Skip to content
2000
image of Advances in Nanostructured Lipid Carriers for Colorectal Cancer Treatment: A Comprehensive Review

Abstract

As colorectal cancer is the third most common cancer globally, this study aimed to improve colorectal cancer treatment using nanostructured lipid carriers (NLCs) for drug delivery by overcoming the current drawbacks, improving therapeutic effectiveness, achieving site-specific delivery, and implementing controlled drug administration to mitigate systemic side effects. Based on the literature, it has been observed that the optimal drug size and zeta potential range depend on the drug formulation's targets and features. These ranges are determined through optimization and characterization. The particle size ranges from 10 to 200 manometers, and the zeta potential values range from -30 mV to +30 mV. Optimal formulations should have uniform spherical morphology and compatibility with biological entities. This paper provides an in-depth analysis of nanocarrier research and findings. This article offers a thorough synopsis of the latest research and findings on nanocarriers, offering a valuable understanding of their development.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018340391250321041056
2025-04-09
2025-08-13
Loading full text...

Full text loading...

References

  1. World Health Organisation 2020 Available from: https://www.who.int/news-room/fact-sheets/detail/cancer (Accessed on: 21 Mar 2023).
  2. United states Food Drug Administration Available from: https://www.fda.gov/consumers/minority-health-and-health-equity-resources/colorectal-cancer (Accessed on: 16 Feb 2023).
  3. Patel R Patel S Momin I Shah S. The Evolving Landscape of Colonoscopy: Recent Developments and Complication Management. Colonoscopy - Diagnostic and Therapeutic Advances Intechopen 2024 10.5772/intechopen.1003894
    [Google Scholar]
  4. Das DK Nanocarrier drug delivery systems for colorectal cancer. Oncology 2021 43 5 22 27 10.1097/01.COT.0000737716.79578.f5
    [Google Scholar]
  5. Shah S. Nanocomposite hydrogels: An optimistic insight towards the treatments of ocular disorders. Recent Pat. Nanotechnol. 2023 2023 10.2174/1872210517666230731102130
    [Google Scholar]
  6. Shah S Patel AA Prajapati BG Alexander A Pandya V Trivedi N Multifaceted nanolipidic carriers: A modish stratagem accentuating nose-to-brain drug delivery. J Nanopart Res 2023 25 150 10.1007/s11051‑023‑05804‑4
    [Google Scholar]
  7. Patel RJ Pandey P Patel AA Prajapati BG Alexander A Pandya V Ordered mesoporous silica nanocarriers: An innovative paradigm and a promising therapeutic efficient carrier for delivery of drugs. JDDST 2023 82 104306 10.1016/j.jddst.2023.104306
    [Google Scholar]
  8. Patel G. Patel R. Thermoresponsive hydrogel: a carrier for tissue engineering and regenerative medicine. Hydrogels for Tissue Engineering and Regenerative Medicine: From Fundamentals to Applications. Oliveira J.M. Silva-Correia J. Reis R.L. Academic Press 2023 213 232 10.1016/B978‑0‑12‑823948‑3.00009‑9
    [Google Scholar]
  9. Oliveira A.L.C de SL. Nanocarriers as a tool for the treatment of colorectal cancer. Pharmaceutics 2021 13 8 10.3390/pharmaceutics13081321 34452074
    [Google Scholar]
  10. Simões M.C.F. Sousa J.J.S. Pais A.A.C.C. Skin cancer and new treatment perspectives: A review. Cancer Lett. 2015 357 1 8 42 10.1016/j.canlet.2014.11.001 25444899
    [Google Scholar]
  11. Mimeault M. Batra S.K. Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy. Chin. Med. 2011 6 1 31 10.1186/1749‑8546‑6‑31 21859497
    [Google Scholar]
  12. Mihai M.M. Holban A.M. Călugăreanu A. Orzan O.A. Chapter 11 - Recent advances in diagnosis and therapy of skin cancers through nanotechnological approaches. Nanostructures for Cancer Therapy Micro and Nano Technologies Elsevier 2017 285 306 10.1016/B978‑0‑323‑46144‑3.00011‑8
    [Google Scholar]
  13. Nuzhatun Nisa T.A. Therapeutic and diagnostic applications of nanotechnology in dermatology and cosmetics. J. Nanomedine Biotherapeutic Discov. 2015 5 3 10.4172/2155‑983X.1000134
    [Google Scholar]
  14. Mota A.H. Rijo P. Molpeceres J. Reis C.P. Broad overview of engineering of functional nanosystems for skin delivery. Int. J. Pharm. 2017 532 2 710 728 10.1016/j.ijpharm.2017.07.078 28764984
    [Google Scholar]
  15. Patra J.K. Das G. Fraceto L.F. Campos E.V.R. Rodriguez-Torres M.P. Acosta-Torres L.S. Diaz-Torres L.A. Grillo R. Swamy M.K. Sharma S. Habtemariam S. Shin H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  16. Golombek S.K. May J.N. Theek B. Appold L. Drude N. Kiessling F. Lammers T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev. 2018 130 17 38 10.1016/j.addr.2018.07.007 30009886
    [Google Scholar]
  17. Cappell M.S. Pathophysiology, clinical presentation, and management of colon cancer. Gastroenterol. Clin. North Am. 2008 37 1 1 24, v 10.1016/j.gtc.2007.12.002 18313537
    [Google Scholar]
  18. Cleveland Clinic Medical Professional. Colon (Large Intestine): Function, Anatomy & Definition. Cleveland Clinic 2022 Available from: https://my.clevelandclinic.org/health/body/22134-colon-large-intestine (Accessed on: 24 Mar 2023).
  19. NCI. Anatomy of Colon and Rectum | SEER Training 2013 Available from: https://training.seer.cancer.gov/colorectal/anatomy/ (Accessed on: 21 Mar 2023).
  20. The American Cancer Society Medical and Editorial Content Team. What is Colorectal Cancer? 2020 Available from: https://www.cancer.org/cancer/colon-rectal-cancer/about/what-is-colorectal-cancer.html#:~:text=Colorectal (Accessed on: 21 Mar 2023).
  21. Metastatic Colorectal Cancer and Stage 4 Survival Rate | CTCA | City of Hope. 2022 Available from: https://www.cancercenter.com/cancer-types/colorectal-cancer/types/metastatic-colorectal-cancer (Accessed on: 21 Mar 2023).
  22. Chibaudel B. Tournigand C. André T. de Gramont A. Therapeutic strategy in unresectable metastatic colorectal cancer. Ther. Adv. Med. Oncol. 2012 4 2 75 89 10.1177/1758834011431592 22423266
    [Google Scholar]
  23. Xie Y.H. Chen Y.X. Fang J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 2020 5 1 22 10.1038/s41392‑020‑0116‑z 32296018
    [Google Scholar]
  24. Azman M. Sabri A.H. Anjani Q.K. Mustaffa M.F. Hamid K.A. Intestinal absorption study: Challenges and absorption enhancement strategies in improving oral drug delivery. Pharmaceuticals 2022 15 8 975 10.3390/ph15080975 36015123
    [Google Scholar]
  25. Worrell R.T. Cuppoletti J. Matthews J.B. Colonic Absorption and Secretion Encyclopedia of Gastroenterology 2004 10.1016/B0‑12‑386860‑2/00148‑9
    [Google Scholar]
  26. Sonia T.A. Sharma C.P. Lipids and inorganic nanoparticles in oral insulin delivery. Oral Delivery of Insulin 2014 219 256 10.1533/9781908818683.219
    [Google Scholar]
  27. Vanić Ž. Hurler J. Ferderber K. Golja Gašparović P. Škalko-Basnet N. Filipović-Grčić J. Novel vaginal drug delivery system: deformable propylene glycol liposomes-in-hydrogel. J. Liposome Res. 2014 24 1 27 36 10.3109/08982104.2013.826242 23931627
    [Google Scholar]
  28. Pavelić Ž. Škalko-Basnet N. Filipović-Grčić J. Martinac A. Jalšenjak I. Development and in vitro evaluation of a liposomal vaginal delivery system for acyclovir. J. Control. Release 2005 106 1-2 34 43 10.1016/j.jconrel.2005.03.032 15979189
    [Google Scholar]
  29. Al-Shati I.R. Evaluation of mucoadhassive gel of liposomal tetracycline (MAG lipo T) of antibacterial vaginitis. Int. J. Pharm. Res. 2020 12 2 970 979 10.31838/ijpr/2020.12.02.0148
    [Google Scholar]
  30. Caron M. Besson G. Etenna S.L.D. Mintsa-Ndong A. Mourtas S. Radaelli A. Morghen C.D.G. Loddo R. La Colla P. Antimisiaris S.G. Kazanji M. Protective properties of non-nucleoside reverse transcriptase inhibitor (MC1220) incorporated into liposome against intravaginal challenge of Rhesus Macaques with RT-SHIV. Virology 2010 405 1 225 233 10.1016/j.virol.2010.06.008 20591460
    [Google Scholar]
  31. Johal H.S. Garg T. Rath G. Goyal A.K. Advanced topical drug delivery system for the management of vaginal candidiasis. Drug Deliv. 2016 23 2 550 563 10.3109/10717544.2014.928760 24959937
    [Google Scholar]
  32. Andersen T. Mishchenko E. Flaten G. Sollid J. Mattsson S. Tho I. Škalko-Basnet N. Chitosan-based nanomedicine to fight genital Candida Infections: Chitosomes. Mar. Drugs 2017 15 3 64 10.3390/md15030064 28273850
    [Google Scholar]
  33. Jøraholmen M.W. Basnet P. Acharya G. Škalko-Basnet N. PEGylated liposomes for topical vaginal therapy improve delivery of interferon alpha. Eur. J. Pharm. Biopharm. 2017 113 132 139 10.1016/j.ejpb.2016.12.029 28087379
    [Google Scholar]
  34. Mignani S. El Kazzouli S. Bousmina M. Majoral J.P. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview. Adv. Drug Deliv. Rev. 2013 65 10 1316 1330 10.1016/j.addr.2013.01.001 23415951
    [Google Scholar]
  35. Maciel D. Guerrero-Beltrán C. Ceña-Diez R. Tomás H. Muñoz-Fernández M.Á. Rodrigues J. New anionic poly(alkylideneamine) dendrimers as microbicide agents against HIV-1 infection. Nanoscale 2019 11 19 9679 9690 10.1039/C9NR00303G 31066407
    [Google Scholar]
  36. García-Broncano P. Ceña-Diez R. de la Mata F.J. Gómez R. Resino S. Muñoz-Fernández M.Á. Efficacy of carbosilane dendrimers with an antiretroviral combination against HIV-1 in the presence of semen-derived enhancer of viral infection. Eur. J. Pharmacol. 2017 811 155 163 10.1016/j.ejphar.2017.05.060 28577966
    [Google Scholar]
  37. Ganda I.S. Zhong Q. Hali M. Albuquerque R.L.C. Padilha F.F. da Rocha S.R.P. Whittum-Hudson J.A. Dendrimer-conjugated peptide vaccine enhances clearance of Chlamydia trachomatis genital infection. Int. J. Pharm. 2017 527 1-2 79 91 10.1016/j.ijpharm.2017.05.045 28546072
    [Google Scholar]
  38. Mumper R.J. Bell M.A. Worthen D.R. Cone R.A. Lewis G.R. Paull J.R.A. Moench T.R. Formulating a sulfonated antiviral dendrimer in a vaginal microbicidal gel having dual mechanisms of action. Drug Dev. Ind. Pharm. 2009 35 5 515 524 10.1080/03639040802488097 19040181
    [Google Scholar]
  39. Gong E. Matthews B. McCarthy T. Chu J. Holan G. Raff J. Sacks S. Evaluation of dendrimer SPL7013, a lead microbicide candidate against herpes simplex viruses. Antiviral Res. 2005 68 3 139 146 10.1016/j.antiviral.2005.08.004 16219368
    [Google Scholar]
  40. Telwatte S. Moore K. Johnson A. Tyssen D. Sterjovski J. Aldunate M. Gorry P.R. Ramsland P.A. Lewis G.R. Paull J.R.A. Sonza S. Tachedjian G. Virucidal activity of the dendrimer microbicide SPL7013 against HIV-1. Antiviral Res. 2011 90 3 195 199 10.1016/j.antiviral.2011.03.186 21459115
    [Google Scholar]
  41. Ray S.K. Bano N. Shukla T. Upmanyu N. Pandey S.P. Parkhe G. Noisomes: as novel vesicular drug delivery system. J. Drug Deliv. Ther. 2018 8 6 335 341 10.22270/jddt.v8i6.2029
    [Google Scholar]
  42. Ning M. Guo Y. Pan H. Chen X. Gu Z. Preparation, in vitro and in vivo evaluation of liposomal/niosomal gel delivery systems for clotrimazole. Drug Dev. Ind. Pharm. 2005 31 4-5 375 383 10.1081/DDC‑54315 16093203
    [Google Scholar]
  43. Malik T Chauhan G Rath G Kesarkar RN Chowdhary AS Goyal AK Efaverinz and nano-gold-loaded mannosylated niosomes: A host cell-targeted topical HIV-1 prophylaxis via thermogel system. Artif Cells Nanomed Biotechnol. 2018 46 1 79 90 10.1080/21691401.2017.1414054
    [Google Scholar]
  44. Zidan A.S. Habib M.J. Maximized mucoadhesion and skin permeation of anti-AIDS-loaded niosomal gels. J. Pharm. Sci. 2014 103 3 952 964 10.1002/jps.23867 24464823
    [Google Scholar]
  45. Ning M. Guo Y. Pan H. Zong S. Gu Z. Preparation and characterization of EP-liposomes and Span 40-niosomes. Pharmazie 2006 61 3 208 212 16599261
    [Google Scholar]
  46. Vitali D. Bagri P. Wessels J.M. Arora M. Ganugula R. Parikh A. Mandur T. Felker A. Garg S. Kumar M.N.V.R. Kaushic C. Curcumin can decrease tissue inflammation and the severity of HSV-2 infection in the female reproductive mucosa. Int. J. Mol. Sci. 2020 21 1 337 10.3390/ijms21010337 31947962
    [Google Scholar]
  47. Zhang Y. Miyamoto Y. Ihara S. Yang J.Z. Zuill D.E. Angsantikul P. Zhang Q. Gao W. Zhang L. Eckmann L. Composite thermoresponsive hydrogel with auranofin-loaded nanoparticles for topical treatment of vaginal trichomonad infection. Adv. Ther. (Weinh.) 2019 2 12 1900157 10.1002/adtp.201900157 32377561
    [Google Scholar]
  48. Büyükköroğlu G. Şenel B. Yenilmez E. Vaginal suppositories with siRNA and paclitaxel-incorporated solid lipid nanoparticles for cervical cancer: Preparation and in vitro evaluation. Methods Mol Biol. 2019 1974 303 328 10.1007/978‑1‑4939‑9220‑1_22
    [Google Scholar]
  49. Traore Y.L. Fumakia M. Gu J. Ho E.A. Dynamic mechanical behaviour of nanoparticle loaded biodegradable PVA films for vaginal drug delivery. J. Biomater. Appl. 2018 32 8 1119 1126 10.1177/0885328217739451 29105543
    [Google Scholar]
  50. Rossi S. Vigani B. Puccio A. Bonferoni M. Sandri G. Ferrari F. Chitosan ascorbate nanoparticles for the vaginal delivery of antibiotic drugs in atrophic vaginitis. Mar. Drugs 2017 15 10 319 10.3390/md15100319 29048359
    [Google Scholar]
  51. Marciello M. Rossi S. Caramella C. Remuñán-López C. Freeze-dried cylinders carrying chitosan nanoparticles for vaginal peptide delivery. Carbohydr. Polym. 2017 170 43 51 10.1016/j.carbpol.2017.04.051 28522002
    [Google Scholar]
  52. Tseng Y.Y. Liu S.J. Nanofibers used for the delivery of analgesics. Nanomedicine (Lond.) 2015 10 11 1785 1800 10.2217/nnm.15.23 26080700
    [Google Scholar]
  53. Escobar-Chavez J Diaz-Torres R Rodriguez-Cruz IM Nanocarriers for transdermal drug delivery. Research and Reports in Transdermal Drug Delivery. 2012 1 1 3 10.2147/RRTD.S32621
    [Google Scholar]
  54. Neubert R.H.H. Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur. J. Pharm. Biopharm. 2011 77 1 1 2 10.1016/j.ejpb.2010.11.003 21111043
    [Google Scholar]
  55. Zheng Y. Li Z. Chen H. Gao Y. Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy. Eur. J. Pharm. Sci. 2020 144 105213 10.1016/j.ejps.2020.105213 31926941
    [Google Scholar]
  56. Nikezić A.V.V. Bondžić A.M. Vasić V.M. Drug delivery systems based on nanoparticles and related nanostructures. Eur. J. Pharm. Sci. 2020 151 105412 10.1016/j.ejps.2020.105412 32505796
    [Google Scholar]
  57. Silva G.A. Introduction to nanotechnology and its applications to medicine. Surg. Neurol. 2004 61 3 216 220 10.1016/j.surneu.2003.09.036 14984987
    [Google Scholar]
  58. The Applications and Implications of Nanotechnology | American University, Washington, D.C. 2004 Available from: https://www.american.edu/sis/centers/security-technology/the-applications-and-implications-of-nanotechnology.cfm
  59. Patel R. Yadav B.K. Patel G. Progresses in nano-enabled platforms for the treatment of vaginal disorders. Recent Pat. Nanotechnol. 2023 17 3 208 227 10.2174/1872210516666220628150447 35762539
    [Google Scholar]
  60. Jani K. Mehta S. Patel R. Prajapati B. Patel G. Focused insights into liposomal nanotherapeutics for antimicrobial treatment. Curr. Med. Chem. 2024 2024 39421994
    [Google Scholar]
  61. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  62. Lawrence M.J. Rees G.D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 2012 64 175 193 10.1016/j.addr.2012.09.018 11104900
    [Google Scholar]
  63. Duan Y. Dhar A. Patel C. Khimani M. Neogi S. Sharma P. Siva Kumar N. Vekariya R.L. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Advances 2020 10 45 26777 26791 10.1039/D0RA03491F 35515778
    [Google Scholar]
  64. Elmowafy M. Al-Sanea M.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm. J. 2021 29 9 999 1012 10.1016/j.jsps.2021.07.015 34588846
    [Google Scholar]
  65. Abbasi E. Aval S.F. Akbarzadeh A. Milani M. Nasrabadi H.T. Joo S.W. Hanifehpour Y. Nejati-Koshki K. Pashaei-Asl R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014 9 1 247 10.1186/1556‑276X‑9‑247 24994950
    [Google Scholar]
  66. Gbian D.L. Omri A. Lipid-Based Drug Delivery Systems for Diseases Managements. Biomedicines 2022 10 9 2137 10.3390/biomedicines10092137 36140237
    [Google Scholar]
  67. Garcês A. Amaral M.H. Sousa Lobo J.M. Silva A.C. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur. J. Pharm. Sci. 2018 112 159 167 10.1016/j.ejps.2017.11.023 29183800
    [Google Scholar]
  68. Narang J.K. Khan S. Baboota S. Ali J. Khan S. Narang R. Nanostructured lipid carriers: An emerging platform for improving oral bioavailability of lipophilic drugs. Int. J. Pharm. Investig. 2015 5 4 182 191 10.4103/2230‑973X.167661 26682188
    [Google Scholar]
  69. Rodrigues da Silva G.H. Moura L.D. Carvalho F.V. Geronimo G. Mendonça T.C. Lima F.F. de Paula E. Antineoplastics encapsulated in nanostructured lipid carriers. Molecules 2021 26 22 6929 10.3390/molecules26226929 34834022
    [Google Scholar]
  70. Tincu R. Mihaila M. Bostan M. Istrati D. Badea N. Lacatusu I. Hybrid albumin-decorated lipid-nanocarrier-mediated delivery of polyphenol-rich Sambucus nigra L. in a potential multiple antitumoural therapy. Int. J. Mol. Sci. 2024 25 20 11206 10.3390/ijms252011206 39456987
    [Google Scholar]
  71. Chauhan I. Yasir M. Verma M. Singh A.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv. Pharm. Bull. 2020 10 2 150 165 10.34172/apb.2020.021 32373485
    [Google Scholar]
  72. Zeren S. Seker S. Akgün G.A. Okur E. Yerlikaya A. Label-free nLC-MS/MS proteomic analysis reveals significant differences in the proteome between colorectal cancer tissues and normal colon mucosa. Med. Oncol. 2023 40 10 298 10.1007/s12032‑023‑02173‑9 37707637
    [Google Scholar]
  73. Weber S. Zimmer A. Pardeike J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. Eur. J. Pharm. Biopharm. 2014 86 1 7 22 10.1016/j.ejpb.2013.08.013 24007657
    [Google Scholar]
  74. Basso J. Mendes M. Cova T. Sousa J. Pais A. Fortuna A. Vitorino R. Vitorino C. A stepwise framework for the systematic development of lipid nanoparticles. Biomolecules 2022 12 2 223 10.3390/biom12020223 35204723
    [Google Scholar]
  75. Cortés H. Hernández-Parra H. Bernal-Chávez S.A. Prado-Audelo M.L.D. Caballero-Florán I.H. Borbolla-Jiménez F.V. González-Torres M. Magaña J.J. Leyva-Gómez G. Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses. Materials (Basel) 2021 14 12 3197 10.3390/ma14123197 34200640
    [Google Scholar]
  76. D’Souza A.A. Potential of oils in development of nanostructured lipid carriers. 2017 10.1201/9781315209241
    [Google Scholar]
  77. Boztepe T. Scioli-Montoto S. Gambaro R.C. Ruiz M.E. Cabrera S. Alemán J. Islan G.A. Castro G.R. León I.E. Design, synthesis, characterization, and evaluation of the Anti-HT-29 colorectal cell line activity of novel 8-Oxyquinolinate-Platinum(II)-loaded nanostructured lipid carriers targeted with riboflavin. Pharmaceutics 2023 15 3 1021 10.3390/pharmaceutics15031021 36986881
    [Google Scholar]
  78. Patel S.M. Jha L.L. Simultaneous UV method development for determination of rotigotine hydrochloride and rasagiline mesylate. Indian Drugs. 2023 60 5 73 79 10.53879/id.60.05.13373
    [Google Scholar]
  79. Momin F. Kevlani V. Rawal S. Patel R. Acharya S. Shah S. Antipsoriatic effect of silymarin NLCs based gel: In vitro and in vivo activity. AAPS PharmSciTech 2024 25 7 195 10.1208/s12249‑024‑02910‑x 39168904
    [Google Scholar]
  80. Beloqui A. Memvanga P.B. Coco R. Reimondez-Troitiño S. Alhouayek M. Muccioli G.G. Alonso M.J. Csaba N. de la Fuente M. Préat V. A comparative study of curcumin-loaded lipid-based nanocarriers in the treatment of inflammatory bowel disease. Colloids Surf. B Biointerfaces 2016 143 327 335 10.1016/j.colsurfb.2016.03.038 27022873
    [Google Scholar]
  81. Khosa A. Reddi S. Saha R.N. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother. 2018 103 598 613 10.1016/j.biopha.2018.04.055 29677547
    [Google Scholar]
  82. Elmowafy M. Shalaby K. Badran M.M. Ali H.M. Abdel-Bakky M.S. El-Bagory I. Fatty alcohol containing nanostructured lipid carrier (NLC) for progesterone oral delivery: In vitro and ex vivo studies. J. Drug Deliv. Sci. Technol. 2018 45 230 239 10.1016/j.jddst.2018.03.007
    [Google Scholar]
  83. Azevedo A. Coelho M.P. Pinho J.O. Soares P.I.P. Reis C.P. Borges J.P. Gaspar M.M. An alternative hybrid lipid nanosystem combining cytotoxic and magnetic properties as a tool to potentiate antitumor effect of 5-fluorouracil. Life Sci. 2024 344 122558 10.1016/j.lfs.2024.122558 38471621
    [Google Scholar]
  84. Liu Y. Zhang H. Cui H. Zhang F. Zhao L. Liu Y. Meng Q. Combined and targeted drugs delivery system for colorectal cancer treatment: Conatumumab decorated, reactive oxygen species sensitive irinotecan prodrug and quercetin co-loaded nanostructured lipid carriers. Drug Deliv. 2022 29 1 342 350 10.1080/10717544.2022.2027573 35049388
    [Google Scholar]
  85. Motawea A. Abd El Hady W.E. Ahmed El-Emam G. The protective impact of adapted trimebutine maleate-loaded nanostructured lipid carriers for alleviating the severity of acute colitis. Drug Deliv. 2022 29 1 906 924 10.1080/10717544.2022.2050847 35297699
    [Google Scholar]
  86. Yan Z. Yang K. Tang X. Bi Y. Ding Y. Deng M. Xia D. Zhao Y. Chen T. Norcantharidin Nanostructured Lipid Carrier (NCTD-NLC) suppresses the viability of human hepatocellular carcinoma HepG2 cells and accelerates the apoptosis. J. Immunol. Res. 2022 2022 1 10 10.1155/2022/3851604 35497873
    [Google Scholar]
  87. Makeen H.A. Mohan S. Al-Kasim M.A. Attafi I.M. Ahmed R.A. Syed N.K. Sultan M.H. Al-Bratty M. Alhazmi H.A. Safhi M.M. Ali R. Intakhab Alam M. Gefitinib loaded nanostructured lipid carriers: Characterization, evaluation and anti-human colon cancer activity in vitro. Drug Deliv. 2020 27 1 622 631 10.1080/10717544.2020.1754526 32329374
    [Google Scholar]
  88. Vijayakumar A. Baskaran R. Baek J.H. Sundaramoorthy P. Yoo B.K. In vitro cytotoxicity and bioavailability of ginsenoside-modified nanostructured lipid carrier containing curcumin. AAPS PharmSciTech 2019 20 2 88 10.1208/s12249‑019‑1295‑1 30675630
    [Google Scholar]
  89. Nahak P. Gajbhiye R.L. Karmakar G. Guha P. Roy B. Besra S.E. Bikov A.G. Akentiev A.V. Noskov B.A. Nag K. Jaisankar P. Panda A.K. Orcinol glucoside loaded polymer - lipid hybrid nanostructured lipid carriers: Potential cytotoxic agents against gastric, colon and hepatoma carcinoma cell lines. Pharm. Res. 2018 35 10 198 10.1007/s11095‑018‑2469‑3 30151753
    [Google Scholar]
  90. Shofia S.I. Jayakumar K. Mukherjee A. Chandrasekaran N. Efficiency of brown seaweed ( Sargassum longifolium ) polysaccharides encapsulated in nanoemulsion and nanostructured lipid carrier against colon cancer cell lines HCT 116. RSC Advances 2018 8 29 15973 15984 10.1039/C8RA02616E 35542207
    [Google Scholar]
  91. Negi L.M. Talegaonkar S. Jaggi M. Verma A.K. Verma R. Dobhal S. Kumar V. Surface engineered nanostructured lipid carriers for targeting MDR tumor: Part I. Synthesis, characterization and in vitro investigation. Colloids Surf. B Biointerfaces 2014 123 600 609 10.1016/j.colsurfb.2014.09.062 25454761
    [Google Scholar]
  92. Hosseini Torshizi G. Homayouni Tabrizi M. Karimi E. Younesi A. Larian Z. Designing nanostructured lipid carriers modified with folate-conjugated chitosan for targeted delivery of osthole to HT-29 colon cancer cells: Investigation of anticancer, antioxidant, and antibacterial activities. Cancer Nanotechnol. 2024 15 1 7 10.1186/s12645‑024‑00246‑6
    [Google Scholar]
  93. Shah S. Famta P. Vambhurkar G. Sharma A. Mourya A. Srinivasarao D.A. Shinde A. Prasad S.B. Pandey G. Madan J. Srivastava S. Exploration of Abiraterone acetate loaded Nanostructured lipid carriers for bioavailability improvement and circumvention of fast-fed variability. Drug Deliv. Transl. Res. 2024 2024 10.1007/s13346‑024‑01657‑z 38995610
    [Google Scholar]
  94. Nothnagel L. Wacker M.G. How to measure release from nanosized carriers? Eur. J. Pharm. Sci. 2018 120 199 211 10.1016/j.ejps.2018.05.004 29751101
    [Google Scholar]
  95. Deng C. Zhong M.E. Chen Y. Pan M. Xu L. Xiao Y. Gao Y. Wu B. Proteomic profiling and functional characterization of serum-derived extracellular vesicles in the mucinous and non-mucinous colon adenocarcinoma. J. Cancer Res. Clin. Oncol. 2023 149 11 9285 9300 10.1007/s00432‑023‑04851‑7 37204515
    [Google Scholar]
  96. Poonia N Kharb R Lather V Pandita D. Nanostructured lipid carriers: versatile oral delivery vehicle. Future Sci OA. 2016 2 3 FSO135 10.4155/fsoa‑2016‑0030
    [Google Scholar]
  97. Xiao Y. S/O/W triple nano-emulsion for targeted delivery of phenethyl caffeate as well as preparation method and application of S/O/W triple nano-emulsion. CN115671049A 2023 Available from: https://api.patseer.com/data/d/IBa9A%24%24%24okAbtNEkNnvjT%24%24%24mXZ%24%24%24YjKzWRmJRDBZN5qtI6863cELv61hnXBTvL8blgLTTLlI%24%24%24v4pjkWBYdsz7gmG6G6JRx1QhrSH%2Bq20BHktL6%24%24%24n1lsDWuQw%2B5gkqziIAhs4z4cqt6HwizI%3D
  98. Yangbao M. Authigenic active oxygen nanoparticles for accurate non-invasive dynamic immunotherapy of colon cancer as well as preparation method and application of authigenic active oxygen nanoparticles. CN115645371A 2023 Available from: https://api.patseer.com/data/d/IBa9A%24%24%24okAbtNEkNnvjT%24%24%24mXZ%24%24%24YjKzWRmJRDBZN5qtI6863cELv61hncmt5FahwkRbk3Z9kyPrRgmBYdsz7gmG6G6JRx1QhrSH%2Bq20BHktL6%24%24%24n1lsDWuQw%2B5gkqziIAhs4z4cqt6HwizI%3D
  99. Xiaobei Z. Colon-targeted micelle with dual response of pH and microorganisms and preparation method of colon-targeted micelle. CN115364051A 2022 Available from: https://api.patseer.com/data/d/IBa9A%24%24%24okAbtNEkNnvjT%24%24%24mXZ%24%24%24YjKzWRmJRDBZN5qtI6863cELv61hnQ1Zy63rRbCEBlDypIMzatuBYdsz7gmG6G6JRx1QhrSH%2Bq20BHktL6%24%24%24n1lsDWuQw%2B5gkqziIAhs4z4cqt6HwizI%3D
  100. Bing L. Colon-targeted oil-in-water Pickering emulsion based on shellac nanoparticles and chitosan as well as preparation and application of colon-targeted oil-in-water Pickering emulsion. CN115364054A 2022 Available from: https://api.patseer.com/data/d/IBa9A%24%24%24okAbtNEkNnvjT%24%24%24mXZ%24%24%24YjKzWRmJRDBZN5qtI6863cELv61hnQ1Zy63rRbCEjvCkOkQMETCBYdsz7gmG6G6JRx1QhrSH%2Bq20BHktL6%24%24%24n1lsDWuQw%2B5gkqziIAhs4z4cqt6HwizI%3D
  101. Loo L.B. Self-assembled nanosheet for synergistically treating colon cancer and preparation method of self-assembled nanosheet. CN115120719A 2022 Available from: https://api.patseer.com/data/d/IBa9A%24%24%24okAbtNEkNnvjT%24%24%24mXZ%24%24%24YjKzWRmJRDBZN5qtI6863cELv61hnVfy0V4eTcvu1n%24%24%24bu%24%24%24yrgzaBYdsz7gmG6G6JRx1QhrSH%2Bq20BHktL6%24%24%24n1lsDWuQw%2B5gkqziIAhs4z4cqt6HwizI%3D
  102. Hongyao Z. Preparation method and application of exosome-polymer hybrid nanoparticles for oral colon-targeted drug delivery. CN115089724A 2022 Available from: https://api.patseer.com/data/d/IBa9A%24%24%24okAbtNEkNnvjT%24%24%24mXZ%24%24%24YjKzWRmJRDBZN5qtI6863cELv61hneoHTJkSkoIepuPAlgnmYTmBYdsz7gmG6G6JRx1QhrSH%2Bq20BHktL6%24%24%24n1lsDWuQw%2B5gkqziIAhs4z4cqt6HwizI%3D
  103. Hui G. Preparation method of targeted colon part antibacterial imaging nano material based on dendritic cationic polyamide and tetraphenylethylene. CN112592494B 2022 Available from: https://api.patseer.com/data/d/IBa9A%24%24%24okAbtNEkNnvjT%24%24%24mXZ%24%24%24YjKzWRmJRDBZN5qtI6863cELv61hnXjKkvtNkUZSMIhpNnJZwpGBYdsz7gmG6G6JRx1QhrSH%2Bq20BHktL6%24%24%24n1lsDWuQw%2B5gkqziIAhs4z4cqt6HwizI%3D
  104. Xilong W. Method for loading nano-drug based on modified bacteria, compound thereof and application of compound in treatment of colon cancer. CN113368259B 2022 Available from: https://api.patseer.com/data/d/IBa9A%24%24%24okAbtNEkNnvjT%24%24%24mXZ%24%24%24YjKzWRmJRDBZN5qtI6863cELv61hnbazS1FvYHu%24%24%24wlc9ndT%2B4qSBYdsz7gmG6G6JRx1QhrSH%2Bq20BHktL6%24%24%24n1lsDWuQw%2B5gkqziIAhs4z4cqt6HwizI%3D
  105. Yan S. Mesoporous nano-carrier for transporting antibacterial peptide. CN114306572A 2022 Available from: https://api.patseer.com/data/d/IBa9A%24%24%24okAbtNEkNnvjT%24%24%24mXZ%24%24%24YjKzWRmJRDBZN5qtI6863cELv61hnSXVH1sEMSbmSeiUjimR6GKBYdsz7gmG6G6JRx1QhrSH%2Bq20BHktL6%24%24%24n1lsDWuQw%2B5gkqziIAhs4z4cqt6HwizI%3D
  106. Mingqian T. Anthocyanin nano particle based on marine polysaccharide carrier, preparation method thereof and application thereof in targeted delivery. CN112494435B 2022 Available from: https://api.patseer.com/data/d/IBa9A%24%24%24okAbtNEkNnvjT%24%24%24mXZ%24%24%24YjKzWRmJRDBZN5qtI6863cELv61hnVxPHAVxtXN83YEujrh2TdSBYdsz7gmG6G6JRx1QhrSH%2Bq20BHktL6%24%24%24n1lsDWuQw%2B5gkqziIAhs4z4cqt6HwizI%3D
  107. Hui G. Preparation method of nano particles for realizing diagnosis and treatment integration of colon cancer by combining antibiosis and anti-tumor. CN114146176A 2022 Available from: https://api.patseer.com/data/d/IBa9A%24%24%24okAbtNEkNnvjT%24%24%24mXZ%24%24%24YjKzWRmJRDBZN5qtI6863cELv61hnQQGX0Txwe3KplxvTJVeCjeBYdsz7gmG6G6JRx1QhrSH%2Bq20BHktL6%24%24%24n1lsDWuQw%2B5gkqziIAhs4z4cqt6HwizI%3D
  108. Mingzhen Z. Nano drug delivery system for treating colon diseases. CN114028360A 2022 Available from: https://api.patseer.com/data/d/IBa9A%24%24%24okAbtNEkNnvjT%24%24%24mXZ%24%24%24YjKzWRmJRDBZN5qtI6863cELv61hnV3zZEX8z9qtQXAiPW33LECBYdsz7gmG6G6JRx1QhrSH%2Bq20BHktL6%24%24%24n1lsDWuQw%2B5gkqziIAhs4z4cqt6HwizI%3D
  109. Xilong W. Method for loading nano-drug based on modified bacteria, compound of nano-drug and application of compound in treatment of colon cancer. CN113368259A 2021 Available from: https://api.patseer.com/data/d/IBa9A%24%24%24okAbtNEkNnvjT%24%24%24mXZ%24%24%24YjKzWRmJRDBZN5qtI6863cELv61hnbazS1FvYHu%24%24%24IlrB6CsLLXOBYdsz7gmG6G6JRx1QhrSH%2Bq20BHktL6%24%24%24n1lsDWuQw%2B5gkqziIAhs4z4cqt6HwizI%3D
  110. Zhenyu L. Anti-colon cancer silver nanoparticles and preparation method thereof. CN111097921B 2021 Available from: https://api.patseer.com/data/d/IBa9A%24%24%24okAbtNEkNnvjT%24%24%24mXZ%24%24%24YjKzWRmJRDBZN5qtI6863cELv61hneK4gmYKiSipRV0oxSz4kseBYdsz7gmG6G6JRx1QhrSH%2Bq20BHktL6%24%24%24n1lsDWuQw%2B5gkqziIAhs4z4cqt6HwizI%3D
  111. Liang L. Liquid crystal nanogel capsule for treating colon cancer and preparation method thereof. CN108578382B 2021 Available from: https://api.patseer.com/data/d/IBa9A%24%24%24okAbtNEkNnvjT%24%24%24mXZ%24%24%24YjKzWRmJRDBZN5qtI6863cELv61hnYeSy%2BORtN%2BKyR%2BsdFOPEiiBYdsz7gmG6G6JRx1QhrSH%2Bq20BHktL6%24%24%24n1lsDWuQw%2B5gkqziIAhs4z4cqt6HwizI%3D
  112. Hui G. Preparation method of nanoparticles for reducing drug resistance of colon cancer cells to chemotherapeutic drugs through antibacterial performance. CN112294973A 2021 Available from: https://api.patseer.com/data/d/IBa9A%24%24%24okAbtNEkNnvjT%24%24%24mXZ%24%24%24YjKzWRmJRDBZN5qtI6863cELv61hnbPT8TGUHjdyKUKf8c1M8s6BYdsz7gmG6G6JRx1QhrSH%2Bq20BHktL6%24%24%24n1lsDWuQw%2B5gkqziIAhs4z4cqt6HwizI%3D
  113. Hong W. Colon-targeted nanofiber membrane containing quercetin and probiotic factor and preparation method and application thereof. CN109288819A 2019 Available from: https://api.patseer.com/data/d/IBa9A%24%24%24okAbtNEkNnvjT%24%24%24mXZ%24%24%24YjKzWRmJRDBZN5qtI6863cELv61hnSu9T4dYAIQWECa15w8pUmCBYdsz7gmG6G6JRx1QhrSH%2Bq20BHktL6%24%24%24n1lsDWuQw%2B5gkqziIAhs4z4cqt6HwizI%3D
  114. Liang L. Liquid crystal nano gel capsules for treating colon cancer and preparation method thereof. CN108578382A 2018 Available from: https://api.patseer.com/data/d/IBa9A%24%24%24okAbtNEkNnvjT%24%24%24mXZ%24%24%24YjKzWRmJRDBZN5qtI6863cELv61hnYeSy%2BORtN%2BK5NVOjK5nnMmBYdsz7gmG6G6JRx1QhrSH%2Bq20BHktL6%24%24%24n1lsDWuQw%2B5gkqziIAhs4z4cqt6HwizI%3D
  115. Sainz V. Conniot J. Matos A.I. Peres C. Zupanǒiǒ E. Moura L. Silva L.C. Florindo H.F. Gaspar R.S. Regulatory aspects on nanomedicines. Biochem. Biophys. Res. Commun. 2015 468 3 504 510 10.1016/j.bbrc.2015.08.023 26260323
    [Google Scholar]
  116. Welfare F. Guidelines for evaluation of Nanopharmaceuticals in India. Department of Biotechnology, Ministry of Science and Technology 2019
    [Google Scholar]
  117. Mishra R.K. Ahmad A. Kumar A. Vyawahare A. Raza S.S. Khan R. Lipid-based nanocarrier-mediated targeted delivery of celecoxib attenuate severity of ulcerative colitis. Mater. Sci. Eng. C 2020 116 111103 10.1016/j.msec.2020.111103 32806257
    [Google Scholar]
  118. Huguet-Casquero A. Xu Y. Gainza E. Pedraz J.L. Beloqui A. Oral delivery of oleuropein-loaded lipid nanocarriers alleviates inflammation and oxidative stress in acute colitis. Int. J. Pharm. 2020 586 119515 10.1016/j.ijpharm.2020.119515 32544520
    [Google Scholar]
  119. Sinhmar GK Shah NN Rawal SU Chokshi N V. Khatri HN Patel BM Surface engineered lipid nanoparticle-mediated site-specific drug delivery system for the treatment of inflammatory bowel disease. Artif Cells Nanomed Biotechnol. 2018 46 S2 565 78 10.1080/21691401.2018.1463232
    [Google Scholar]
  120. Al-Najjar B.Y. Hussain S.A. Solid lipid nanoparticles delivery systems for colon cancer chemotherapy: A critical review. Syst. Rev. Pharm. 2020 11 6 1152 1161 10.31838/srp.2020.6.168
    [Google Scholar]
  121. Samadi A. Sartipi Z. Ahmad Nasrollahi S. Sheikholeslami B. Nassiri Kashani M. Rouini M.R. Dinarvand R. Firooz A. Efficacy assessments of tretinoin-loaded nano lipid carriers in acne vulgaris: A double blind, split-face randomized clinical study. Arch. Dermatol. Res. 2022 314 6 553 561 10.1007/s00403‑021‑02256‑5 34146120
    [Google Scholar]
  122. Motawea A. Abd El-Gawad A.E.G.H. Borg T. Motawea M. Tarshoby M. The impact of topical phenytoin loaded nanostructured lipid carriers in diabetic foot ulceration. Foot 2019 40 14 21 10.1016/j.foot.2019.03.007 30999080
    [Google Scholar]
  123. Amorndoljai P. Taneepanichskul S. Niempoog S. Nimmannit U. A comparative of ginger extract in nanostructure lipid carrier (NLC) and 1% diclofenac gel for treatment of knee osteoarthritis (OA). J. Med. Assoc. Thai. 2017 100 4 447 456 29911849
    [Google Scholar]
  124. Patel R. Shah R. Patel A. Hadiya K. Parmar J. Patel G. Off-Label use of Raloxifene hydrochloride in uterine fibroids: A novel insert-based formulation approach and IN-VIVO preclinical evaluation. J. Drug Deliv. Sci. Technol. 2023 84 104552 10.1016/j.jddst.2023.104552
    [Google Scholar]
  125. Patel R. Shah U. Patel G. Optimization of poly(Ε-caprolactone) based biodegradable in situ porous drug-eluting insert of BCS class II/IV drug for targeted application. Int. J. Polym. Mater. 2024 73 10 885 896 10.1080/00914037.2023.2222334
    [Google Scholar]
  126. Patel R. Patel G. Preparation and characterization of a novel optimum modified liquisolid compact to enhance the dissolution profile of mifepristone. Dissolut. Technol. 2023 30 4 238 244 10.14227/DT300423P238
    [Google Scholar]
  127. Zang Y.S. Irinotecan Hydrochloride Liposome Injection (Ⅱ) Combined with Fluorouracil, Folinic Acid, Vermofenib and Cetuximab in First-line Treatment of BRAFV600E Mutated Advanced Colorectal Cancer. NCT06603376 2024 Available from: https://clinicaltrials.gov/study/NCT06603376
  128. Peking University Real-world Study to Evaluate the Efficacy and Safety of Liposome Irinotecan. NCT06443307 2024 Available from: https://clinicaltrials.gov/study/NCT06443307
  129. Qiu M. Phase II Study of Irinotecan Liposomes in First-line Treatment of Metastatic Colorectal Cancer. NCT06341296 2024 Available from: https://clinicaltrials.gov/study/NCT06341296
  130. Zhu J. Genotype-driven Weekly Irinotecan Liposomes in Combination With Capecitabine-based Neoadjuvant Chemoradiation for Locally Advanced Rectal Cancer. NCT06300489 2024 Available from: https://clinicaltrials.gov/study/NCT06300489
  131. Hebei Medical University Fourth Hospital Liposomal Irinotecan and Leucovorin/​5-fluorouracil Plus Bevacizumab in Metastatic Colorectal Cancer. NCT06184698 2024 Available from: https://clinicaltrials.gov/study/NCT06184698
  132. Liu T. Dose escalation and expansion clinical trial of irinotecan liposome combined with oxaliplatin and 5-FU/​LV plus bevacizumab as first-line treatment of metastatic colorectal cancer. NCT06225622 2024 Available from: https://clinicaltrials.gov/study/NCT06225622
  133. Xiang L.X. Liposomal Irinotecan Based FOLFIRI With Bevacizumab in First-line Treatment of Advanced Colorectal Cancer. NCT05969899 2024 Available from: https://clinicaltrials.gov/study/NCT05969899
  134. University of Wisconsin, Madison Liposomal Irinotecan With TAS102 and Bevacizumab for Patients With Metastatic Colorectal Cancer. NCT05854498 2024 Available from: https://clinicaltrials.gov/study/NCT05854498
  135. Zaghiyan K. Intraoperative TAP Block With Bupivacaine/​Dexamethasone Against Liposomal Bupivacaine (Exparel®) (TINGLE). NCT03723447 2021 Available from: https://clinicaltrials.gov/study/NCT03723447
/content/journals/cdd/10.2174/0115672018340391250321041056
Loading
/content/journals/cdd/10.2174/0115672018340391250321041056
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test