Current Drug Delivery - Online First
Description text for Online First listing goes here...
21 - 38 of 38 results
-
-
Garlic Extract-Mediated SPIONs-Incorporated Nanohydrogel for Enhanced Wound Healing Potential
Available online: 14 February 2025More LessBackgroundSuperparamagnetic iron oxide nanoparticles (SPIONs) with a specific size range of 15-70 nm are usually considered nontoxic substances with superior antibacterial activity, making them strong candidates for wound dressing applications. Although SPIONs have significant antibacterial activity, their ability to treat infected wounds still needs to be explored.
ObjectiveThe objective of the present study was to synthesize antibacterial SPIONs (G-SPIONs) using aqueous garlic extract as a bioreducing agent and evaluate the synthesized G-SPIONs-incorporated nanohydrogel for wound healing potential.
MethodsSynthesized G-SPIONs were characterized by SEM, zeta potential, VSM, FTIR, etc. The antibacterial effects of G-SPIONs were evaluated against S. epidermidis, S. aureus, and E. coli, as compared to garlic extract. The synthesized G-SPIONs were further incorporated into the chitosan-based hydrogel (ChiG-SPIONs) to assess their wound healing potential using the in vivo rat model.
ResultsThe synthesized G-SPIONs had a positive surface charge of +3.82 mV and were spherical, with sizes ranging between 20-80 nm. Additionally, their hemo-biocompatible nature was confirmed by hemolysis assay. The magnetic nature of synthesized G-SPIONs was investigated using a vibrating sample magnetometer, and the saturation magnetization (Ms) was found to be 53.793emu/g. The in vivo wound healing study involving rats revealed a wound contraction rate of around 95% with improved skin regeneration. The histopathological examination demonstrated a faster rate of re-epithelialization with regeneration of blood vessels and hair follicles.
ConclusionThe results demonstrated that the developed ChiG-SPIONs could be a novel and efficient nanohydrogel dressing material for the effective management of wound infections.
-
-
-
Fabrication and Evaluation of Hyaluronic Acid-Coated Albumin Nanoparticles for Delivery of Gemcitabine
Available online: 12 February 2025More LessBackgroundGemcitabine (Gem) is a well-known antineoplastic drug used to treat several solid tumors. The clinical application of Gem is hampered owing to its non-selectivity, short half-life, and drug resistance, which, therefore, necessitate the development of a suitable novel formulation that can selectively target cancer sites.
MethodsIn present work, Gem-loaded bovine serum albumin nanoparticles (Gem-BSANPs) have been prepared by using the desolvation cross-linking method and coated with hyaluronic acid (HA-Gem-BSANPs) to target the CD44 receptor which overexpressed on several solid tumors. The developed NPs were characterized by particle size, zeta potential, Transmission Electron Microscopy (TEM), and Differential Scanning Calorimetry (DSC). Further anticancer activity of the developed formulation was evaluated against A549 and MCF-7 cells and explored mode of action studies.
ResultsThe mean particle size and zeta potential of HA-Gem-BSANPs were observed as 144.7±5.67 nm and -45.72±3.24 mV, respectively. The TEM analysis also corroborated the particle size and shape, while thermal analysis (DSC) indicated that Gem was entrapped into NPs in an amorphous form. The nucleoside transport inhibition assay demonstrated that the NPs do not depend on transporters for cellular internalization, and hence, resistance development in cells is less expected against this formulation. HA-Gem-BSANPs exhibited higher cytotoxicity and apoptosis on both the tested cell lines. However, better cell-killing ability and mitochondrial membrane potential loss were observed against A549 due to CD44 expression.
ConclusionThe present work demonstrated that HA-Gem-BSANPs could be a potential strategy to improve Gem's therapeutic efficacy by selectively targeting the tumor site.
-
-
-
Soluplus Stabilized Amorphous Dispersions for Enhanced Oral Absorption of Felodipine
Authors: Shujuan Zhang, Subing Xiong, Ying Gong, Liangliang Wang and Dayun HuangAvailable online: 16 January 2025More LessBackgroundOvercoming the poor aqueous solubility of small-molecule drugs is a major challenge in developing clinical pharmaceuticals. Felodipine (FLDP), an L-type calcium calcium channel blocker, is a poorly water-soluble drug.
ObjectivesThe study aimed to explore the potential applications of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (Soluplus) stabilized amorphous dispersions for augmenting the oral delivery of poorly water-soluble drugs.
MethodsSoluplus-stabilized amorphous FLDP (FLDP-SSAs) was prepared using a two-phase mixing method. The samples were analyzed for their microscopic and macroscopic behavior using polarized light microscopy (PLM), differential scanning calorimetry (DSC), molecular simulation, and in vitro dissolution studies. Subsequently, the pharmacokinetics of FLDP-SSAs were evaluated.
ResultsThe maximum drug-to-Soluplus mass ratio of FLDP-SSAs was 50:50, with a drug concentration of 8.0 mg/mL. They exhibited an amorphous nature, as confirmed by PLM and DSC. FLDP-SSAs generated nanoparticles with a particle size of approximately 50 nm during in vitro dissolution. Compared to FLDP oral solution, FLDP-SSAs exhibited higher solubility due to their amorphous nature and the generation of nanoparticles. The area under the curve (AUC) for oral FLDP-SSAs was 16.7-fold larger than that of the FLDP suspension.
ConclusionFLDP-SSAs could stabilize FLDP in an amorphous state and serve as drug carriers to enhance oral absorption.
-
-
-
Recent Advances in Nanocarrier-mediated Combination Drug Therapy for Tackling Solid-resistant Tumors
Authors: Km Rafiya, Sakshi Awasthi, Saba Asif Qureshi, Nazeer Hasan and Farhan Jalees AhmadAvailable online: 15 January 2025More LessCancer is a group of dynamic diseases characterized by uncontrollable growth and spread of cells. The heterogenic nature of cancer hinders the abolishment of cancer resulting in a narrow therapeutic index, the capacity of drug efflux, multidrug resistance, and unacceptable side effects. The major challenge in the treatment of malignancies is multidrug resistance (MDR). A novel platform, nanoscale delivery system, concluding desirable applications for the treatment of cancer with targeted and controlled release of drugs, reducing the number of side effects and systemic toxicity. Recent studies emphasize that combining 2 or more nanocarrier-mediated therapies may produce complementary therapeutic effects, perhaps resulting in improved outcomes of cancer current therapies like deterioration of drug resistance. Therefore, in this article, we scrutinize the recent advancement addressing combination therapy by combining nanoparticles with anticancer drugs. It briefly concludes a thorough overview of cancer, tumor or solid resistant tumors, the mechanism of resistant tumors, current therapies for the treatment of solid tumors, and their challenges. It also covers various types of nanoparticles used in cancer treatment, the usage of nanocarriers in resistant tumors, and nanocarrier-based combinatorial therapy for the treatment of resistant tumors as well as its benefits. However, this approach still needs to be improved for clinical applications.
-
-
-
Drug-Loaded Hydrogel Microneedles for Sustainable Transdermal Delivery of Macromolecular Proteins
Available online: 15 January 2025More LessIntroductionPoly(methyl vinyl ether co-maleic acid) (PMVE/MA) hydrogel microneedles (HMN) are investigated for transdermal delivery of macromolecular drugs owing to their biocompatibility and super-swelling properties. However, the drug delivery efficacy reduces with increasing molecular weight due to the entrapment within the HMN matrices. Furthermore, integrating external drug reservoirs extends the drug diffusion path and reduces the efficiency of drug permeation.
MethodsA direct drug loading approach in the HMN matrix was introduced in this work following a pH modification step. The effect of pH modification on the physicochemical properties of HMN was studied. Then, bovine serum albumin (BSA), a model protein, was loaded into the pH-modified HMN, and the morphological changes in HMN and protein stability were also assessed. Finally, the efficacy of BSA-loaded HMN in the transdermal delivery was evaluated ex vivo.
ResultsA significant increase in swelling was recorded following the pH modification of HMN (p < 0.001). The structure of pH-modified hydrogel was highly porous, and ATR-FTIR spectra indicated a shift in the carboxylic peak. The secondary structure of BSA loaded in the pH-modified HMN was also preserved. The BSA-loaded HMN mediated a sustained ex-vivo drug release with a cumulative release of 64.70% (3.88 mg) in 24 h.
ConclusionHence, the model drug-incorporated PMVE/MA HMN system shows potential for sustainable transdermal delivery of proteins.
-
-
-
Improvement in Compatibility and Drug Release Performance of Hot-Melt Pressure-Sensitive Adhesives by Physical Blending Technique
Authors: Jiayi Yang, Shuo Yin, Tan Wu, Yangyang Zhang, Chunyun Zhu, Nianping Feng and Teng GuoAvailable online: 14 January 2025More LessBackgroundHot-melt Pressure-sensitive Adhesives (HMPSA) are eco-friendly pressure-sensitive adhesives, with the potential of being used as substrates for transdermal patches. However, due to the low hydrophilicity of HMPSA, the application is limited in the field of Traditional Chinese Medicine (TCM) plasters.
MethodsThree modified HMPSA were prepared with acrylic resin EPO, acrylic resin RL100, and Polyvinylpyrrolidone (PVP) as the modifying materials. The physical compatibility between HMPSA and the modifying materials was investigated through in vitro release performance, viscosity, softening point, cohesion, and fluidity, so as to determine the most effective modifying material. The impact of the modified HMPSA on the release properties of different TCM ingredients was elucidated by the performance of water absorption and contact angle behavior.
ResultsWith the addition of the modifying materials, both the viscosity and the softening point of HMPSA were improved, with the flowability reduced and the cohesion maintained. The morphological and structural changes reflected the physical compatibility between HMPSA and the three modifying materials. According to the results of in vitro release experiments, PVP effectively improved the release performance of paeoniflorin, ephedrine hydrochloride, and cinnamaldehyde in HMPSA, with no significant impact on the release performance of eugenol. The changes in the drug release performance of HMPSA may be attributed to the improved hydrophilicity of HMPSA after physical modification.
ConclusionThe compatibility and the drug release performance of HMPSA were effectively enhanced after the addition of the modifying materials by the physical blending technique. Among the three modifying materials, PVP has been found to be an ideal modifying material for HMPSA in the field of TCM plasters due to its effects on drug release performance.
-
-
-
Development, Optimization, and Evaluation of Rutin-Loaded Liposomes in the Management of Rheumatoid Arthritis
Authors: Gunjan Nautiyal, Shiv Kant Sharma, Dhirender Kaushik and Parijat PandeyAvailable online: 10 January 2025More LessBackgroundRheumatoid arthritis is a chronic autoimmune disease, progressively distinctive via cartilage destruction, auto-antibody production, severe joint pain, and synovial inflammation. Nanotechnology represents one of the utmost promising scientific technologies of the 21st century. Nanocarriers could be the key to unlocking its potential by encapsulating Rutin in targeted drug delivery systems, potentially for targeted Rheumatoid arthritis therapy.
ObjectiveThe rationale of current research is to prepare liposomes loaded with a bioflavonoid drug rutin for effective management of rheumatoid arthritis.
Materials and MethodsThis study investigated the formulation of rutin liposomes using the thin-film hydration technique, also known as the Bangham method. A Box-Behnken design was employed to optimize the formulation parameters. The LP2 batch was then characterized for its mean particle size, zeta potential, shape, diffraction pattern, and thermal properties. Finally, the in-vitro anti-oxidant and anti-inflammatory potential of the rutin liposomes were evaluated using appropriate assays.
ResultsOut of thirteen batches, LP2 was found to be an optimized batch with a mean particle size of 167.1 nm, zeta potential -13.50 mV, and entrapment efficiency of 61.22%. The above results showed higher stability of rutin liposomes. Further characterization of LP2 for morphological assessment, XRD analysis, and DSC revealed its spherical shape less than 1 µm, polycrystalline nature, and thermographic peak at 139°C, respectively. Evaluation of the antioxidant properties and anti-inflammatory potential of LP2 revealed its maximum therapeutic potential in the reduction of inflammation and protein denaturation when evaluated via in-vitro assays.
ConclusionRutin liposomal formulation has tremendous potential for the management of Rheumatoid arthritis due to its enhanced bioavailability, anti-oxidant, and anti-inflammatory properties when compared to free rutin.
-
-
-
Nanosystems for Intranasal Delivery of Therapeutics in Psychiatric Disorders
Authors: Samin Hamidi, Ali Reza Shafiee-Kandjani and Sara SalatinAvailable online: 10 January 2025More LessDue to the blood-brain barrier (BBB) and issues with oral and other traditional routes of administration, psychiatric disorders present significant challenges in getting therapeutics into the brain. The nose-to-brain pathway, also known as intranasal delivery, has shown promise in overcoming these barriers since it targets the brain directly and bypasses the BBB. This review explores nanocarriers' potential for intranasal delivery of therapeutics in the treatment of psychiatric disorders. Nanocarriers, such as polymeric nanoparticles, liposomes, and nanoemulsions, offer unique advantages for enhancing the delivery of various therapeutic agents to the brain via the intranasal route. The methodology involved conducting preliminary searches on databases such as PubMed, ScienceDirect, Web of Science, and Google Scholar using keywords related to “psychiatric disorders, intranasal delivery, nose-to-brain drug delivery, and nano formulations for intranasal delivery.” This review highlights the advantages of the intranasal drug delivery pathway as a non-invasive, reliable, and efficient method for targeting the brain by bypassing the BBB. Furthermore, it discusses the application of various novel nanocarrier-based formulations, including nanoparticles, in-situ gels, nano-emulsions, hydrogels, and liposomes, for the effective intranasal delivery of therapeutics in the treatment of psychiatric conditions such as mood and anxiety disorders schizophrenia, and other illnesses.
-
-
-
Facile Synthesis of Monodisperse Gold Nanorods, Gold Nanobipyramids and Gold Nanocups with Different Coatings and Evaluation of Their Cellular Cytotoxicity
Authors: Fanjiao Zuo, Shuting Zhou, Xiwei Wu, Boyao Wang, Jun He and Xilong QiuAvailable online: 09 January 2025More LessIntroductionAssessing the cytotoxicity of gold nanoparticles (GNPs) has gained importance due to their development in the biomedical field.
MethodIn this study, we systematically synthesized gold nanorods (GNRs), gold nanobipyramids (GNBPs), and gold nanocups (GNCs) using a seed-mediated method, with an average length of 32.53 ± 4.67 nm, 72.90 ± 7.54 nm and 118.01 ± 11.02 nm, respectively.
ResultsFurthermore, using the cell counting kit-8 (CCK-8) assay, we assessed the cellular cytotoxicity of three different types of GNPs with various different surface coatings, such as organic cetyltrimethylammonium bromide (CTAB) and polyethylene glycol (PEG). The results showed that the cytotoxic behavior of GNPs was shape-dependent in the concentration range of 3.125 -100 μg/mL. The types of GNPs and their surface coating had a significant impact on how the GNPs behaved in cells. Compared to PEG-coated GNPs, which do not induce cell injury, CTAB-coated GNPs show more noticeable cytotoxicity.
ConclusionFurthermore, compared to GNCs, the toxicity of GNRs and GNBPs against GES-1 cells, RAW 264.7 cells and LX-2 cells was greater. Our research provides an important new understanding of the effects of surface modification on the biocompatibility and the shape of GNPs in the biomedical field.
-
-
-
DSPE-mPEG2000-Modified Podophyllotoxin Long-Circulating Liposomes for Targeted Delivery: Their Preparation, Characterization, and Evaluation
Authors: Langlang Zhang, Rongyu Li, Han Zhang, Xubin Suo and Bohong GuoAvailable online: 02 January 2025More LessObjectiveDSPE-mPEG2000 is a phospholipid and polyethylene glycol conjugate used in various biomedical applications, including drug delivery, gene transfection, and vaccine delivery. Due to the hydrophilic and hydrophobic properties of DSPE-mPEG2000, it can serve as a drug carrier, encapsulating drugs in liposomes to enhance stability and efficacy.
MethodIn this study, long-circulating podophyllotoxin liposomes (Lc-PTOX-Lps) were prepared using DSPE-mPEG2000 as a modifying material and evaluated for their pharmacokinetics and anticancer activity.
ResultLc-PTOX-Lps had an encapsulation rate of 87.11±1.77%, an average particle size of 168.91±7.07 nm, a polydispersity index (PDI) of 0.19±0.04, and a zeta potential of -24.37±0.36 mV. In vitro release studies showed that Lc-PTOX-Lps exhibited a significant slow-release effect. The long-circulating liposomes demonstrated better stability compared to normal liposomes and exhibited a significant slow-release profile. Pharmacokinetic studies indicated that Lc-PTOX-Lps had a prolonged half-life, reduced in vivo clearance, and improved bioavailability. Additionally, Lc-PTOX-Lps exhibited better anticancer effects on MCF-7 cells and lower toxicity to normal cells compared to PTOX.
ConclusionLc-PTOX-Lps were synthesized using a simple and effective method, and Lc-PTOX-Lps are promising anticancer agents.
-
-
-
Exploring Naturally-Derived Targeted Nano Delivery Therapy for Burn Wound Healing with Special Emphasis on Preclinical Outcomes
Authors: Abhranil Bhuyan, Piyali Dey, Himanshu Gogoi and Santa MandalAvailable online: 03 December 2024More LessPlant bioactive are being used since the early days of medicinal discovery for their various therapeutic activities and are safer compared to modern medicines. According to World Health Organization (WHO), approximately 180,000 deaths from burns occur every year with the majority in countries. Recent years have witnessed significant advancements in this domain, with numerous plant bioactive and their various nanoformulations demonstrating promising preclinical burn wound healing activity and identified plant-based nanotechnology of various materials through some variations of cellular mechanisms. A comprehensive search was conducted on scientific databases like PubMed, Web of Science, ScienceDirect and Google Scholar to retrieve relevant literature on burn wound, plants, nano formulations and in vivo studies from 1990 to 2024. From a total of approximately 180 studies, 40 studies were screened out following the inclusion and exclusion criteria, which reported 40 different plants and plant extracts with their various nano-formulations (NFs) that were used against burn wounds preclinically. This study provides the current scenario of naturally-derived targeted therapy, exploring the impact of natural products on various nanotechnology in burn wound healing on a preclinical model. This comprehensive review provides the application of herbal nano-formulations (HBNF) for the treatment of burn wounds. Natural products and their derivatives may include many unidentified bioactive chemicals or untested nano-formulations that might be useful in today's medical toolbox. Mostly, nano-delivery system modulates the bioactive compound's effectiveness on burn wounds and increases compatibility by suppressing inflammation. However, their exploration remains incomplete, necessitating possible pathways and mechanisms of action using clinical models.
-
-
-
Innovative Nanocomposites for Drug Delivery: A Novel Approach for Diabetic Foot Ulcer
Authors: Rubi Parveen, Faraat Ali and Shiv Dev SinghAvailable online: 07 November 2024More LessDiabetic Foot Ulcer (DFU) is a chronic wound, and a person with diabetes has an increased lifetime risk of foot ulcers (19%-34%) and high morbidity (65% recurrence in 3-5 years, 20% lifetime amputation). Recent data have shown rising amputation rates, especially in the younger and minority populations. This abstract discusses innovative approaches for addressing this issue. This highlights the use of nanotechnology-based drug nanocomposite systems for natural wound healing therapies, with a focus on nanoparticles, nano-emulsions, and nanogels. This review also emphasizes the potential of hydrogels for drug delivery, highlighting their versatility in various medical applications. Furthermore, it delves into the use of silver nanoparticles (AgNP’s) for treating diabetic wounds while acknowledging the need to address potential toxicity concerns. Finally, the abstract discusses the utilization of traditional herbal medicine and the integration of modern science to advance wound care, particularly focusing on wound microbiome, immune response, and controlled herbal medicine delivery. This study also highlights clinical trials conducted on DFU. Overall, these abstracts highlight the importance of exploring diverse and innovative solutions to chronic wound management.
-
-
-
Nanostructured Lipid Carrier-based Topical Gels as Novel Drug Delivery System: A Comprehensive Overview
Authors: Ujjwal Kumar Biswas, Shreeja Sen, Susrita Sharma, Mohana Paul, Amit Kumar Nayak, and and Anindya BoseAvailable online: 18 October 2024More LessNanostructured lipid carriers (NLCs) are lipidic nanocarriers that recover the permanency and capacity of drug payloads. NLCs are well-known as second-generation lipid nanocarriers with an unstructured matrix, presenting potentially advantageous nanocarrier systems with marketable opportunities because of reproducible production methodologies and biocompatible lipidic excipients. These (NLCs) are now recognized as a very promising nanocarrier structure for the efficient delivery of drugs via different administration routes. In recent years, several NLC-based gels have been developed and evaluated for topical delivery of many drugs and other therapeutic agents. This review article presents an overview of NLC-based topical gels investigated to deliver drugs via ocular, dermal, and transdermal routes. In addition, the classification, manufacturing, characterizations, advantages, and disadvantages of NLCs are addressed in this article. We also discussed different evaluations of NLC-based topical gels.
-
-
-
Fluconazole-loaded Hyaluronic Acid-modified Transfersomal Hydrogels Containing D-panthenol for Ocular Delivery in Fungal Keratitis Management
Authors: Biswarup Das, Amit Kumar Nayak and Subrata MallickAvailable online: 18 October 2024More LessBackgroundFungal keratitis (mycotic keratitis) is an eye infection in which the cornea is infected by fungi and such fungal keratitis management can be effectively possible by ocular administration of antifungal drugs.
ObjectiveThe main objectives of the present research were to develop and evaluate fluconazole-loaded transfersomal hydrogels for ocular delivery in the effective management of fungal keratitis.
MethodsA 23 factorial design-based approach was used for statistical optimization, where (A) the ratio of lipid to edge activators, (B) the amount of hyaluronic acid (% HA), and (C) the ratio of edge activators (sodium deoxycholate to Span 80) were taken as three factors. The average vesicle diameter (Z, nm) of transfersomes was taken as a response. Further, fluconazole-loaded transfersomes (FTO) were incorporated into 1% Carbopol 940-based hydrogel (OF1) and 2% HMPC K4M-based hydrogel (OF2) containing D-panthenol (5% w/w).
ResultsThe optimal variable setting for the optimized formulations of FTO was (A) = 9.15, (B) = 0.30%, and (C) = 3.00. FTO exhibited 66.39 nm Z, 0.247 polydispersity index, – 33.10 mV zeta potential, and 65.38 ± 1.77% DEE, and desirable elasticity. TEM image of FTO demonstrated a unilamellar vesicular structure. The ex vivo ocular permeation of fluconazole from transfersomal hydrogels was sustained over 24 h. All the transfersomal hydrogels showed good bioadhesion and excellent antifungal activity with respect to the zone of inhibition against Candida albicans than Aspergillus fumigates, in vitro. HET-CAM study results demonstrated that both the hydrogels were non-irritant and safe for ocular. Short-term physical stability study suggested the stability of the developed formulation.
ConclusionThe current research demonstrated a new way to enhance the ocular penetration of fluconazole via transfersomal hydrogel formulations for ocular delivery in the effective management of fungal keratitis.
-
-
-
Local Delivery of Ginger Extract via a Nanofibrous Membrane Suppresses Human Skin Melanoma B16F10 Cells Growth via Targeting Ras/ERK and PI3K/AKT Signaling Pathways: An In vitro Study
Authors: Wenju Wei, Tianlu Zhang, Bo Yuan and Saeed RohaniAvailable online: 15 October 2024More LessBackgroundMetastatic melanoma poses a significant threat globally, with a distressingly low ten-year survival rate of only 10%. While FDA-approved treatments such as dacarbazine and high-dose IL-2 have been employed in clinical settings, their limitations underscore the urgent need for more effective therapies.
AimsThis study aimed to develop a potential anticancer local treatment through the extraction of various amounts of ginger extract loaded unto Poly(vinyl alcohol) (PVA) nanofibers.
MethodsThe anticancer activity of the produced membranes was studied on human skin melanoma B16F10 cells. Other in vitro experiments such as cell migration assay, cell proliferation assay, cell viability assay, scanning electron microscopy assay, real-time PCR assay, and ant-inflammatory assay were performed for the in vitro characterization of the delivery system. Tissue toxicity of the developed patches was studied in a rat model.
ResultsThe study showed that scaffolds loaded with 2%, 4%, 6%, 8%, and 0% of ginger extract had around 784.98 ± 202.31 nm, 771.86 ± 219.07 nm, 820.65 ± 242.43 nm, 785.19 ± 203.99 nm, and 671.29 ± 184.09 nm of mean fiber size, respectively. The ginger extract-loaded membranes suppressed the growth and migration activity of human skin melanoma B16F10 cells in a dose and time-dependent manner. Real-time PCR assay showed that the developed membranes modulated the expression levels of Ras/ERK and PI3K/AKT signaling pathways. Animal study results showed that our developed patches were not toxic against liver or skin tissues.
ConclusionGinger extract-loaded PVA nanofibers exhibited promising anticancer potential against melanoma cells, suggesting a viable localized treatment option.
-
-
-
Alleviation of Tumor Invasion by the Development of Natural Polymer-based Low-risk Chemotherapeutic Systems – review on the Malignant Carcinoma Treatments
Available online: 14 October 2024More LessIntroduction/ObjectiveThe spread of tumors (48% in men and 51% in women), as well as the protection of malignant tumors by stromal cells and complex blood vessels, pose significant challenges to drug delivery to tumors. Modern chemotherapy, on the other hand, addresses tumor growth suppression by at least 60% through versatile formulation systems and numerous modifications to drug delivery systems. The renewable and naturally occurring polymers present invariably in all living cells form the fundamental foundation for most anticancer drug development. The review aims to discuss in detail the preparations of polysaccharide, lipid, and protein-based drug-loading vehicles for the targeted delivery of prominent anticancer drugs. It also provides an explanation of drug distribution in blood (cumulative releases of nearly 80% drug) and drug accumulation at tumor sites (1–5 mg/kg) due to enhanced permeability and retention (EPR).
MethodsSpecific delivery examples for treating colorectal and breast carcinomas have been presented to distinguish the varied drug administration, bioavailability, and tumor internalization mechanisms between sugar, fatty acid, and amino acid polymers. Current therapy possibilities based on cutting-edge literature are provided, along with drug delivery systems tailored to tumor location and invasive properties.
ResultsThe unique combinations of the three natural polymers provide unparalleled solutions to minimize the toxicity (<20% drug release) of the chemotherapeutic drugs on normal tissues. Moreover, the development of a consolidated drug delivery system has contributed to a substantial reduction (dose reduction from 10.43 µM to 1.9 µM) in the undesirable consequences of higher dosages of chemotherapeutic drugs.
ConclusionThe review extensively covers safe chemotherapeutic systems with significant advantages (tumor volume shrinkage of 4T1 cells from 1000 mm3 to 200 mm3) in clinical applications of carcinoma treatments using natural polymers.
-
-
-
Nanoparticle-Mediated Transcytosis in Tumor Drug Delivery: Mechanisms, Categories, and Novel Applications
Authors: Nakaooh Doaa, Signa Lon Rolande Detorgma, Kaiyun Yang, Rajae Salama and Wenli ZhangAvailable online: 10 October 2024More LessThe development of nanotechnology-based drug delivery systems has been extensively investigated across various therapies, leading to the creation of numerous nanomedicines for clinical use. However, these nanomedicines have yet to achieve the anticipated therapeutic efficacy in clinical settings, highlighting the urgent need for further research in this area. A primary challenge in nanomedicine research lies in ensuring that nanoparticles and therapeutic agents can effectively penetrate and accumulate within tumors. The enhanced permeability and retention (EPR) effect has been previously explored as a means to enhance drug delivery to tumors, but recent findings have revealed its limitations, including variable responses, restricted penetration, clearance by the reticuloendothelial system, and non-specific accumulation. As an alternative approach, transcytosis has been explored for delivering drugs to specific organs or tissues, potentially bypassing some of the constraints of the EPR effect. For example, nanoparticles can be guided through barriers by targeting specific receptors on cell surfaces or by utilizing a different charge compared to tumor cells' surfaces. Therefore, this article explores transcytosis, including adsorptive, receptor-mediated, and cell-mediated subtypes, all of which have demonstrated promising results and offer potential solutions to enhance the effectiveness of nanomedicine delivery for cancer therapy.
-
-
-
Multi-Stimuli-Responsive Biocompatible Magnetic Nanocarrier as Drug Delivery System to MCF-7 Breast Cancer Cells
Available online: 04 October 2024More LessIntroductionThe last strategy in targeted drug delivery systems is to deliver the anticancer drug to the tumor tissue to increase its therapeutic effect and minimize its undesirable side effects. In line with this goal in this research, the redox/pH-responsive disulfide magnetic nanocarriers based on PF127-NH2/L-cysteine-CM-β-CD-FA were synthesized and evaluated in a doxorubicin delivery system.
MethodsWe effectively surrounded Fe3O4 nanoparticles with SiO2 using the sol-gel method, and then confidently coated them with oleic acid on Fe3O4@SiO2 nanoparticles.. In another reaction, a PF127-NH2/L-cysteine-CM-β-CD-FA was synthesized. The process involved modifying pluronic F127 (PF 127) with maleic anhydride and aminating it to form PF127-NH2. The obtained PF127-NH2 was attached to L-cysteine, followed by condensing with carboxymethyl-β-cyclodextrin and then functionalized by folic acid. Finally, PF127-NH2/L-cysteine-CM-β-CD-FA was coated on the surface of magnetic nanoparticles, and the resulting PF127-NH2/L-cysteine-CM-β-CD-FA was disulfidated to form the final nanocarrier network, which was abbreviated as LCMNPs-SS. The doxorubicin was used as a model drug and loaded into the LCMNPs-SS nanocarrier.
ResultsThe LCMNPs-SS nanocarrier exhibited excellent properties for controlled release, with a well-defined release rate, a controllable level by an external magnet, and adjusting by DL-dithiothreitol concentration. The LCMNPs-SS nanocarrier could also break apart when exposed to an oxidant or a change in pH. This meant that the drug release could be fine-tuned in response to temperature, pH, or more than one stimulus.
ConclusionThese drug-carrying systems are valuable in reducing the dose of doxorubicin. High internalization of the synthesized LCMNPs-SS caused sped cellular uptake.
-
Most Read This Month Most Read RSS feed
Most Cited Most Cited RSS feed
-
-
Preface
Authors: Deng-Guang Yu and He Lv
-
- More Less