Skip to content
2000
Volume 22, Issue 9
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

The blood-brain barrier (BBB) effectively blocks most drugs from entering the central nervous system, posing significant challenges to the treatment of brain diseases, such as cerebrovascular disorders, neurodegenerative conditions, and brain tumors. In recent years, biomimetic brain-targeted drug delivery systems (BBDDSs) have garnered substantial attention for their potential to overcome these obstacles. BBDDSs employ natural biological materials in combination with synthetic nanoparticles to create delivery systems that mimic endogenous biological processes, enabling the penetration of the BBB and facilitating brain-targeting efficacy. This paper reviews the preparation of BBDDS using cell membranes, proteins, lipoproteins, peptides, nanovesicles, and viruses, introduces their applications in various diseases, and outlines current challenges and future prospects for the use of BBDDS in therapeutic interventions.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018373397250303050206
2025-03-10
2025-12-08
Loading full text...

Full text loading...

References

  1. QiuL. ZhuZ. LiangJ. QiaoX. XuH. XiangH. DingH. ChenY. Micro/nanoparticle-enabled ultrasound therapy of brain diseases.Coord. Chem. Rev.202450021553110.1016/j.ccr.2023.215531
    [Google Scholar]
  2. WuD. ChenQ. ChenX. HanF. ChenZ. WangY. The blood–brain barrier: Structure, regulation and drug delivery.Signal Transduct. Target. Ther.20238121710.1038/s41392‑023‑01481‑w37231000
    [Google Scholar]
  3. AbbottN.J. PatabendigeA.A.K. DolmanD.E.M. YusofS.R. BegleyD.J. Structure and function of the blood–brain barrier.Neurobiol. Dis.2010371132510.1016/j.nbd.2009.07.03019664713
    [Google Scholar]
  4. KimJ. AhnS.I. KimY. Nanotherapeutics engineered to cross the blood-brain barrier for advanced drug delivery to the central nervous system.J. Ind. Eng. Chem.20197381810.1016/j.jiec.2019.01.02131588177
    [Google Scholar]
  5. ZhouM. ChenH. ZengY. LvZ. HuX. TongY. WangP. ZhaoM. MuR. YuJ. ChenY. WeiL. GuJ. LanQ. ZhenX. HanL. DH5α outer membrane‐coated biomimetic nanocapsules deliver drugs to brain metastases but not normal brain cells via targeting GRP94.Small20231935230040310.1002/smll.202300403
    [Google Scholar]
  6. LiY.J. WuJ.Y. LiuJ. QiuX. XuW. TangT. XiangD.X. From blood to brain: Blood cell-based biomimetic drug delivery systems.Drug Deliv.20212811214122510.1080/10717544.2021.193738434142628
    [Google Scholar]
  7. ChenY. WeiC. LyuY. ChenH. JiangG. GaoX. Biomimetic drug-delivery systems for the management of brain diseases.Biomater. Sci.2020841073108810.1039/C9BM01395D31728485
    [Google Scholar]
  8. XuC.H. YeP.J. ZhouY.C. HeD.X. WeiH. YuC.Y. Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy.Acta Biomater.202010511410.1016/j.actbio.2020.01.03632001369
    [Google Scholar]
  9. ShiH. WuC. ZhangG. WangZ. Macrophage-mediated delivery of Fe 3 O 4 -Nanoparticles: A generalized strategy to deliver iron to tumor microenvironment.Curr. Drug Deliv.202219992893910.2174/156720181966622042608545035473528
    [Google Scholar]
  10. QuY. ChuB. LiJ. Macrophage‐biomimetic nanoplatform‐based therapy for inflammation‐associated diseases.Small Methods202387e230117810.1002/smtd.20230117838037521
    [Google Scholar]
  11. Mohammad-RafieiF. KhojiniJ.Y. GhazvinianF. AlimardanS. NoriounH. TahershamsiZ. TajbakhshA. GheibihayatS.M. Cell membrane biomimetic nanoparticles in drug delivery.Biotechnol. Appl. Biochem.20237061843185910.1002/bab.248737387120
    [Google Scholar]
  12. LukB.T. ZhangL. Cell membrane-camouflaged nanoparticles for drug delivery.J. Control. Release2015220Pt B60060710.1016/j.jconrel.2015.07.01926210440
    [Google Scholar]
  13. HanX. ShenS. FanQ. ChenG. ArchibongE. DottiG. LiuZ. GuZ. WangC. Red blood cell–derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy.Sci. Adv.2019510eaaw687010.1126/sciadv.aaw687031681841
    [Google Scholar]
  14. ZhangW. ZhaoM. GaoY. ChengX. LiuX. TangS. PengY. WangN. HuD. PengH. ZhangJ. WangQ. Biomimetic erythrocytes engineered drug delivery for cancer therapy.Chem. Eng. J.202243313349810.1016/j.cej.2021.133498
    [Google Scholar]
  15. ChenM. LengY. HeC. LiX. ZhaoL. QuY. WuY. Red blood cells: A potential delivery system.J. Nanobiotechnology202321128810.1186/s12951‑023‑02060‑537608283
    [Google Scholar]
  16. JavedS. AlshehriS. ShoaibA. AhsanW. SultanM.H. AlqahtaniS.S. KaziM. ShakeelF. Chronicles of nanoerythrosomes: An erythrocyte-based biomimetic smart drug delivery system as a therapeutic and diagnostic tool in cancer therapy.Pharmaceutics202113336810.3390/pharmaceutics1303036833802156
    [Google Scholar]
  17. ChuD. DongX. ShiX. ZhangC. WangZ. Neutrophil‐based drug delivery systems.Adv. Mater.20183022170624510.1002/adma.20170624529577477
    [Google Scholar]
  18. HanY. ZhaoR. XuF. Neutrophil‐based delivery systems for nanotherapeutics.Small20181442180167410.1002/smll.20180167430144279
    [Google Scholar]
  19. LopesJ. LopesD. Pereira-SilvaM. PeixotoD. VeigaF. HamblinM.R. CondeJ. CorboC. ZareE.N. AshrafizadehM. TayF.R. ChenC. DonnellyR.F. WangX. MakvandiP. Paiva-SantosA.C. Macrophage cell membrane‐cloaked nanoplatforms for biomedical applications.Small Methods202268220028910.1002/smtd.20220028935768282
    [Google Scholar]
  20. ZhaoH. LiuR. WangL. TangF. ChenW. LiuY.N. Artificial macrophage with hierarchical nanostructure for biomimetic reconstruction of antitumor immunity.Nano-Micro Lett.202315121610.1007/s40820‑023‑01193‑437737506
    [Google Scholar]
  21. KundeS.S. WairkarS. Platelet membrane camouflaged nanoparticles: Biomimetic architecture for targeted therapy.Int. J. Pharm.202159812039510.1016/j.ijpharm.2021.12039533639226
    [Google Scholar]
  22. QuanX. HanY. LuP. DingY. WangQ. LiY. WeiJ. HuangQ. WangR. ZhaoY. Annexin V‐modified platelet‐biomimetic nanomedicine for targeted therapy of acute ischemic stroke.Adv. Healthc. Mater.20221116220041610.1002/adhm.20220041635708176
    [Google Scholar]
  23. CuiJ.W. FengH.C. XuC. JiangD-Y. ZhangK-H. GaoN-N. WangY. TianH. LiuC. Platelet membrane-encapsulated ginkgolide B biomimetic nanoparticles for the treatment of ischemic stroke.ACS Appl. Nano Mater.2023619175601757110.1021/acsanm.3c02620
    [Google Scholar]
  24. LiuH. SuY.Y. JiangX.C. GaoJ.Q. Cell membrane-coated nanoparticles: A novel multifunctional biomimetic drug delivery system.Drug Deliv. Transl. Res.202313371673710.1007/s13346‑022‑01252‑036417162
    [Google Scholar]
  25. SunH. SuJ. MengQ. YinQ. ChenL. GuW. ZhangP. ZhangZ. YuH. WangS. LiY. Cancer‐cell‐biomimetic nanoparticles for targeted therapy of homotypic tumors.Adv. Mater.201628439581958810.1002/adma.20160217327628433
    [Google Scholar]
  26. QuY. ChuB. WeiX. ChenY. YangY. HuD. HuangJ. WangF. ChenM. ZhengY. QianZ. Cancer‐cell‐biomimetic nanoparticles for targeted therapy of multiple myeloma based on bone marrow homing.Adv. Mater.20223446210788310.1002/adma.20210788334877715
    [Google Scholar]
  27. FanY. HaoW. CuiY. ChenM. ChuX. YangY. WangY. GaoC. Cancer cell membrane-coated nanosuspensions for enhanced chemotherapeutic treatment of glioma.Molecules20212616510310.3390/molecules2616510334443689
    [Google Scholar]
  28. ChenH.Y. DengJ. WangY. WuC.Q. LiX. DaiH.W. Hybrid cell membrane-coated nanoparticles: A multifunctional biomimetic platform for cancer diagnosis and therapy.Acta Biomater.202011211310.1016/j.actbio.2020.05.02832470527
    [Google Scholar]
  29. YuY. PengY. ShenW.T. ZhouZ. KaiM. Hybrid cell membrane‐coated nanoparticles for biomedical applications.Small Struct.202455
    [Google Scholar]
  30. WangD. LiuC. YouS. ZhangK. LiM. CaoY. WangC. DongH. ZhangX. Bacterial vesicle-cancer cell hybrid membrane-coated nanoparticles for tumor specific immune activation and photothermal therapy.ACS Appl. Mater. Interfaces20201237411384114710.1021/acsami.0c1316932830477
    [Google Scholar]
  31. HuH. HuaS.Y. LinX. LuF. ZhangW. ZhouL. CuiJ. WangR. XiaJ. XuF. ChenX. ZhouM. Hybrid biomimetic membrane coated particles-mediated bacterial ferroptosis for acute MRSA pneumonia.ACS Nano20231712116921171210.1021/acsnano.3c0236537310363
    [Google Scholar]
  32. KianfarE. Protein nanoparticles in drug delivery: Animal protein, plant proteins and protein cages, albumin nanoparticles.J. Nanobiotechnology202119115910.1186/s12951‑021‑00896‑334051806
    [Google Scholar]
  33. ZhangY. WangJ. XingH. LiuC. LiX. Redox-responsive paclitaxel-pentadecanoic acid conjugate encapsulated human serum albumin nanoparticles for cancer therapy.Int. J. Pharm.202363512276110.1016/j.ijpharm.2023.12276136822341
    [Google Scholar]
  34. ShakeriS. AshrafizadehM. ZarrabiA. RoghanianR. AfsharE.G. PardakhtyA. MohammadinejadR. KumarA. ThakurV.K. Multifunctional polymeric nanoplatforms for brain diseases diagnosis, therapy and theranostics.Biomedicines2020811310.3390/biomedicines801001331941057
    [Google Scholar]
  35. ZensiA. BegleyD. PontikisC. LegrosC. MihoreanuL. WagnerS. BüchelC. von BriesenH. KreuterJ. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones.J. Control. Release20091371788610.1016/j.jconrel.2009.03.00219285109
    [Google Scholar]
  36. YeapuriP. OlsonK.E. LuY. AbdelmoatyM.M. NammingaK.L. MarkovicM. MachhiJ. MosleyR.L. GendelmanH.E. Development of an extended half-life GM-CSF fusion protein for Parkinson’s disease.J. Control. Release202234895196510.1016/j.jconrel.2022.06.02435738463
    [Google Scholar]
  37. WangR. WangX. LiJ. DiL. ZhouJ. DingY. Lipoprotein-biomimetic nanostructure enables tumor-targeted penetration delivery for enhanced photo-gene therapy towards glioma.Bioact. Mater.20221328629910.1016/j.bioactmat.2021.10.03935224309
    [Google Scholar]
  38. LiangM. GaoC. WangY. GongW. FuS. CuiL. ZhouZ. ChuX. ZhangY. LiuQ. ZhaoX. ZhaoB. YangM. LiZ. YangC. XieX. YangY. GaoC. Enhanced blood–brain barrier penetration and glioma therapy mediated by T7 peptide-modified low-density lipoprotein particles.Drug Deliv.20182511652166310.1080/10717544.2018.149422330394123
    [Google Scholar]
  39. ChernickD. ZhongR. LiL. The role of HDL and HDL mimetic peptides as potential therapeutics for Alzheimer’s disease.Biomolecules2020109127610.3390/biom1009127632899606
    [Google Scholar]
  40. Oller-Sal via, B.; Sánchez-Navarro, M.; Giralt, E.; Teixidó, M. Blood–brain barrier shuttle peptides: An emerging paradigm for brain delivery.Chem. Soc. Rev.201645174690470710.1039/C6CS00076B27188322
    [Google Scholar]
  41. ZhouX. SmithQ.R. LiuX. Brain penetrating peptides and peptide–drug conjugates to overcome the blood–brain barrier and target CNS diseases.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2021134e169510.1002/wnan.169533470550
    [Google Scholar]
  42. LiX. ZhangY. WangY. ChenY. XuT. WangL. GaoJ. YangZ. A blood-brain barrier crossing peptide.Sci. China Mater.20236683327333610.1007/s40843‑022‑2484‑1
    [Google Scholar]
  43. AljabaliA.A.A. RezigueM. ObeidM.A. Serrano-ArocaA. TambuwalaM.M. Protein-based drug delivery nanomedicine platforms: Recent developments.Pharm. Nanotechnol.202210425726710.2174/2211738510666220817120307
    [Google Scholar]
  44. HeddleJ.G. ChakrabortiS. IwasakiK. Natural and artificial protein cages: Design, structure and therapeutic applications.Curr. Opin. Struct. Biol.20174314815510.1016/j.sbi.2017.03.00728359961
    [Google Scholar]
  45. MohantyA. ParidaA. RautR.K. BeheraR.K. Ferritin: A promising nanoreactor and nanocarrier for bionanotechnology.ACS Bio Med Chem Au20222325828110.1021/acsbiomedchemau.2c0000337101573
    [Google Scholar]
  46. KaltbeitzelJ. WichP.R. Protein‐based nanoparticles: From drug delivery to imaging, nanocatalysis and protein therapy.Angew. Chem. Int. Ed.20236244e20221609710.1002/anie.20221609736917017
    [Google Scholar]
  47. YouQ. LiangF. WuG. CaoF. LiuJ. HeZ. WangC. ZhuL. ChenX. YangY. The landscape of biomimetic nanovesicles in brain diseases.Adv. Mater.2024367230658310.1002/adma.20230658337713652
    [Google Scholar]
  48. van NielG. D’AngeloG. RaposoG. Shedding light on the cell biology of extracellular vesicles.Nat. Rev. Mol. Cell Biol.201819421322810.1038/nrm.2017.12529339798
    [Google Scholar]
  49. JiangY. WangF. WangK. ZhongY. WeiX. WangQ. ZhangH. Engineered exosomes: A promising drug delivery strategy for brain diseases.Curr. Med. Chem.202229173111312410.2174/092986732866621090214201534477508
    [Google Scholar]
  50. SalarpourS. BaraniM. PardakhtyA. KhatamiM. Pal Singh ChauhanN. The application of exosomes and Exosome-nanoparticle in treating brain disorders.J. Mol. Liq.202235011854910.1016/j.molliq.2022.118549
    [Google Scholar]
  51. ChoiH. ChoiK. KimD.H. OhB.K. YimH. JoS. ChoiC. Strategies for targeted delivery of exosomes to the brain: Advantages and challenges.Pharmaceutics202214367210.3390/pharmaceutics1403067235336049
    [Google Scholar]
  52. ChanK.Y. JangM.J. YooB.B. GreenbaumA. RaviN. WuW.L. Sánchez-GuardadoL. LoisC. MazmanianS.K. DevermanB.E. GradinaruV. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems.Nat. Neurosci.20172081172117910.1038/nn.459328671695
    [Google Scholar]
  53. NowakI. MadejM. SecemskaJ. SarnaR. Strzalka-MrozikB. Virus-based biological systems as next-generation carriers for the therapy of central nervous system diseases.Pharmaceutics2023157193110.3390/pharmaceutics1507193137514117
    [Google Scholar]
  54. UmañaJ.D. WassermanS.R. SongL. GoelA.A. YuX. JinJ. HathawayN.A. Chemical epigenetic regulation of adeno-associated virus delivered transgenes.Hum. Gene Ther.20233417-1894795710.1089/hum.2023.00537624737
    [Google Scholar]
  55. SavenkovaD.A. MakarovaA.L.A. ShalikI.K. YudkinD.V. miRNA pathway alteration in response to non-coding RNA delivery in viral vector-based gene therapy.Int. J. Mol. Sci.202223231495410.3390/ijms23231495436499289
    [Google Scholar]
  56. ChenW. YaoS. WanJ. TianY. HuangL. WangS. AkterF. WuY. YaoY. ZhangX. BBB-crossing adeno-associated virus vector: An excellent gene delivery tool for CNS disease treatment.J. Control. Release202133312913810.1016/j.jconrel.2021.03.02933775685
    [Google Scholar]
  57. GernouxG. GruntmanA.M. BlackwoodM. ZiegerM. FlotteT.R. MuellerC. Muscle-directed delivery of an AAV1 vector leads to capsid-specific T cell exhaustion in nonhuman primates and humans.Mol. Ther.202028374775710.1016/j.ymthe.2020.01.00431982038
    [Google Scholar]
  58. ZhaoL. YangZ. ZhengM. ShiL. GuM. LiuG. MiaoF. ChangY. HuangF. TangN. Recombinant adeno-associated virus 8 vector in gene therapy: Opportunities and challenges.Genes Dis.202411128329310.1016/j.gendis.2023.02.01037588223
    [Google Scholar]
  59. WuY. YangJ. GengY. JiaoX. LuZ. ZhangT. ZhaoR. GuoJ. WangW. WangJ. ZhangX. A biomimic nanobullet with ameliorative inflammatory microenvironment for Alzheimer’s Disease treatments.Adv. Healthc. Mater.2024136230285110.1002/adhm.20230285137934884
    [Google Scholar]
  60. SunT. KwongC.H.T. GaoC. WeiJ. YueL. ZhangJ. YeR.D. WangR. Amelioration of ulcerative colitis via inflammatory regulation by macrophage-biomimetic nanomedicine.Theranostics20201022101061011910.7150/thno.4844832929337
    [Google Scholar]
  61. ZhangL. ZhangW. PengH. ShenT. WangM. LuoM. QuX. QuF. LiuW. LeiB. YangS. Bioactive cytomembrane@poly(citrate-peptide)-miRNA365 nanoplatform with immune escape and homologous targeting for colon cancer therapy.Mater. Today Bio20221510029410.1016/j.mtbio.2022.10029435620794
    [Google Scholar]
  62. LukB.T. JiangY. CoppJ.A. HuC.M.J. KrishnanN. GaoW. LiS. FangR.H. ZhangL. Biomimetic targeting of nanoparticles to immune cell subsets via cognate antigen interactions.Mol. Pharm.20181593723372810.1021/acs.molpharmaceut.8b0007429533668
    [Google Scholar]
  63. FangR.H. KrollA.V. GaoW. ZhangL. Cell membrane coating nanotechnology.Adv. Mater.20183023170675910.1002/adma.20170675929582476
    [Google Scholar]
  64. SudhakarB. MurthyK. R.; NagaJyothi, K. Nanosuspensions as a versatile carrier based drug delivery system–an overview.Curr. Drug Deliv.201411329930510.2174/156720181166614032313134224655052
    [Google Scholar]
  65. ZorodduM. MediciS. LeddaA. NurchiV. LachowiczJ. PeanaM. Toxicity of nanoparticles.Curr. Med. Chem.201421333837385310.2174/092986732166614060116231425306903
    [Google Scholar]
  66. WufuerY. ShanX. SailikeM. AdilaimuK. MaS. WangH. GPVI-Fc-PEG improves cerebral infarct volume and cerebral thrombosis in mouse model with cerebral thrombosis.Mol. Med. Rep.20171657561756810.3892/mmr.2017.755628944903
    [Google Scholar]
  67. PriyaV. ViswanadhM.K. MehataA.K. JainD. SinghS.K. MuthuM.S. Targeted nanotherapeutics in the prophylaxis and treatment of thrombosis.Nanomedicine (Lond.)202116131153117610.2217/nnm‑2021‑005833973818
    [Google Scholar]
  68. DengJ. MeiH. ShiW. PangZ. ZhangB. GuoT. WangH. JiangX. HuY. Recombinant tissue plasminogen activator-conjugated nanoparticles effectively targets thrombolysis in a rat model of middle cerebral artery occlusion.Curr. Med. Sci.201838342743510.1007/s11596‑018‑1896‑z30074208
    [Google Scholar]
  69. ZhouH. WeiY.J. XieG.Y. Research progress on post-stroke depression.Exp. Neurol.202437311466010.1016/j.expneurol.2023.11466038141804
    [Google Scholar]
  70. LiY.X. WangH.B. JinJ.B. YangC.L. HuJ.B. LiJ. Advances in the research of nano delivery systems in ischemic stroke.Front. Bioeng. Biotechnol.20221098442410.3389/fbioe.2022.98442436338131
    [Google Scholar]
  71. JiangB. WangX. MaJ. FayyazA. WangL. QinP. DingY. JiX. LiS. Remote ischemic conditioning after stroke: Research progress in clinical study.CNS Neurosci. Ther.2024304e1450710.1111/cns.1450737927203
    [Google Scholar]
  72. DingL. LyuZ. Perles‐BarbacaruT.A. Modular Self‐assembling dendrimer nanosystems for magnetic resonance and multimodality imaging of tumors.Adv. Mater.2023367230826210.1002/adma.20230826238030568
    [Google Scholar]
  73. DasR.S. MaitiD. KarS. BeraT. MukherjeeA. SahaP.C. MondalA. GuhaS. Design of Water–soluble rotaxane-capped superparamagnetic, ultrasmall Fe3O4 nanoparticles for targeted NIR fluorescence imaging in combination with magnetic resonance imaging.J. Am. Chem. Soc.202314537204512046110.1021/jacs.3c0623237694929
    [Google Scholar]
  74. BertramL. TanziR.E. Genomic mechanisms in Alzheimer’s disease.Brain Pathol.202030596697710.1111/bpa.1288232657454
    [Google Scholar]
  75. TamK.Y. JuY. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease.Neural Regen. Res.202217354354910.4103/1673‑5374.32097034380884
    [Google Scholar]
  76. BloemB.R. OkunM.S. KleinC. Parkinson’s disease.Lancet2021397102912284230310.1016/S0140‑6736(21)00218‑X33848468
    [Google Scholar]
  77. MorrisH.R. SpillantiniM.G. SueC.M. Williams-GrayC.H. The pathogenesis of Parkinson’s disease.Lancet20244031042329330410.1016/S0140‑6736(23)01478‑238245249
    [Google Scholar]
  78. LiuY. LuoJ. LiuY. LiuW. YuG. HuangY. YangY. ChenX. ChenT. Brain-targeted biomimetic nanodecoys with neuroprotective effects for precise therapy of Parkinson’s disease.ACS Cent. Sci.2022891336134910.1021/acscentsci.2c0074136188350
    [Google Scholar]
  79. ChaudhuriT.R. StraubingerR.M. Nanoparticles for brain tumor delivery.Nervous System Drug Delivery.Elsevier201922925010.1016/B978‑0‑12‑813997‑4.00012‑8
    [Google Scholar]
  80. LuG. WangX. LiF. WangS. ZhaoJ. WangJ. LiuJ. LyuC. YeP. TanH. LiW. MaG. WeiW. Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma.Nat. Commun.2022131421410.1038/s41467‑022‑31799‑y35864093
    [Google Scholar]
  81. LingY. RamalingamM. LvX. ZengY. QiuY. SiY. PedrazJ.L. KimH.W. HuJ. Recent advances in nanomedicine development for traumatic brain injury.Tissue Cell20238210208710.1016/j.tice.2023.10208737060747
    [Google Scholar]
  82. SemenovaZ.B. MeshcheryakovS. LukyanovV. ArsenyevS. Decompressive craniectomy for traumatic intracranial hypertension in children.Acta Neurochir. Suppl. (Wien)202113110911310.1007/978‑3‑030‑59436‑7_2333839829
    [Google Scholar]
  83. KhanamN NathD. Traumatic brain injury: Future application of nanomedicineGSC Adv. Res. Rev.202162020027
    [Google Scholar]
  84. ZingerA. SorianoS. BaudoG. De RosaE. TaraballiF. VillapolS. Biomimetic nanoparticles as a theranostic tool for traumatic brain injury.Adv. Funct. Mater.20213130210072210.1002/adfm.20210072234413716
    [Google Scholar]
  85. LiuX. WuC. ZhangY. ChenS. DingJ. ChenZ. WuK. WuX. ZhouT. ZengM. WeiD. SunJ. FanH. ZhouL. Hyaluronan-based hydrogel integrating exosomes for traumatic brain injury repair by promoting angiogenesis and neurogenesis.Carbohydr. Polym.202330612057810.1016/j.carbpol.2023.12057836746568
    [Google Scholar]
  86. YehudaR. HogeC.W. McFarlaneA.C. VermettenE. LaniusR.A. NievergeltC.M. HobfollS.E. KoenenK.C. NeylanT.C. HymanS.E. Post-traumatic stress disorder.Nat. Rev. Dis. Primers2015111505710.1038/nrdp.2015.5727189040
    [Google Scholar]
  87. LiQ. WangC. HuJ. JiaoW. TangZ. SongX. WuY. DaiJ. GaoP. DuL. JinY. Cannabidiol–loaded biomimetic macrophage membrane vesicles against post–traumatic stress disorder assisted by ultrasound.Int. J. Pharm.202363712287210.1016/j.ijpharm.2023.12287236958611
    [Google Scholar]
  88. FerreiraN.N. LeiteC.M. MorenoN.S. MirandaR.R. Pincela LinsP.M. RoderoC.F. de OliveiraE.Junior LimaE.M. ReisR.M. ZucolottoV. Nose-to-brain delivery of biomimetic nanoparticles for glioblastoma targeted therapy.ACS Appl. Mater. Interfaces202517148449910.1021/acsami.4c1683739692595
    [Google Scholar]
  89. GengC. RenX. CaoP. ChuX. WeiP. LiuQ. LuY. FuB. LiW. LiY. ZhaoG. Macrophage membrane‒biomimetic nanoparticles target inflammatory microenvironment for epilepsy treatment.Theranostics202414176652667010.7150/thno.9926039479447
    [Google Scholar]
  90. MustafaG. HassanD. ZeeshanM. Ruiz-PulidoG. EbrahimiN. MobasharA. PourmadadiM. RahdarA. SargaziS. Fathi-karkanS. MedinaD.I. Díez-PascualA.M. Advances in nanotechnology versus stem cell therapy for the theranostics of Huntington’s disease.J. Drug Deliv. Sci. Technol.20238710477410.1016/j.jddst.2023.104774
    [Google Scholar]
  91. CaoY. HanZ. ZhuL. HeZ. MouN. DuanX. ChenQ. QinX. ZhangK. QuK. ZhongY. WuW. Red blood cell membrane spontaneously coated nanoprodrug based on phosphatidylserine for antiatherosclerosis applications.ACS Appl. Mater. Interfaces20241635465784658910.1021/acsami.4c0772039172072
    [Google Scholar]
  92. ZhengT. ShengJ. WangZ. WuH. ZhangL. WangS. LiJ. ZhangY. LuG. ZhangL. Injured myocardium‐targeted theranostic nanoplatform for multi‐dimensional immune‐inflammation regulation in acute myocardial infarction.Adv. Sci. (Weinh.)2025Epub ahead of print.10.1002/advs.20241474039836506
    [Google Scholar]
  93. GuoT. ChenL. LiF. CaoY. LiD. XiongQ. LingZ. Biomimetic nanoparticles loaded lutein functionalized by macrophage membrane for targeted amelioration pressure overload-induced cardiac fibrosis.Biomed. Pharmacother.202316711557911557910.1016/j.biopha.2023.11557937776637
    [Google Scholar]
  94. LiY. YuJ. ChengC. ChenW. LinR. WangY. CuiW. MengJ. DuJ. WangY. Platelet and erythrocyte membranes coassembled biomimetic nanoparticles for heart failure treatment.ACS Nano20241839266142663010.1021/acsnano.4c0481439174015
    [Google Scholar]
  95. ChenJ. ZengS. XueQ. HongY. LiuL. SongL. FangC. ZhangH. WangB. SedgwickA.C. ZhangP. SesslerJ.L. LiuC. ChenJ. Photoacoustic image-guided biomimetic nanoparticles targeting rheumatoid arthritis.Proc. Natl. Acad. Sci. USA202211943e221337311910.1073/pnas.221337311936256822
    [Google Scholar]
  96. XubinH. HuiZ. RuiL. ZhangD. LiangL. SunL. Red blood cell membrane functionalized biomimetic nanoparticles for systemic lupus erythematosus treatment.Mater. Today Adv.202216100294
    [Google Scholar]
  97. WangY. DingQ. MaG. ZhangZ. WangJ. LuC. XiangC. QianK. ZhengJ. ShanY. ZhangP. ChengZ. GongP. ZhaoQ. Mucus-penetrable biomimetic nanoantibiotics for pathogen-induced pneumonia treatment.ACS Nano20241845313493135910.1021/acsnano.4c1083739485232
    [Google Scholar]
  98. XiaoC. TongC. FanJ. WangZ. XieQ. LongY. YouP. WangW. LiuB. Biomimetic nanoparticles loading with gamabutolin-indomethacin for chemo/photothermal therapy of cervical cancer and anti-inflammation.J. Control. Release202133925927310.1016/j.jconrel.2021.09.03434597747
    [Google Scholar]
  99. GaoR. LinP. YangW. FangZ. GaoC. ChengB. FangJ. YuW. Bio-inspired nanodelivery platform: Platelet membrane-cloaked genistein nanosystem for targeted lung cancer therapy.Int. J. Nanomedicine202419104551047810.2147/IJN.S47943839430311
    [Google Scholar]
  100. GaoG. CheJ. XuP. ChenB. ZhaoY. Biomimetic cell membrane decorated ZIF‐8 nanocarriers with IR‐780 and doxorubicin loading for multiple myeloma treatment.Aggregate202456e63110.1002/agt2.631
    [Google Scholar]
  101. WangX. TianR. LiangC. JiaY. ZhaoL. XieQ. HuangF. YuanH. Biomimetic nanoplatform with microbiome modulation and antioxidant functions ameliorating insulin resistance and pancreatic β-cell dysfunction for T2DM management.Biomaterials202531312280410.1016/j.biomaterials.2024.12280439236631
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018373397250303050206
Loading
/content/journals/cdd/10.2174/0115672018373397250303050206
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test