Current Drug Delivery - Online First
Description text for Online First listing goes here...
21 - 40 of 49 results
-
-
Revolutionizing Personalized Medicine with 4D Printing in Drug Delivery
Authors: Nandini Sharma, Yukta Garg and Amandeep SinghAvailable online: 18 April 2025More Less4D printing is an improvement over the traditional 3D printing technique involving the application of dynamic materials that change with the environmental conditions, including temperature, humidity, and pH. This technology holds great promise for drug development to create effective and personalized drug delivery systems. Different from conventional technologies, 4D printed systems can control the administration rate of drugs depending on the internal environment, thus enhancing the effectiveness of treatments and considering adverse effects at the same time effectively. 4D printing contributes to the creation of smart materials for use in vaccines, implants, and other devices that respond to body signals in real-time. However, several hurdles persist in the synthesis and fabrication of these materials as well as their regulatory approval. This technology represents the future of drug manufacturing, emphasizing patient-specific care and providing a more effective, efficient, and adaptive approach to therapeutic delivery.
-
-
-
Advances in Nanostructured Lipid Carriers for Colorectal Cancer Treatment: A Comprehensive Review
Authors: Riya Patel, Shailvi Shah, Sheetal Acharya, Gayatri Patel, Shreeraj Shah and Bhupendra G. PrajapatiAvailable online: 09 April 2025More LessAs colorectal cancer is the third most common cancer globally, this study aimed to improve colorectal cancer treatment using nanostructured lipid carriers (NLCs) for drug delivery by overcoming the current drawbacks, improving therapeutic effectiveness, achieving site-specific delivery, and implementing controlled drug administration to mitigate systemic side effects. Based on the literature, it has been observed that the optimal drug size and zeta potential range depend on the drug formulation's targets and features. These ranges are determined through optimization and characterization. The particle size ranges from 10 to 200 manometers, and the zeta potential values range from -30 mV to +30 mV. Optimal formulations should have uniform spherical morphology and compatibility with biological entities. This paper provides an in-depth analysis of nanocarrier research and findings. This article offers a thorough synopsis of the latest research and findings on nanocarriers, offering a valuable understanding of their development.
-
-
-
Combination of Luteolin and Silibinin Has Hepatoprotective Effects on Rats' Liver Fibrosis Induced by Thioacetamide
Authors: Zaenah Z. Alamri, Rahaf F. Aharthi and Sahar J. MelebaryAvailable online: 09 April 2025More LessIntroductionA serious public health condition called liver fibrosis can cause cirrhosis, cancer, and even patient death.
MethodThis study sought to determine if Luteolin (LUT) and Silibinin (SBN) could protect rats against oxidative stress and liver fibrosis caused by thioacetamide (TAA) over three weeks, as well as any potential mechanisms of action. There will be 49 adult Wistar albino rats utilized, split up into 7 groups: (G1) Negative control, (G2) Positive control, (G3) LUT+TAA, (G4) SBN+TAA, (G5) mix LUT+ SBN, (G6) LUT+SBN with TAA, (G7) LUT+SBN then TAA, and so. Liver function tests and oxidative stress markers were measured after the experiment. The liver underwent microscopic inspection. Rats given TAA treatment had significantly higher liver enzymes than control; yet, albumin (ALB), total protein (TP), superoxide dismutase (SOD), and reduced glutathione (GSH) significantly decreased.
ResultsFollowing three weeks of TAA exposure, liver sections revealed hepatocytic damage and fibrosis. Oxidative stress, histological alterations, and alterations in liver function were all lessened in TAA rats administered with LUT, SBN, or both.
ConclusionThe combined hepatoprotective benefits of LUT and SBN prevented TAA-induced biochemical and histological alterations in rat liver, acting in concert with each other.
-
-
-
Kidneys Toxicity and Biodistribution of Albumin-Based Gold and Silver Nanoclusters
Available online: 09 April 2025More LessIntroductionThe interaction of the kidneys with nanoparticles is a fundamental issue that accelerates the proper design of efficient and safe nanotherapeutics. The present study aimed to establish the kidney toxicity and the biodistribution profile of novel gold and silver nanocluster formulations.
MethodsGold and silver nanoclusters were synthesized in an albumin template to probe their kidney-nano interaction. The interaction was performed on healthy animals to unveil the toxicity of nanoclusters on kidney tissue.
ResultsAlbumin-based gold nanoclusters (BSA-AuNCs) and albumin-based silver nanoclusters (BSA-AgNCs), exhibited comparable core size (2.2±1.3 nm and 2.5±1.6 nm, respectively) and hydrodynamic diameter (11.3±2.1 nm for BSA-AuNC and 10.7±1.9 nm for BSA-AgNC) indicating similarity in their core and overall sizes. Zeta potential measurements demonstrated a comparable surface charge between BSA- AuNC (18.1±3.2 mV) and BSA- AgNC (20.1±3.6 mV), which closely resembled the surface charge of albumin in water (20.7±3.5 mV). Upon administration to rats via intravenous route, ICP-OES measurements showed a significant silver and gold nanocluster accumulation in various vital organs with unequal distribution patterns. BSA-AgNC exhibited higher concentrations in the liver and spleen, while BSA-AuNC showed predominant accumulation in the liver and kidneys. However, the administered BSA-AgNC induced more renal damage than BSA- AuNCs.
ConclusionThe identified renal toxicity linked to BSA-AgNCs, despite their lower kidney accumulation than BSA-AuNCs, illuminates the intricate interplay between nanoparticle biodistribution and toxicity. This underscores the significance of considering the core metal type in nanoparticle design and evaluation. Further investigation is needed to clarify the underlying molecular mechanisms of the observed biodistribution and toxicity.
-
-
-
Biocompatibility Evaluation of a Dexamethasone Mucoadhesive Nanosystem: Preclinical and Preliminary Clinical Evaluations
Available online: 08 April 2025More LessIntroductionThere is a strong need for drug delivery systems that are both highly compatible with biological tissues and effective when used in the oral mucosa. While gels, creams, or ointments are currently employed for this purpose, their oral bioavailability is constrained by the limited contact time with mucosal tissue.
MethodIn response to this challenge, we developed and evaluated the efficacy of a multilayer mucoadhesive system incorporated with Dexamethasone Sodium Phosphate (DEX-P) for oral mucosal delivery. An electrospun multilayer system was created and subjected to biocompatibility and efficacy testing via in vitro and ex vivo approaches, finally culminating in an acceptability trial in healthy human volunteers. The multilayer system was created using Poly-Vinyl Pyrrolidone (PVP) and Poly ε-Caprolactone (PCL) as a polymeric base and Polycarbophil (NOVEON® AA-1, PCF) serving as an adhesion enhancer to facilitate the unidirectional release of Dexamethasone Sodium Phosphate (DEX-P).
ResultThe nanofibers matrices underwent morphological characterization by Scanning Electron Microscopy (SEM), and DEX-P release was evaluated using ex vivo porcine mucosa, yielding promising results. In vitro cytotoxicity was evaluated through the MTT assay, employing HFF-1 cells. The cell viability ranged from 78 to 96%, suggesting the safety of the polymers used. The tested dose range of DEX on cell lines did not decrease below 75%, indicating its safety in terms of in vivo cytotoxicity. Biocompatibility was evaluated on animal models, without significant tissue damage observed.
DiscussionThe results of this study demonstrate the potential of the developed multilayer mucoadhesive system as an effective platform for oral mucosal drug delivery. The combination of PVP and PCL provides a stable and tunable matrix for drug incorporation, while PCF successfully enhances mucoadhesion and controlled drug release. The electrospun architecture enables precise drug loading and unidirectional release, which is crucial for minimizing systemic absorption and maximizing local therapeutic effects. The high cell viability observed in vitro and the absence of significant tissue damage in vivo underline the biocompatibility of the system. Moreover, the positive feedback from human volunteers not only indicates functional efficacy but also practical usability, which is essential for clinical translation. Taken together, these findings support the feasibility of using this multilayer nanofiber system as a safe and effective vehicle for oral mucosal therapy, particularly for localized delivery of corticosteroids, such as DEX-P.
ConclusionHuman in vivo studies demonstrated prolonged adhesion and a favorable perception of the system.
-
-
-
Optimizing Transdermal Drug Delivery with Novasome Nanocarriers: A Quality by Design (QbD) Framework
Authors: Prabhjot Kaur and Priyanka KriplaniAvailable online: 07 April 2025More LessA revolutionary encapsulation-based drug delivery technique called novasome technology outperforms conventional liposome systems in terms of effectiveness and efficiency. It is comprised of free fatty acid, cholesterol, and surfactant, which combine to yield better vesicle properties for medication administration. Numerous research endeavors have examined the ideal blend of surfactant types, free fatty acids, and their proportions, along with the formulation elements that might substantially impact the vesicle properties. It has been shown that novasome technology may be used to deliver various drugs, such as vaccines, niflumic acid, zolmitriptan, and terconazole. To develop the most effective novasomal formulations with significant drug loading and nano-metric form, it is important to find the appropriate ratio between core components along with critical manufacturing process determinants. Understanding the interplay between these factors requires applying Quality by Design (QBD) in combination with Design of Experiments (DoE). These may be applied for both scale-up and lab-scale applications. This manuscript includes a detailed view of novasomes and the involvement of QBD.
-
-
-
Precision Drug Delivery to the Liver: A Nanoparticle Approach
Available online: 03 April 2025More LessThe global burden of Chronic Liver Diseases (CLDs) is escalating, with increasing prevalence and mortality. Various conditions ranging from fibrosis, cirrhosis, and hepatocellular carcinoma are associated with conditions such as toxin accumulation, viral infections, and metabolic derangements. In this already difficult context, the emergence of metabolic dysfunction-associated steatotic liver disease and steatohepatitis complicated the picture even further. While there has been much advancement in medical research, there is currently no standard cure; hence, the best treatment options are limited, providing a rising need for new therapeutic approaches. Nanoparticle drug delivery systems represent a promising avenue, providing targeted delivery and enhanced therapeutic effectiveness. Nanosystems can protect therapeutic agents from degradation, evade rapid clearance mechanisms, and target drugs directly to a specific hepatic cell type. However, the complex architecture of the liver presents challenges for these therapies, including the need to precisely target individual cells and retain the stability of nanoparticles within the hepatic microenvironment. This review presents recent advances in nanoparticle and targeted ligands-based technologies. These technologies help to navigate barriers associated with similar therapies. As these challenges are addressed, nanotechnological advancements could potentially lead to a major revolution in the treatment of CLDs, paving the way for improved management strategies and providing new hope for affected individuals worldwide.
-
-
-
Novel Antibiotic-Loaded PEGylated Xerogels of Acidified Chitosan for Periodontal Diseases
Authors: Farjad Zafar, Muhammad Ali Sheraz, Syed Abid Ali, Maryam Riaz, Sofia Ahmed and Zubair AnwarAvailable online: 26 March 2025More LessIntroductionThe primary aim of this study was to develop an effective treatment strategy for periodontal diseases that maximizes therapeutic effects while minimizing systemic adverse effects. Specifically, the study focused on creating a xerogel-based localized drug delivery system for the slow release of doxycycline hyclate (DH) to treat periodontal disease.
MethodsXerogels were prepared using the solvent casting method, with the solvent being evaporated slowly at ambient conditions. The prepared DH xerogels underwent comprehensive characterization to assess their in-silico compatibility, pharmacokinetics, and physicochemical properties. The properties studied included drying time and rate, thickness, moisture content, swelling index, organoleptic properties, scanning electron microscopy, FTIR spectroscopy, differential scanning calorimetry, drug release and kinetics, and antibacterial activity.
ResultsIn-silico studies demonstrated compatibility between the ingredients, indicating minimal adverse effects on the body. The analysis revealed hydrogen bonding between the drug and polymers, changing the drug's crystallization characteristics to an amorphous form. The release profiles of DH from the xerogels indicated a slow release, ranging from 29.42% to 66.30% over 10 hours, following the Hopfenberg model.
ConclusionThe findings of this study suggest that the formulated xerogels are well-suited for periodontal applications. The slow-release profile of DH from the xerogels offers a promising approach for localized treatment of periodontal disease, reducing the risk of systemic adverse effects. This data is valuable for dental practitioners and pharmaceutical formulators, providing a new avenue for enhancing periodontal disease treatment.
-
-
-
Lactoferrin-Conjugated Nanocarriers for Transformative Strategies in Cancer Management: New Insights on Breast Cancer Therapy
Available online: 13 March 2025More LessCancer represents a diverse and complex spectrum of diseases characterized by the abnormal growth and proliferation of cells, establishing a formidable global health challenge. Within the array of diverse cancers, breast cancer arises as one of the primary contributors to cancer-related fatalities in females. Breast cysts, thickenings, alterations in breast size or form, etc., are all prevalent and well-known signs of breast cancer. Despite remarkable progression in cancer research and the abundance of potent drugs, the effectiveness of conventional therapy is still hindered by various complications. In this avenue, nanocarriers present considerable promise for delivering therapeutics to cancerous cells, however, still numerous challenges persist in achieving successful targeted drug delivery and localization. Recent progress has emphasized the utilization of ligand-functionalized nanocarriers to enhance the delivery at target tissues and improve uptake by cancer cells. This approach contributes to increased accuracy and efficacy, which ultimately leads to enhanced patient outcomes. Lactoferrin, a multifunctional glycoprotein, is currently receiving significant attention as a promising ligand for targeted drug delivery in cancerous cells, especially breast cancer cells. This review provides new insight into ligand-targeted therapy, emphasizing the key benefits and notable features of utilizing lactoferrin as a targeting ligand for delivering drug-loaded nanocarriers to tumor sites.
-
-
-
Spray-Dried Inhalable Favipiravir Dry Powder Formulation for Influenza Therapy: Preparation and In vivo Evaluation
Authors: Xinyu Zhang, Baogang Wang, Likun Xu, Liangliang Zhao, Lili Zhang, Zhuchun Bei, Dongna Zhang, Dongsheng Zhou, Meng Lv and Yabin SongAvailable online: 12 March 2025More LessBackgroundInfluenza, a seasonal infectious disease, has consistently posed a formidable challenge to global health in recent years. Favipiravir, an RNA-dependent RNA polymerase inhibitor, serves as an anti-influenza medication, currently administered solely in oral form for clinical use. However, achieving an effective therapeutic outcome often necessitates high oral doses, which can be accompanied by adverse effects and suboptimal patient adherence.
ObjectiveTo enhance favipiravir delivery efficiency and potentially mitigate dosage-related side effects, this study aimed to formulate favipiravir as a dry powder for pulmonary inhalation, facilitating direct targeting of lung tissue.
MethodsEmploying L-leucine as a carrier, favipiravir was prepared as an inhalable dry powder through the spray-drying technique. A 3x3 full-factorial design approach was adopted to optimize the formulation. The optimized spray-dried powder underwent comprehensive characterization, including assessments of its morphology, crystallinity, flowability, and aerodynamic particle size distribution. The therapeutic efficacy of the powder was evaluated in a mouse model infected with the H1N1 influenza virus.
ResultsThe formulated powder demonstrated good aerosol properties, rendering it suitable for inhalation delivery. Its therapeutic efficacy was demonstrated in the mouse model, where it exhibited marked protective effects against the virus in vivo after 5 days of treatment. Notably, the inhalation dose required (15 mg/kg/day) was significantly lower than the oral gavage dose (150 mg/kg/day), indicating that substantially reduced doses, when administered via inhalation, were sufficient to confer protection against mortality in mice.
ConclusionThe findings underscore the potential of inhalation therapy using spray-dried favipiravir powder as an effective and efficient treatment option for influenza, offering the promise of reduced dosing requirements and associated adverse effects.
-
-
-
Biomimetic Brain-Targeted Drug Delivery System for the Treatment of Brain Diseases
Authors: Yaomin Tan, Ziyan Tang, Yizhi Zhang, Lina Du and Fan JiaAvailable online: 10 March 2025More LessThe blood-brain barrier (BBB) effectively blocks most drugs from entering the central nervous system, posing significant challenges to the treatment of brain diseases, such as cerebrovascular disorders, neurodegenerative conditions, and brain tumors. In recent years, biomimetic brain-targeted drug delivery systems (BBDDSs) have garnered substantial attention for their potential to overcome these obstacles. BBDDSs employ natural biological materials in combination with synthetic nanoparticles to create delivery systems that mimic endogenous biological processes, enabling the penetration of the BBB and facilitating brain-targeting efficacy. This paper reviews the preparation of BBDDS using cell membranes, proteins, lipoproteins, peptides, nanovesicles, and viruses, introduces their applications in various diseases, and outlines current challenges and future prospects for the use of BBDDS in therapeutic interventions.
-
-
-
A Nanocarrier Enhances the Anti-Liver Cancer Efficacy of Mitoxantrone: An Acidic Panax notoginseng Polysaccharide III
Authors: Yuzhen Ding, Panpan Wei, Die Xia, Mengyue Deng, Yingxi Zhang, Menglian Li, Tong Chen and Zijun YanAvailable online: 18 February 2025More LessIntroductionThe incidence and mortality rates of liver cancer are high; therefore, developing new drug delivery systems with good biocompatibility and targeting has become a research hotspot.
MethodsMitoxantrone hydrochloride (MH) loaded in acidic Panax notoginseng polysaccharide III nanoparticles (MANPs) was prepared using electrostatic adsorption. This was achieved by loading MH in acidic Panax notoginseng polysaccharide III (APPN III), a natural compound that exhibits anti-tumor activity. Response surface methodology was used to determine the parameters for the best formulation.
ResultsFourier-transform infrared spectroscopy and differential scanning calorimetry indicated that MH in MANPs was amorphous and exhibited good encapsulation efficiency in the carrier. Findings from dynamic dialysis confirmed that MANPs exhibited slow drug release at pH 6.8 and over the pH range of 7.2-7.4. In vitro experiments confirmed the anti-tumor effects of MANPs on H22 cells based on the inhibition of cell proliferation and an increase in apoptosis. MANPs also demonstrated an obvious anti-tumor effect without any toxicity in H22 tumor-bearing mice. This effect could be attributed to APPN III enhancing the immune system and exerting a synergistic anti-tumor effect in combination with MH, thereby alleviating MH-induced damage to the immune system in H22 tumor-bearing mice.
ConclusionAs a nano-carrier prepared using natural resources, APPN III shows immense potential in the field of drug delivery and could serve as a novel option for the effective delivery of chemotherapeutic drugs.
-
-
-
Garlic Extract-Mediated SPIONs-Incorporated Nanohydrogel for Enhanced Wound Healing Potential
Available online: 14 February 2025More LessBackgroundSuperparamagnetic iron oxide nanoparticles (SPIONs) with a specific size range of 15-70 nm are usually considered nontoxic substances with superior antibacterial activity, making them strong candidates for wound dressing applications. Although SPIONs have significant antibacterial activity, their ability to treat infected wounds still needs to be explored.
ObjectiveThe objective of the present study was to synthesize antibacterial SPIONs (G-SPIONs) using aqueous garlic extract as a bioreducing agent and evaluate the synthesized G-SPIONs-incorporated nanohydrogel for wound healing potential.
MethodsSynthesized G-SPIONs were characterized by SEM, zeta potential, VSM, FTIR, etc. The antibacterial effects of G-SPIONs were evaluated against S. epidermidis, S. aureus, and E. coli, as compared to garlic extract. The synthesized G-SPIONs were further incorporated into the chitosan-based hydrogel (ChiG-SPIONs) to assess their wound healing potential using the in vivo rat model.
ResultsThe synthesized G-SPIONs had a positive surface charge of +3.82 mV and were spherical, with sizes ranging between 20-80 nm. Additionally, their hemo-biocompatible nature was confirmed by hemolysis assay. The magnetic nature of synthesized G-SPIONs was investigated using a vibrating sample magnetometer, and the saturation magnetization (Ms) was found to be 53.793emu/g. The in vivo wound healing study involving rats revealed a wound contraction rate of around 95% with improved skin regeneration. The histopathological examination demonstrated a faster rate of re-epithelialization with regeneration of blood vessels and hair follicles.
ConclusionThe results demonstrated that the developed ChiG-SPIONs could be a novel and efficient nanohydrogel dressing material for the effective management of wound infections.
-
-
-
Fabrication and Evaluation of Hyaluronic Acid-Coated Albumin Nanoparticles for Delivery of Gemcitabine
Available online: 12 February 2025More LessBackgroundGemcitabine (Gem) is a well-known antineoplastic drug used to treat several solid tumors. The clinical application of Gem is hampered owing to its non-selectivity, short half-life, and drug resistance, which, therefore, necessitate the development of a suitable novel formulation that can selectively target cancer sites.
MethodsIn present work, Gem-loaded bovine serum albumin nanoparticles (Gem-BSANPs) have been prepared by using the desolvation cross-linking method and coated with hyaluronic acid (HA-Gem-BSANPs) to target the CD44 receptor which overexpressed on several solid tumors. The developed NPs were characterized by particle size, zeta potential, Transmission Electron Microscopy (TEM), and Differential Scanning Calorimetry (DSC). Further anticancer activity of the developed formulation was evaluated against A549 and MCF-7 cells and explored mode of action studies.
ResultsThe mean particle size and zeta potential of HA-Gem-BSANPs were observed as 144.7±5.67 nm and -45.72±3.24 mV, respectively. The TEM analysis also corroborated the particle size and shape, while thermal analysis (DSC) indicated that Gem was entrapped into NPs in an amorphous form. The nucleoside transport inhibition assay demonstrated that the NPs do not depend on transporters for cellular internalization, and hence, resistance development in cells is less expected against this formulation. HA-Gem-BSANPs exhibited higher cytotoxicity and apoptosis on both the tested cell lines. However, better cell-killing ability and mitochondrial membrane potential loss were observed against A549 due to CD44 expression.
ConclusionThe present work demonstrated that HA-Gem-BSANPs could be a potential strategy to improve Gem's therapeutic efficacy by selectively targeting the tumor site.
-
-
-
Soluplus Stabilized Amorphous Dispersions for Enhanced Oral Absorption of Felodipine
Authors: Shujuan Zhang, Subing Xiong, Ying Gong, Liangliang Wang and Dayun HuangAvailable online: 16 January 2025More LessBackgroundOvercoming the poor aqueous solubility of small-molecule drugs is a major challenge in developing clinical pharmaceuticals. Felodipine (FLDP), an L-type calcium calcium channel blocker, is a poorly water-soluble drug.
ObjectivesThe study aimed to explore the potential applications of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (Soluplus) stabilized amorphous dispersions for augmenting the oral delivery of poorly water-soluble drugs.
MethodsSoluplus-stabilized amorphous FLDP (FLDP-SSAs) was prepared using a two-phase mixing method. The samples were analyzed for their microscopic and macroscopic behavior using polarized light microscopy (PLM), differential scanning calorimetry (DSC), molecular simulation, and in vitro dissolution studies. Subsequently, the pharmacokinetics of FLDP-SSAs were evaluated.
ResultsThe maximum drug-to-Soluplus mass ratio of FLDP-SSAs was 50:50, with a drug concentration of 8.0 mg/mL. They exhibited an amorphous nature, as confirmed by PLM and DSC. FLDP-SSAs generated nanoparticles with a particle size of approximately 50 nm during in vitro dissolution. Compared to FLDP oral solution, FLDP-SSAs exhibited higher solubility due to their amorphous nature and the generation of nanoparticles. The area under the curve (AUC) for oral FLDP-SSAs was 16.7-fold larger than that of the FLDP suspension.
ConclusionFLDP-SSAs could stabilize FLDP in an amorphous state and serve as drug carriers to enhance oral absorption.
-
-
-
Recent Advances in Nanocarrier-mediated Combination Drug Therapy for Tackling Solid-resistant Tumors
Authors: Km Rafiya, Sakshi Awasthi, Saba Asif Qureshi, Nazeer Hasan and Farhan Jalees AhmadAvailable online: 15 January 2025More LessCancer is a group of dynamic diseases characterized by uncontrollable growth and spread of cells. The heterogenic nature of cancer hinders the abolishment of cancer resulting in a narrow therapeutic index, the capacity of drug efflux, multidrug resistance, and unacceptable side effects. The major challenge in the treatment of malignancies is multidrug resistance (MDR). A novel platform, nanoscale delivery system, concluding desirable applications for the treatment of cancer with targeted and controlled release of drugs, reducing the number of side effects and systemic toxicity. Recent studies emphasize that combining 2 or more nanocarrier-mediated therapies may produce complementary therapeutic effects, perhaps resulting in improved outcomes of cancer current therapies like deterioration of drug resistance. Therefore, in this article, we scrutinize the recent advancement addressing combination therapy by combining nanoparticles with anticancer drugs. It briefly concludes a thorough overview of cancer, tumor or solid resistant tumors, the mechanism of resistant tumors, current therapies for the treatment of solid tumors, and their challenges. It also covers various types of nanoparticles used in cancer treatment, the usage of nanocarriers in resistant tumors, and nanocarrier-based combinatorial therapy for the treatment of resistant tumors as well as its benefits. However, this approach still needs to be improved for clinical applications.
-
-
-
Drug-Loaded Hydrogel Microneedles for Sustainable Transdermal Delivery of Macromolecular Proteins
Available online: 15 January 2025More LessIntroductionPoly(methyl vinyl ether co-maleic acid) (PMVE/MA) hydrogel microneedles (HMN) are investigated for transdermal delivery of macromolecular drugs owing to their biocompatibility and super-swelling properties. However, the drug delivery efficacy reduces with increasing molecular weight due to the entrapment within the HMN matrices. Furthermore, integrating external drug reservoirs extends the drug diffusion path and reduces the efficiency of drug permeation.
MethodsA direct drug loading approach in the HMN matrix was introduced in this work following a pH modification step. The effect of pH modification on the physicochemical properties of HMN was studied. Then, bovine serum albumin (BSA), a model protein, was loaded into the pH-modified HMN, and the morphological changes in HMN and protein stability were also assessed. Finally, the efficacy of BSA-loaded HMN in the transdermal delivery was evaluated ex vivo.
ResultsA significant increase in swelling was recorded following the pH modification of HMN (p < 0.001). The structure of pH-modified hydrogel was highly porous, and ATR-FTIR spectra indicated a shift in the carboxylic peak. The secondary structure of BSA loaded in the pH-modified HMN was also preserved. The BSA-loaded HMN mediated a sustained ex-vivo drug release with a cumulative release of 64.70% (3.88 mg) in 24 h.
ConclusionHence, the model drug-incorporated PMVE/MA HMN system shows potential for sustainable transdermal delivery of proteins.
-
-
-
Improvement in Compatibility and Drug Release Performance of Hot-Melt Pressure-Sensitive Adhesives by Physical Blending Technique
Authors: Jiayi Yang, Shuo Yin, Tan Wu, Yangyang Zhang, Chunyun Zhu, Nianping Feng and Teng GuoAvailable online: 14 January 2025More LessBackgroundHot-melt Pressure-sensitive Adhesives (HMPSA) are eco-friendly pressure-sensitive adhesives, with the potential of being used as substrates for transdermal patches. However, due to the low hydrophilicity of HMPSA, the application is limited in the field of Traditional Chinese Medicine (TCM) plasters.
MethodsThree modified HMPSA were prepared with acrylic resin EPO, acrylic resin RL100, and Polyvinylpyrrolidone (PVP) as the modifying materials. The physical compatibility between HMPSA and the modifying materials was investigated through in vitro release performance, viscosity, softening point, cohesion, and fluidity, so as to determine the most effective modifying material. The impact of the modified HMPSA on the release properties of different TCM ingredients was elucidated by the performance of water absorption and contact angle behavior.
ResultsWith the addition of the modifying materials, both the viscosity and the softening point of HMPSA were improved, with the flowability reduced and the cohesion maintained. The morphological and structural changes reflected the physical compatibility between HMPSA and the three modifying materials. According to the results of in vitro release experiments, PVP effectively improved the release performance of paeoniflorin, ephedrine hydrochloride, and cinnamaldehyde in HMPSA, with no significant impact on the release performance of eugenol. The changes in the drug release performance of HMPSA may be attributed to the improved hydrophilicity of HMPSA after physical modification.
ConclusionThe compatibility and the drug release performance of HMPSA were effectively enhanced after the addition of the modifying materials by the physical blending technique. Among the three modifying materials, PVP has been found to be an ideal modifying material for HMPSA in the field of TCM plasters due to its effects on drug release performance.
-
-
-
Development, Optimization, and Evaluation of Rutin-Loaded Liposomes in the Management of Rheumatoid Arthritis
Authors: Gunjan Nautiyal, Shiv Kant Sharma, Dhirender Kaushik and Parijat PandeyAvailable online: 10 January 2025More LessBackgroundRheumatoid arthritis is a chronic autoimmune disease, progressively distinctive via cartilage destruction, auto-antibody production, severe joint pain, and synovial inflammation. Nanotechnology represents one of the utmost promising scientific technologies of the 21st century. Nanocarriers could be the key to unlocking its potential by encapsulating Rutin in targeted drug delivery systems, potentially for targeted Rheumatoid arthritis therapy.
ObjectiveThe rationale of current research is to prepare liposomes loaded with a bioflavonoid drug rutin for effective management of rheumatoid arthritis.
Materials and MethodsThis study investigated the formulation of rutin liposomes using the thin-film hydration technique, also known as the Bangham method. A Box-Behnken design was employed to optimize the formulation parameters. The LP2 batch was then characterized for its mean particle size, zeta potential, shape, diffraction pattern, and thermal properties. Finally, the in-vitro anti-oxidant and anti-inflammatory potential of the rutin liposomes were evaluated using appropriate assays.
ResultsOut of thirteen batches, LP2 was found to be an optimized batch with a mean particle size of 167.1 nm, zeta potential -13.50 mV, and entrapment efficiency of 61.22%. The above results showed higher stability of rutin liposomes. Further characterization of LP2 for morphological assessment, XRD analysis, and DSC revealed its spherical shape less than 1 µm, polycrystalline nature, and thermographic peak at 139°C, respectively. Evaluation of the antioxidant properties and anti-inflammatory potential of LP2 revealed its maximum therapeutic potential in the reduction of inflammation and protein denaturation when evaluated via in-vitro assays.
ConclusionRutin liposomal formulation has tremendous potential for the management of Rheumatoid arthritis due to its enhanced bioavailability, anti-oxidant, and anti-inflammatory properties when compared to free rutin.
-
-
-
Nanosystems for Intranasal Delivery of Therapeutics in Psychiatric Disorders
Authors: Samin Hamidi, Ali Reza Shafiee-Kandjani and Sara SalatinAvailable online: 10 January 2025More LessDue to the blood-brain barrier (BBB) and issues with oral and other traditional routes of administration, psychiatric disorders present significant challenges in getting therapeutics into the brain. The nose-to-brain pathway, also known as intranasal delivery, has shown promise in overcoming these barriers since it targets the brain directly and bypasses the BBB. This review explores nanocarriers' potential for intranasal delivery of therapeutics in the treatment of psychiatric disorders. Nanocarriers, such as polymeric nanoparticles, liposomes, and nanoemulsions, offer unique advantages for enhancing the delivery of various therapeutic agents to the brain via the intranasal route. The methodology involved conducting preliminary searches on databases such as PubMed, ScienceDirect, Web of Science, and Google Scholar using keywords related to “psychiatric disorders, intranasal delivery, nose-to-brain drug delivery, and nano formulations for intranasal delivery.” This review highlights the advantages of the intranasal drug delivery pathway as a non-invasive, reliable, and efficient method for targeting the brain by bypassing the BBB. Furthermore, it discusses the application of various novel nanocarrier-based formulations, including nanoparticles, in-situ gels, nano-emulsions, hydrogels, and liposomes, for the effective intranasal delivery of therapeutics in the treatment of psychiatric conditions such as mood and anxiety disorders schizophrenia, and other illnesses.
-
Most Read This Month Most Read RSS feed
Most Cited Most Cited RSS feed
-
-
Preface
Authors: Deng-Guang Yu and He Lv
-
- More Less