZhangG. YiG.J. Corrosion behavior of carbon nanotubes–Ni composite coating.Surf. Coat. Tech.20051912-335135610.1016/j.surfcoat.2004.04.055
    [Google Scholar]
  79. HanZ. FinaA. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review.Prog. Polym. Sci.201136791494410.1016/j.progpolymsci.2010.11.004
    [Google Scholar]
  80. BalaniK. ZhangT. KarakotiA. LiW.Z. SealS. AgarwalA. In situ carbon nanotube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating.Acta Mater.200856357157910.1016/j.actamat.2007.10.038
    [Google Scholar]
  81. PraveenB.M. VenkateshaT.V. NaikY.A. PrashanthaK. Corrosion studies of carbon nanotubes–Zn composite coating.Surf. Coat. Tech.2007201125836584210.1016/j.surfcoat.2006.10.034
    [Google Scholar]
  82. SwarnakarA. Recent patents on corrosion control and leak detection schemes in boilers.Recent Pat. Electr. Eng.200811768310.2174/1874476110801010076
    [Google Scholar]
  83. PokwitidkulS. Chaleawlert-umponS. TreewiriyakitjaP. KamonsuangkasemK. WannapaiboonS. TungtrongpairojJ. Fabrication of HVOF sprayed 80Ni20Cr/nano-Y2O3 and nano-ZrO2 nanocomposite coatings to enhance high-temperature degradation resistance in CO-CO2 atmospheres.Surf. Coatings Technol2024479130519
    [Google Scholar]
  84. SharmaS.D. Review of patented technologies for fluid-solid separation relevant to specific industrial applications.Recent Pat. Mech. Eng.2010328510510.2174/2212797611003020085
    [Google Scholar]
  85. MedvedovskiE. Advanced ceramics and coatings for wear and corrosion related applications in modern high-efficient coal production and processing: A technical review.Ceram. Int.20245011194471948710.1016/j.ceramint.2024.03.187
    [Google Scholar]
  86. GuolinJ. MingmingL. Waste treatment by supercritical water oxidation.Recent Pat. Chem. Eng.201141293510.2174/2211334711104010029
    [Google Scholar]
  87. LuanM. JingG. XuX. HouB. WangY. MengD. A review: Wet oxidation and catalytic wet oxidation of industrial wastewater.Recent Pat. Chem. Eng.201362798610.2174/2211334711306020001
    [Google Scholar]
  88. BahlawaneN. Carbon-nanotube-based composite coating and production method thereof.US Patent 120246352024
/content/journals/meng/10.2174/0122127976325010240813053321
Loading
/content/journals/meng/10.2174/0122127976325010240813053321
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Inconel718; microhardness; microstructure; Plasma spraying; porosity; T91 boiler steels
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test