Skip to content
2000
Volume 18, Issue 5
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Background

Due to the recognition and further promotion of green and low-carbon concepts worldwide, Stirling refrigeration technology has gained people's attention for its significant advantages, such as high cooling capacity, high efficiency, and strong reliability. In recent years, related products have gradually entered the field of civilian low-temperature refrigeration. One of the key research directions is to achieve better refrigeration performance at lower costs.

Purpose

Through simulative analysis and experimental verification, Free piston Stirling refrigerators (FPSCs) have better economic and performance advantages using non-metallic materials.

Methods

This paper analyzes an FPSC using Polyethylene naphthalate (PEN) material. The main losses and performance of the regenerator are analyzed about the impact of packing porosity and regenerator length. The actual performance obtained through experimental verification is compared with an FPSC with metal packing.

Results

Experimental verification was conducted, and it was found that FPSC using non-metallic materials with a porosity of 52.4% had better performance. Some details of the patent are shown in the article. The COP of 25w@-76°C is 0.16, which is close to the performance of the PFSC using 200 mesh wound wire.

Conclusion

The cooling performance using non-metallic materials is similar to the FPSC using metallic materials, and the latter has great optimization potential and development prospects with lower cost.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976295480240724065803
2024-08-12
2025-11-14
Loading full text...

Full text loading...

References

  1. HeZ. Design and experimental research of a low-temperature refrigerator based on Stirling refrigeration technology [dissertation].Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences)2019
    [Google Scholar]
  2. CostaS.C. BarrutiaH. EsnaolaJ.A. TutarM. Numerical study of the heat transfer in wound woven wire matrix of a Stirling regenerator.Energy Convers. Manage.20147925526410.1016/j.enconman.2013.11.055
    [Google Scholar]
  3. HuangB.J. LuC.W. Split-type free-displacer Stirling refrigerator design using linear network analysis.Cryogenics199636121005101710.1016/S0011‑2275(96)00084‑7
    [Google Scholar]
  4. DaveyG. The Oxford university miniature cryogenic refrigerator.International Conference on Advanced Infrared Detectors and SystemsLondon198139
    [Google Scholar]
  5. SmirnovD. DvortsovV. SaichenkoA. Experimental study of a high-tolerance piston-cylinder pair in the alpha Ross-yoke Stirling refrigerator.Int. J. Refrig.201910023524510.1016/j.ijrefrig.2019.01.018
    [Google Scholar]
  6. DaveyG. OrlowskaA.H. Miniature stirling cycle cooler.Cryogenics198727314815110.1016/0011‑2275(87)90071‑3
    [Google Scholar]
  7. JeongS. NamK. ChoiS. Study of random wire type regenerators for stirling cryocoolers.AIP Conf. Proc.200471011541162
    [Google Scholar]
  8. BerchowitzD. KwonY. Environmental profiles of Stirling-cooled and cascade-cooled ultra-low temperature freezers.Sustainability (Basel)20124112838285110.3390/su4112838
    [Google Scholar]
  9. ZhangC.Q. WuY.N. XuL. LiuD.Y. ChenY.S. Connecting hose’s operating characteristics and its effect on the cooling performance of an 80 K Oxford split-Stirling-cycle cryocooler.Cryogenics200343633534410.1016/S0011‑2275(03)00003‑1
    [Google Scholar]
  10. WeiDai YuGuoyao LuoErcang Thermally driven lowtemperature refrigerator system.CN Patent 104807234B2017
  11. ZhuS. YuG. LiX. DaiW. LuoE. Parametric study of a free-piston Stirling cryocooler capable of providing 350 W cooling power at 80 K.Appl. Therm. Eng.202017411510110.1016/j.applthermaleng.2020.115101
    [Google Scholar]
  12. CuiY. QiaoJ. SongB. Experimental study of a free piston Stirling cooler with wound wire mesh regenerator.Energy202123412128710.1016/j.energy.2021.121287
    [Google Scholar]
  13. XiC ZhangL Expansion machine unit and pulse tube type free piston Stirling refrigerato.CN Patent 108826729B2019
  14. XiC HeH Frame and pulse tube type free piston Stirling refrigerator.CN Patent 108826730B2020
  15. KimH.S. GwakI.C. LeeS.H. Numerical analysis of heat transfer area effect on cooling performance in regenerator of free-piston Stirling cooler.Case Stud. Therm. Eng.20223210187510.1016/j.csite.2022.101875
    [Google Scholar]
  16. JangK.H. KimH.S. LeeS.H. Numerical analysis of free-piston stirling cooler systems for improving cooling performance.Case Stud. Therm. Eng.20223710227210.1016/j.csite.2022.102272
    [Google Scholar]
  17. KarandikarA. BerchowitzD. Low cost small cryocoolers forcommercial applications.Presented at the 1995 Cryogenic Engineering Conference17-21, July 1995Columbus, Ohio
    [Google Scholar]
  18. UngerR.Z. WisemanR.B. HummonM.R. The advent of low cost cryocoolers.Cryocoolers2002117986
    [Google Scholar]
  19. KatzA. SegalV. FilisA. RICOR’s Cryocoolers development and optimization for HOT IR detectors[C]/Infrared Technology and Applications XL.SPIE20149070742756
    [Google Scholar]
  20. RiabzevS. RadchenkoD. RafD. Ricor’s new development of HOT cryocoolers: Compact cost-effective linear model.SPIE201911002544551
    [Google Scholar]
  21. RühlichI. MaiM. WithopfA. AIM cryocooler developments for HOT detectors[C]/Infrared Technology and Applications XL.SPIE20149070767774
    [Google Scholar]
  22. ArtsR. MartinJ.Y. WillemsD. Miniature cryocooler developments for high operating temperatures at Thales Cryogenics[C]/Infrared Technology and Applications XLI.SPIE20159451512523
    [Google Scholar]
  23. BoyleR. BanksS. ShireyK. Final qualification and early on-orbit performance of the RHESSI cryocooler. RossR.G. Cryocoolers 12.Boston, MASpringer200375576010.1007/0‑306‑47919‑2_98
    [Google Scholar]
  24. RaazaA. RameshS. JerrittaS. Circularly polarized circular slit planar antenna for vehicular satellite applications.Appl. Comput. Electromagn. Soc. J.2019201913401345
    [Google Scholar]
  25. AbishekE.B. RajaA.V.P. KumarK.P.C. Study and analysis of conformal antennas for vehicular communication applications.J. Eng. Appl. Sci.201712824282433
    [Google Scholar]
  26. AbishekB.E. HashimZ.A. PrasathH.S. Design of conformal microstrip patch antenna for vehicle tracking.Int J Eng Technol201873189191
    [Google Scholar]
  27. TewR. IbrahimM. SimonT. MantellS. GedeonD. QiuS. WoodG. Overview 2003 of NASA multi-D Stirling convertor development and DOE and NASA Stirling regenerator R&D efforts.NASA Technical Memorandum; NASA/TM-2004-212908. Presented at: Space Technology and Applications International Forum (STAIF-2004)2004 Feb 8–12Albuquerque, NMCleveland (OH)NASA Glenn Research Center;2004Available from: https://ntrs.nasa.gov/citations/20040111429
    [Google Scholar]
  28. AndersonD.J. NASA radioisotope power conversion technology NRA overview.2005Available From: https://ntrs.nasa.gov/api/citations/20060005210/downloads/20060005210.pdf
    [Google Scholar]
  29. Sunpower.2016Available From: http://sunpower.com/cryocoolers/cryotel-family/flight
  30. ZhangY. Study on a gasbearing Stirling cryocooler for space station low temperature storage device.Vacuum and Cryogenics202250952C
    [Google Scholar]
  31. WoodJ.G. Status of free-piston Stirling technology at Sunpower, Inc.Presented at: 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit2003 Aug 17–20Huntsville, ALReston (VA)American Institute of Aeronautics and Astronautics10.2514/6.2003‑60562003
    [Google Scholar]
  32. WilsonK.B. FralickC.C. GedeonD. Sunpower’s CPT60 pulse tube cryocooler.2007Available From: https://minds.wisconsin.edu/bitstream/handle/1793/21570/17.pdf?sequence=1&isAllowed=y
    [Google Scholar]
  33. UngerR. KeiterD. The development of the cryotel™ family of coolers.AIP Conf. Proc.200471014041411
    [Google Scholar]
  34. ImuraJ. IwataN. YamamotoH. Optimization of regenerator in high capacity Stirling type pulse tube cryocooler.Physica C200846815-202178218010.1016/j.physc.2008.05.281
    [Google Scholar]
  35. ChaJ.S. GhiaasiaanS.M. KirkconnellC.S. Oscillatory flow in microporous media applied in pulse – tube and Stirling – cycle cryocooler regenerators.Exp. Therm. Fluid Sci.20083261264127810.1016/j.expthermflusci.2008.02.008
    [Google Scholar]
  36. ZhuH WuY NaL Experimental research on a novel matrix material do stirling cryocooler.2015
    [Google Scholar]
  37. XiC. FeiL. XuL. Optimization design of regenerator of free piston stirling cryocooler in air-conditioning temperature zone.Vacuum and Cryogenics20192504231236
    [Google Scholar]
  38. KeiterD.E. UngerR.Z. WilsonK.B. Sunpower CryoTel™ cryocoolers and pulse tube cryocoolers.Athens, (OH)Sunpower, Inc.2005 https://blackgem.science.ru.nl/redmine/attachments/download/4/Doc0095.pdf
    [Google Scholar]
  39. WilsonK.B. UngerR.J. High efficiency pressure oscillator for lowtemperature pulse tube cryocooler.Paper C059 presented at the 17th International Compressor Engineering Conference2004 Jul 12–15West Lafayette, IN. https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2665&context=icec
    [Google Scholar]
  40. ChoiS. NamK. JeongS. Investigation on the pressure drop characteristics of cryocooler regenerators under oscillating flow and pulsating pressure conditions.Cryogenics200444320321010.1016/j.cryogenics.2003.11.006
    [Google Scholar]
  41. BoW. YinZ. ZhongY. Research and development of gasbearing 15 W@ 77K Stirling cryocooler.J Huazhong Unvi Of Sci Tech2018465106109
    [Google Scholar]
  42. NamK. JeongS. Investigation of oscillating flow friction factor for cryocooler regenerator considering cryogenic temperature effect.Cryogenics2005451273373810.1016/j.cryogenics.2005.07.003
    [Google Scholar]
  43. GuoY.X. ChaoY.J. GanZ.H. Performance analysis on free-piston Stirling cryocooler based on an idealized mathematical model.IOP Conf Ser: Mater Sci Eng2017278012174
    [Google Scholar]
  44. YaronR. ShokrallaS. YuanJ. Etched foil regenerator.Advances in Cryogenic Engineering: Part A.Boston, MASpringer US199610.1007/978‑1‑4613‑0373‑2_168
    [Google Scholar]
  45. YangX. ChungJ.N. Size effects on miniature Stirling cycle cryocoolers.Cryogenics200545853754510.1016/j.cryogenics.2005.02.005
    [Google Scholar]
  46. SwiftG.W. Thermoacoustics: A unifying perspective for some engines and refrigerators.ChamSpringer201710.1007/978‑3‑319‑66933‑5
    [Google Scholar]
  47. OlsonJ.R. KotsuboV. ChampagneP.J. NastT.C. Performance of a two-stage pulse tube cryocooler for space applications.Cryocoolers20021016317010.1007/0‑306‑47090‑X_18
    [Google Scholar]
  48. FelmleyT. Advances in neodymium ribbon regenerator materials. Cryocoolers 10.Boston, MASpringer US1998
    [Google Scholar]
  49. MoranM. StelterS. StelterM. Microscale regenerative heat exchanger.NASA Technical Memorandum 2004-213353.2004Available from: https://ntrs.nasa.gov/citations/20110012957
    [Google Scholar]
  50. ClearmanW.M. GhiaasiaanS.M. ChaJ.S. Longitudinal hydraulic resistance parameters of cryocooler and Stirling regenerators in steady flow.AIP Conf. Proc.2008985728735
    [Google Scholar]
  51. ClearmanW.M. ChaJ.S. GhiaasiaanS.M. KirkconnellC.S. Anisotropic steady-flow hydrodynamic parameters of microporous media applied to pulse tube and Stirling cryocooler regenerators.Cryogenics2008483-411212110.1016/j.cryogenics.2008.01.002
    [Google Scholar]
  52. ChaJ.S. GhiaasiaanS.M. KirkconnellC.S. Longitudinal hydraulic resistance Parameters of cryocooler and stirling Regenerators in periodic flow.AIP Conf. Proc.20089851259266
    [Google Scholar]
  53. QiuL.M. HeY.L. GanZ.H. ChenG.B. A single-stage pulse tube cooler reached 12.6 K.Cryogenics200545964164310.1016/j.cryogenics.2005.08.001
    [Google Scholar]
  54. TaoY.B. LiuY.W. GaoF. Numerical analysis on pressure drop and heat transfer performance of mesh regenerators used in cryocoolers.Cryogenics2009499497503
    [Google Scholar]
  55. AbdiC. KhemiciM.W. DoulacheN. Crystallinity effect on the structural relaxation of polyethylene naphtalate (PEN) by TSDC and DSC experiments.IEEE Trans. Dielectr. Electr. Insul.20152231406141410.1109/TDEI.2015.7116330
    [Google Scholar]
  56. MorikawaJ. HashimotoT. Study on thermal diffusivity of poly(ethylene terephthalate) and poly(ethylene naphthalate).Polymer199738215397540010.1016/S0032‑3861(97)00092‑X
    [Google Scholar]
  57. FangP. QiuX. WirgesW. GerhardR. ZirkelL. Polyethylene-naphthalate (PEN) ferroelectrets: Cellular structure, piezoelectricity and thermal stability.IEEE Trans. Dielectr. Electr. Insul.20101741079108710.1109/TDEI.2010.5539678
    [Google Scholar]
  58. RyuS. KimK. KimJ. Silane surface treatment of boron nitride to improve the thermal conductivity of polyethylene naphthalate requiring high temperature molding.Polym. Compos.201839S3E1692E170010.1002/pc.24680
    [Google Scholar]
  59. ChoyC.L. GreigD. The low-temperature thermal conductivity of a semi-crystalline polymer, polyethylene terephthalate.J. Phys. C Solid State Phys.19758193121313010.1088/0022‑3719/8/19/012
    [Google Scholar]
  60. CauquilJ.M. MartinJ.Y. BruinsP. Update on life time test results and analysis carried out on Thales Cryogenics integral coolers (RM family).SPIE200348205259
    [Google Scholar]
  61. CauquilJ.M. MartinJ.Y. BruinsP. MTTF prediction in design phase on Thales Cryogenics integral coolers. RossR.G.Jr Cryocoolers 12.BostonSpringer2002879410.1007/0‑306‑47919‑2_13
    [Google Scholar]
  62. CauquilJ.M. MartinJ.Y. BenschopT. Validation of accelerated ageing of Thales rotary Stirling cryocoolers for the estimation of MTTF.SPIE20169821208216
    [Google Scholar]
  63. RühlichI. MaiM. RosenhagenC. Compact high-efficiency linear cryocooler in single-piston moving magnet design for HOT detectors.SPIE20128353640648
    [Google Scholar]
  64. MaiM. RosenhagenC. RühlichI. Development of single piston moving magnet cryocooler. MillerS.D. RossR.G. Cryocoolers 18.Boulder, COICC Press20156572
    [Google Scholar]
  65. VeprikA. VilenchikH. RiabzevS. Microminiature linear split Stirling cryogenic cooler for portable infrared imagers.SPIE20076542823834
    [Google Scholar]
  66. VeprikA. ZechtzerS. PundakN. Split Stirling linear cryogenic cooler for a new generation of high temperature infrared imagers.SPIE20107660810822
    [Google Scholar]
  67. GedeonD. WoodJ.G. Oscillating-flow regenerator test rig: hardware and theory with derived correlations for screens and felts.NASA Contractor Report 198442.Cleveland (OH)NASA Lewis Research Center1996Available from: https://ntrs.nasa.gov/api/citations/19960015878/downloads/19960015878.pdf
    [Google Scholar]
  68. ThomasB. PittmanD. Update on the evaluation of different correlations for the flow friction factor and heat transfer of Stirling engine regenerators.Collection of Technical Papers 35th Intersociety Energy Conversion Engineering Conference and Exhibit (IECEC) (Cat No00CH37022)24-28 July 2000Las Vegas, NV, USA.
    [Google Scholar]
  69. KołodziejA. ŁojewskaJ. JaroszyńskiM. GancarczykA. JodłowskiP. Heat transfer and flow resistance for stacked wire gauzes: Experiments and modelling.Int. J. Heat Fluid Flow201233110110810.1016/j.ijheatfluidflow.2011.11.006
    [Google Scholar]
  70. GolneshanA.A. ZarinchangJ. 3-D numerical analysis of thermal/fluid characteristics of woven mesh structures as heat regenerators.Proceedings of the 13th International Stirling Engine Conference (ISEC 2007)2007 Sep 23-26Tokyo, JapanTokyoWaseda University2007112115
    [Google Scholar]
  71. ZimmermanF.J. LongsworthR.C. Shuttle Heat Transfer.Adv Cryogenic Eng New York197016342351
    [Google Scholar]
  72. WalkerG. VasishtaV. Heat-transfer and flow-friction characteristics of dense-mesh wire-screen stirling-cycle regenerators. Advances in Cryogenic Engineering.Berlin/Heidelberg, GermanySpringer Link1971
    [Google Scholar]
  73. GedeonD. DC gas flows in Stirling and pulse tube cryocoolers. In: Cryocoolers 9.Boston, MASpringer US1997
    [Google Scholar]
  74. GedeonD. Sage User’s Guide V9.Athens, GAGedeon Associates2013
    [Google Scholar]
  75. ChenG. KeT. Principle of small cryogenic refrigerator.Beijing, ChinaScience Press2010
    [Google Scholar]
/content/journals/meng/10.2174/0122127976295480240724065803
Loading
/content/journals/meng/10.2174/0122127976295480240724065803
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test