Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Background

On-orbit servicing of spacecraft is mainly aimed at repairing failed spacecraft, maintaining and upgrading normally operating spacecraft to extend their life in order to reduce the increase of space debris and maintain the space environment.

Objective

In performing on-orbit servicing, the spacecraft typically requires continuous control force to hover for a long period of time in order to maintain a relatively stationary state towards the target.

Methods

Considering the limited amount of fuel carried, the Lorentz force is introduced into on-orbit servicing to assist spacecraft in hovering. In order to demonstrate the feasibility of using Lorentz force as spacecraft thrust, many related patents have been provided.

Results

Firstly, the velocity of the spacecraft's orbital motion and the variation of the geomagnetic field were given, and the specific expression of the Lorentz force in the relative dynamics model of the spacecraft was deduced. When studying the auxiliary effect of Lorentz force, a critical angle was defined. The relation between the critical angle and the Lorentz force on the auxiliary effect of spacecraft hovering was analyzed through numerical examples.

Conclusion

Furthermore, based on the influence of the charge-to-mass ratio on the critical angle, the variation law of the Lorentz force-assisted spacecraft hovering area with different charge-to-mass ratios was derived.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976289034240806042606
2024-08-29
2025-09-23
Loading full text...

Full text loading...

References

  1. ShanM. GuoJ. GillE. Review and comparison of active space debris capturing and removal methods.Prog. Aerosp. Sci.201680183210.1016/j.paerosci.2015.11.001
    [Google Scholar]
  2. SchildknechtT. Optical surveys for space debris.Astron. Astrophys. Rev.20071414111110.1007/s00159‑006‑0003‑9
    [Google Scholar]
  3. MarkC.P. KamathS. Review of active space debris removal methods.Space Policy20194719420610.1016/j.spacepol.2018.12.005
    [Google Scholar]
  4. SvotinaV.V. CherkasovaM.V. Space debris removal – Review of technologies and techniques. Flexible or virtual connection between space debris and service spacecraft.Acta Astronaut.202320484085310.1016/j.actaastro.2022.09.027
    [Google Scholar]
  5. KirchnerG. KoidlF. FriederichF. BuskeI. VölkerU. RiedeW. Laser measurements to space debris from Graz SLR station.Adv. Space Res.2013511212410.1016/j.asr.2012.08.009
    [Google Scholar]
  6. NishidaS.I. KawamotoS. OkawaY. TeruiF. KitamuraS. Space debris removal system using a small satellite.Acta Astronaut.2009651-29510210.1016/j.actaastro.2009.01.041
    [Google Scholar]
  7. SellmaierF BogeT SpurmannJ GullyS RuppT HuberF. Onorbit servicing missions: Challenges and solutions for spacecraft operations.SpaceOps 2010 Conference Delivering on the Dream Hosted by NASA Marshall Space Flight Center and Organized by AIAAHuntsville, Alabama, 25 - 30 April 2010, pp. 2159
    [Google Scholar]
  8. Flores-AbadA. MaO. PhamK. UlrichS. A review of space robotics technologies for on-orbit servicing.Prog. Aerosp. Sci.20146812610.1016/j.paerosci.2014.03.002
    [Google Scholar]
  9. DaneshjouK. Mohammadi-DehabadiA.A. BakhtiariM. Mission planning for on-orbit servicing through multiple servicing satellites: A new approach.Adv. Space Res.20176061148116210.1016/j.asr.2017.05.037
    [Google Scholar]
  10. DavisJ.P. MayberryJ.P. PennJ.P. On-orbit servicing: Inspection repair refuel upgrade and assembly of satellites in space.In: Center for Space Policy and StrategyThe Aerospace Corporation2019114
    [Google Scholar]
  11. QianH. ZhengJ. YuX. GaoD. Dynamics and control of displaced orbits for solar sail spacecraft.Kongjian Kexue Xuebao201333445846410.11728/cjss2013.04.458
    [Google Scholar]
  12. ZengX. GongS. LiJ. JiangF. Hovering flight over elongated asteroids by using Solar sails.J Deep Space Explor2015214852
    [Google Scholar]
  13. JohnsonL. WhortonM. HeatonA. PinsonR. LaueG. AdamsC. NanoSail-D: A solar sail demonstration mission.Acta Astronaut.2011685-657157510.1016/j.actaastro.2010.02.008
    [Google Scholar]
  14. MacdonaldM. McInnesC. Solar sail science mission applications and advancement.Adv. Space Res.201148111702171610.1016/j.asr.2011.03.018
    [Google Scholar]
  15. ZhangH. ShiP. LiB.J. ZhaoY. Hover orbit using inter-spacecraft coulomb forces.J Astronaut20123316875
    [Google Scholar]
  16. HoytR.P. ForwardR.L. Electrodynamic tether control.U.S. Patent 64191912002
  17. OckelsW.J. NicoliniD. JainandunsingS. Combined propulsion system intended for a spacecraft.U.S. Patent 67329782004
  18. PurvisJ.W. Electromagnetic segmented-capacitor propulsion system.U.S. Patent 100064462018
  19. PurvisJ.W. Capacitive-discharge electromagnetic propulsion system.U.S. Patent 101353232018
  20. PurvisJ.W. Segmented current magnetic field propulsion system.U.S. Patent 105133532019
  21. GonzalezE. Magnetic flux engine for spacecraft propulsion.U.S. Patent 202100092872021
  22. MarchandiseF.R.J. GodardL. LaurentB. ObergM. Electrodynamic assembly for propelling a spacecraft in orbit around a star having a magnetic field.U.S. Patent 115354052022
  23. PeckM. Prospects and challenges for Lorentz-augmented orbits.AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, 15 August 2005 - 18 August 2005, pp. 599510.2514/6.2005‑5995
    [Google Scholar]
  24. StreetmanB. PeckM.A. New synchronous orbits using the geomagnetic Lorentz force.J. Guid. Control Dyn.20073061677169010.2514/1.29080
    [Google Scholar]
  25. StreetmanB. PeckM.A. Gravity-assist maneuvers augmented by the Lorentz force.J. Guid. Control Dyn.20093251639164710.2514/1.35676
    [Google Scholar]
  26. AtchisonJ.A. PeckM.A. Lorentz-augmented Jovian orbit insertion.J. Guid. Control Dyn.200932241842310.2514/1.38406
    [Google Scholar]
  27. GangestadJ.W. PollockG.E. LonguskiJ.M. Lagrange’s planetary equations for the motion of electrostatically charged spacecraft.Celestial Mech. Dyn. Astron.2010108212514510.1007/s10569‑010‑9297‑z
    [Google Scholar]
  28. GangestadJ.W. PollockG.E. LonguskiJ.M. Analytical expressions that characterize propellantless capture with electrostatically charged spacecraft.J. Guid. Control Dyn.201134124725710.2514/1.47849
    [Google Scholar]
  29. GangestadJ.W. PollockG.E. LonguskiJ.M. Propellantless stationkeeping at enceladus via the electromagnetic lorentz force.J. Guid. Control Dyn.20093251466147510.2514/1.42769
    [Google Scholar]
  30. PollockG.E. GangestadJ.W. LonguskiJ.M. Inclination change in low-Earth orbit via the geomagnetic Lorentz force.J. Guid. Control Dyn.20103351387139510.2514/1.48610
    [Google Scholar]
  31. PollockG. GangestadJ. LonguskiJ. Analysis of Lorentz spacecraft motion about Earth using the Hill-Clohessy-Wiltshire equations.In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, 18 August 2008 - 21 August 2008, pp. 676210.2514/6.2008‑6762
    [Google Scholar]
  32. PeckM.A. StreetmanB. SaajC.M. LappasV. Spacecraft formation flying using Lorentz forces.J. Br. Interplanet. Soc.200760263267
    [Google Scholar]
  33. PengC. GaoY. Lorentz-force-perturbed orbits with application to J2-invariant formation.Acta Astronaut.201277122810.1016/j.actaastro.2012.03.002
    [Google Scholar]
  34. TsujiiS. BandoM. YamakawaH. Spacecraft formation flying dynamics and control using the geomagnetic Lorentz force.J. Guid. Control Dyn.201336113614810.2514/1.57060
    [Google Scholar]
  35. StreetmanB. PeckM.A. General bang-bang control method for lorentz augmented orbits.J. Spacecr. Rockets201047348449210.2514/1.45704
    [Google Scholar]
  36. PollockG.E. GangestadJ.W. LonguskiJ.M. Analytical solutions for the relative motion of spacecraft subject to Lorentz-force perturbations.Acta Astronaut.2011681-220421710.1016/j.actaastro.2010.07.007
    [Google Scholar]
  37. YamakawaH. BandoM. YanoK. TsujiiS. Spacecraft relative dynamics under the influence of geomagnetic Lorentz force.In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference; 2010 Aug 2–5; Toronto, CanadaReston, VA. p. 812810.2514/6.2010‑8128
    [Google Scholar]
  38. YamakawaH. HachiyamaS. BandoM. Attitude dynamics of a pendulum-shaped charged satellite.Acta Astronaut.201270778410.1016/j.actaastro.2011.07.019
    [Google Scholar]
  39. HuangX. YanY. ZhouY. Dynamics and control of spacecraft hovering using the geomagnetic Lorentz force.Adv. Space Res.201453351853110.1016/j.asr.2013.11.040
    [Google Scholar]
  40. HuangX. YanY. ZhouY. ZhangH. Nonlinear relative dynamics of Lorentz spacecraft about J2 -perturbed orbit.Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.2015229346747810.1177/0954410014537231
    [Google Scholar]
/content/journals/meng/10.2174/0122127976289034240806042606
Loading
/content/journals/meng/10.2174/0122127976289034240806042606
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test