Skip to content
2000
image of Biocompatibility Evaluation of a Dexamethasone Mucoadhesive Nanosystem: Preclinical and Preliminary Clinical Evaluations

Abstract

Introduction

There is a strong need for drug delivery systems that are both highly compatible with biological tissues and effective when used in the oral mucosa. While gels, creams, or ointments are currently employed for this purpose, their oral bioavailability is constrained by the limited contact time with mucosal tissue.

Method

In response to this challenge, we developed and evaluated the efficacy of a multilayer mucoadhesive system incorporated with Dexamethasone Sodium Phosphate (DEX-P) for oral mucosal delivery. An electrospun multilayer system was created and subjected to biocompatibility and efficacy testing via in vitro and ex vivo approaches, finally culminating in an acceptability trial in healthy human volunteers. The multilayer system was created using Poly-Vinyl Pyrrolidone (PVP) and Poly ε-Caprolactone (PCL) as a polymeric base and Polycarbophil (NOVEON® AA-1, PCF) serving as an adhesion enhancer to facilitate the unidirectional release of Dexamethasone Sodium Phosphate (DEX-P).

Result

The nanofibers matrices underwent morphological characterization by Scanning Electron Microscopy (SEM), and DEX-P release was evaluated using porcine mucosa, yielding promising results. cytotoxicity was evaluated through the MTT assay, employing HFF-1 cells. The cell viability ranged from 78 to 96%, suggesting the safety of the polymers used. The tested dose range of DEX on cell lines did not decrease below 75%, indicating its safety in terms of cytotoxicity. Biocompatibility was evaluated on animal models, without significant tissue damage observed.

Discussion

The results of this study demonstrate the potential of the developed multilayer mucoadhesive system as an effective platform for oral mucosal drug delivery. The combination of PVP and PCL provides a stable and tunable matrix for drug incorporation, while PCF successfully enhances mucoadhesion and controlled drug release. The electrospun architecture enables precise drug loading and unidirectional release, which is crucial for minimizing systemic absorption and maximizing local therapeutic effects. The high cell viability observed and the absence of significant tissue damage underline the biocompatibility of the system. Moreover, the positive feedback from human volunteers not only indicates functional efficacy but also practical usability, which is essential for clinical translation. Taken together, these findings support the feasibility of using this multilayer nanofiber system as a safe and effective vehicle for oral mucosal therapy, particularly for localized delivery of corticosteroids, such as DEX-P.

Conclusion

Human studies demonstrated prolonged adhesion and a favorable perception of the system.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018356821250323083549
2025-04-08
2025-09-07
Loading full text...

Full text loading...

References

  1. Homayun B. Lin X. Choi H.J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 2019 11 3 129 10.3390/pharmaceutics11030129 30893852
    [Google Scholar]
  2. Golshani S. Vatanara A. Amin M. Recent advances in oral mucoadhesive drug delivery. J. Pharm. Pharm. Sci. 2022 25 201 217 10.18433/jpps32705 35714375
    [Google Scholar]
  3. Dubashynskaya N.V. Petrova V.A. Skorik Y.A. Biopolymer drug delivery systems for oromucosal application: recent trends in pharmaceutical R&D. Int. J. Mol. Sci. 2024 25 10 5359 10.3390/ijms25105359 38791397
    [Google Scholar]
  4. Sabjan K.B. Munawar S.M. Rajendiran D. Vinoji S.K. Kasinathan K. Nanoemulsion as oral drug delivery: A review. Curr. Drug Res. Rev. 2020 12 1 4 15 10.2174/2589977511666191024173508 31774040
    [Google Scholar]
  5. Meher A. Dighe N.S. An overview of fast dissolving oral film. J. Drug Deliv. Ther. 2019 9 4-s 822 825 10.22270/jddt.v9i4‑s.3428
    [Google Scholar]
  6. Desai K.G.H. Polymeric drug delivery systems for intraoral site‐specific chemoprevention of oral cancer. J. Biomed. Mater. Res. B Appl. Biomater. 2018 106 3 1383 1413 10.1002/jbm.b.33943 28650116
    [Google Scholar]
  7. Andretto V. Rosso A. Briançon S. Lollo G. Nanocomposite systems for precise oral delivery of drugs and biologics. Drug Deliv. Transl. Res. 2021 11 2 445 470 10.1007/s13346‑021‑00905‑w 33534107
    [Google Scholar]
  8. Kumar R. Islam T. Nurunnabi M. Mucoadhesive carriers for oral drug delivery. J. Control. Release 2022 351 504 559 10.1016/j.jconrel.2022.09.024 36116580
    [Google Scholar]
  9. De Carvalho A.C.W. Paiva N.F. Demonari I.K. Duarte M.P.F. Do Couto R.O. De Freitas O. Vicentini F.T.M.D.C. The potential of films as Transmucosal drug delivery systems. Pharmaceutics 2023 15 2583 10.3390/pharmaceutics15112583
    [Google Scholar]
  10. Siafaka P.I. Özcan Bülbül E. Miliotou A.N. Karantas I.D. Okur M.E. Üstündağ Okur N. Delivering active molecules to the eye; the concept of electrospinning as potent tool for drug delivery systems. J. Drug Deliv. Sci. Technol. 2023 84 104565 10.1016/j.jddst.2023.104565
    [Google Scholar]
  11. Tan S.M. Teoh X.Y. Le Hwang J. Khong Z.P. Sejare R. Almashhadani A.Q. Assi R.A. Chan S.Y. Electrospinning and its potential in fabricating pharmaceutical dosage form. J. Drug Deliv. Sci. Technol. 2022 76 103761 10.1016/j.jddst.2022.103761
    [Google Scholar]
  12. Luraghi A. Peri F. Moroni L. Electrospinning for drug delivery applications: A review. J. Control. Release 2021 334 463 484 10.1016/j.jconrel.2021.03.033 33781809
    [Google Scholar]
  13. Villarreal-Gómez L.J. Pérez-González G.L. Bogdanchikova N. Pestryakov A. Nimaev V. Soloveva A. Cornejo-Bravo J.M. Toledaño-Magaña Y. Antimicrobial effect of electrospun nanofibers loaded with silver nanoparticles: Influence of ag incorporation method. J. Nanomater. 2021 2021 1 15 10.1155/2021/9920755
    [Google Scholar]
  14. Pérez-González G.L. Villarreal-Gómez L.J. Serrano-Medina A. Torres-Martínez E.J. Cornejo-Bravo J.M. Mucoadhesive electrospun nanofibers for drug delivery systems: applications of polymers and the parameters’ roles. Int. J. Nanomedicine 2019 14 5271 5285 10.2147/IJN.S193328 31409989
    [Google Scholar]
  15. Surendranath M. M R R. Parameswaran R. Recent advances in functionally modified polymers for mucoadhesive drug delivery. J. Mater. Chem. B Mater. Biol. Med. 2022 10 31 5913 5924 10.1039/D2TB00856D 35880449
    [Google Scholar]
  16. Chen S. Xie Y. Ma K. Wei Z. Ran X. Fu X. Zhang C. Zhao C. Electrospun nanofibrous membranes meet antibacterial nanomaterials: From preparation strategies to biomedical applications. Bioact. Mater. 2024 42 478 518 10.1016/j.bioactmat.2024.09.003 39308550
    [Google Scholar]
  17. Kulkarni R. Fanse S. Burgess D.J. Mucoadhesive drug delivery systems: A promising noninvasive approach to bioavailability enhancement. Part II: formulation considerations. Expert Opin. Drug Deliv. 2023 20 3 413 434 10.1080/17425247.2023.2181332 36803264
    [Google Scholar]
  18. Sharma R. Kumar S. Malviya R. Prajapati B.G. Puri D. Limmatvapirat S. Sriamornsak P. Recent advances in biopolymer-based mucoadhesive drug delivery systems for oral application. J. Drug Deliv. Sci. Technol. 2024 91 105227 10.1016/j.jddst.2023.105227
    [Google Scholar]
  19. Cocoș D.I. Dumitriu Buzia O. Tatu A.L. Dinu M. Nwabudike L.C. Stefan C.S. Earar K. Galea C. Challenges in optimizing nanoplatforms used for local and systemic delivery in the oral cavity. Pharmaceutics 2024 16 5 626 10.3390/pharmaceutics16050626 38794288
    [Google Scholar]
  20. Nair V.V. Cabrera P. Ramírez-Lecaros C. Jara M.O. Brayden D.J. Morales J.O. Buccal delivery of small molecules and biologics: Of mucoadhesive polymers, films, and nanoparticles: An update. Int. J. Pharm. 2023 636 122789 10.1016/j.ijpharm.2023.122789 36868332
    [Google Scholar]
  21. Komati S. Swain S. Rao M.E.B. Jena B.R. Dasi V. Mucoadhesive Multiparticulate drug delivery systems: An extensivereview of patents. Adv. Pharm. Bull. 2019 9 4 521 538 10.15171/apb.2019.062 31857957
    [Google Scholar]
  22. Faglie A. Emerine R. Chou S.F. Effects of poloxamers as excipients on the physicomechanical properties, cellular biocompatibility, and in vitro drug release of Electrospun Polycaprolactone (PCL) fibers. Polymers 2023 15 14 2997 10.3390/polym15142997 37514386
    [Google Scholar]
  23. de Lima C.S.A. Varca J.P.R.O. Alves V.M. Nogueira K.M. Cruz C.P.C. Rial-Hermida M.I. Kadłubowski S.S. Varca G.H.C. Lugão A.B. Mucoadhesive polymers and their applications in drug delivery systems for the treatment of bladder cancer. Gels 2022 8 9 587 10.3390/gels8090587 36135300
    [Google Scholar]
  24. Moydeen A.M. Ali Padusha M.S. Aboelfetoh E.F. Al-Deyab S.S. El-Newehy M.H. Fabrication of electrospun poly(vinyl alcohol)/dextran nanofibers via emulsion process as drug delivery system: Kinetics and in vitro release study. Int. J. Biol. Macromol. 2018 116 1250 1259 10.1016/j.ijbiomac.2018.05.130 29791874
    [Google Scholar]
  25. Abadi B. Goshtasbi N. Bolourian S. Tahsili J. Adeli-Sardou M. Forootanfar H. Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications. Front. Bioeng. Biotechnol. 2022 10 986975 10.3389/fbioe.2022.986975 36561047
    [Google Scholar]
  26. Wang T. Fleming E. Luo Y. An overview of the biochemistry, synthesis, modification, and evaluation of mucoadhesive polymeric nanoparticles for oral delivery of bioactive compounds. Adv. Compos. Hybrid Mater. 2023 6 1 6 10.1007/s42114‑022‑00586‑0
    [Google Scholar]
  27. Lee K.S.S. Yang J. Niu J. Ng C.J. Wagner K.M. Dong H. Kodani S.D. Wan D. Morisseau C. Hammock B.D. Drug-target residence time affects in vivo target occupancy through multiple pathways. ACS Cent. Sci. 2019 5 9 1614 1624 10.1021/acscentsci.9b00770 31572788
    [Google Scholar]
  28. Pérez-González G.L. Villarreal-Gómez L.J. Olivas-Sarabia A. Valdez R. Cornejo-Bravo J.M. Development, characterization, and in vitro assessment of multilayer mucoadhesive system containing dexamethasone sodium phosphate. Int. J. Polym. Mater. 2021 70 18 1316 1328 10.1080/00914037.2020.1798433
    [Google Scholar]
  29. Sharma D. Tripathi G.M. Tiwari R. Mishra A. Effect of submucosal administration of dexamethasone on postoperative discomfort after third molar surgery. Natl. J. Maxillofac. Surg. 2024 15 2 288 294 10.4103/njms.njms_4_23 39234124
    [Google Scholar]
  30. Torres-Martinez E.J. Pérez-González G.L. Serrano-Medina A. Grande D. Vera-Graziano R. Cornejo-Bravo J.M. Villarreal-Gómez L.J. Drugs loaded into electrospun polymeric nanofibers for delivery. J. Pharm. Pharm. Sci. 2019 22 1 313 331 10.18433/jpps29674 31329535
    [Google Scholar]
  31. Dinte E. Muntean D.M. Andrei V. Boșca B.A. Dudescu C.M. Barbu-Tudoran L. Borodi G. Andrei S. Gal A.F. Rus V. Gherman L.M. Cadar O. Barabas R. Niculae M. Ilea A. in vitro and in vivo characterisation of a mucoadhesive buccal film loaded with doxycycline hyclate for topical application in periodontitis. Pharmaceutics 2023 15 2 580 10.3390/pharmaceutics15020580 36839899
    [Google Scholar]
  32. Assmann C.E. Cadoná F.C. Bonadiman B.S.R. Dornelles E.B. Trevisan G. Cruz I.B.M. Tea tree oil presents in vitro antitumor activity on breast cancer cells without cytotoxic effects on fibroblasts and on peripheral blood mononuclear cells. Biomed. Pharmacother. 2018 103 1253 1261 10.1016/j.biopha.2018.04.096 29864906
    [Google Scholar]
  33. Elizondo-Luevano J.H. Quintanilla-Licea R. Castillo-Hernández S.L. Sánchez-García E. Bautista-Villarreal M. González-Meza G.M. Gloria-Garza M.A. Rodríguez-Luis O.E. Kluz M.I. Kačániová M. in vitro evaluation of anti-hemolytic and cytotoxic effects of traditional mexican medicinal plant extracts on human erythrocytes and cell cultures. Life 2024 14 1176 10.3390/life14091176
    [Google Scholar]
  34. Vilar C.J.F. Ribeiro S.B. de Araújo A.A. Guerra G.C.B. de Araújo Júnior R.F. Brito G.A.C. Leitão R.F.C. Pontes D.L. Gasparotto L.H.D.S. Oliveira M.M.B. Viana A.D. de Medeiros W.M.T.Q. Bezerra B.G.P. de Medeiros C.A.C.X. Effect of gold nanoparticle on 5-fluorouracil-induced experimental oral mucositis in hamsters. Pharmaceutics 2020 12 4 304 10.3390/pharmaceutics12040304 32230975
    [Google Scholar]
  35. Yu L. Madsen F.B. Eriksen S.H. Andersen A.J.C. Skov A.L. A reliable quantitative method for determining CBD content and release from transdermal patches in Franz cells. Phytochem. Anal. 2022 33 8 1257 1265 10.1002/pca.3188 36372393
    [Google Scholar]
  36. Sterzenbach T. Helbig R. Hannig C. Hannig M. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin. Oral Investig. 2020 24 12 4237 4260 10.1007/s00784‑020‑03646‑1 33111157
    [Google Scholar]
  37. Colley H.E. Said Z. Santocildes-Romero M.E. Baker S.R. D’Apice K. Hansen J. Madsen L.S. Thornhill M.H. Hatton P.V. Murdoch C. Pre-clinical evaluation of novel mucoadhesive bilayer patches for local delivery of clobetasol-17-propionate to the oral mucosa. Biomaterials 2018 178 134 146 10.1016/j.biomaterials.2018.06.009 29929183
    [Google Scholar]
  38. Zhang Y. Li Y. Tan Z. Development of adjustable high- to low-adhesive superhydrophobicity using aligned electrospun fibers. Langmuir 2023 39 45 15986 15996 10.1021/acs.langmuir.3c02044 37922462
    [Google Scholar]
  39. Sevi̇nç Özakar R. Özakar E. Current overview of oral thin films. Turk. J. Pharm. Sci. 2021 18 1 111 121 10.4274/tjps.galenos.2020.76390
    [Google Scholar]
  40. Kumar A.M.S. Bharath N. Rao M.D.S. Venkatesh P. Hepcykalarani D. Prema R. A review on mucoadhesive drug delivery systems. Res. J. Pharm. Dos. Forms Technol. 2019 11 4 280 10.5958/0975‑4377.2019.00047.8
    [Google Scholar]
  41. Rohani Shirvan A. Hemmatinejad N. Bahrami S.H. Bashari A. A comparison between solvent casting and electrospinning methods for the fabrication of neem extract-containing buccal films. J. Ind. Text. 2022 51 1_suppl 311S 335S 10.1177/15280837211027785
    [Google Scholar]
  42. Shipp L. Liu F. Kerai-Varsani L. Okwuosa T.C. Buccal films: A review of therapeutic opportunities, formulations & relevant evaluation approaches. J. Control. Release 2022 352 1071 1092 10.1016/j.jconrel.2022.10.058 36351519
    [Google Scholar]
  43. Bartkowiak A. Rojewska M. Hyla K. Zembrzuska J. Prochaska K. Surface and swelling properties of mucoadhesive blends and their ability to release fluconazole in a mucin environment. Colloids Surf. B Biointerfaces 2018 172 586 593 10.1016/j.colsurfb.2018.09.014 30218984
    [Google Scholar]
  44. Jacob S. Nair A.B. Boddu S.H.S. Gorain B. Sreeharsha N. Shah J. An updated overview of the emerging role of patch and film-based buccal delivery systems. Pharmaceutics 2021 13 8 1206 10.3390/pharmaceutics13081206 34452167
    [Google Scholar]
  45. He J. Zhou J. Yang W. Zhou Q. Liang X. Pang X. Li J. Pan F. Liang H. Dexamethasone affects cell growth/apoptosis/chemosensitivity of colon cancer via glucocorticoid receptor α/NF-κB. Oncotarget 2017 8 40 67670 67683 10.18632/oncotarget.18802 28978062
    [Google Scholar]
  46. Yang L. Li X. Wang D. Mu S. Lv W. Hao Y. Lu X. Zhang G. Nan W. Chen H. Xie L. Zhang Y. Dong Y. Zhang Q. Zhao L. Improved mechanical properties by modifying fibrin scaffold with PCL and its biocompatibility evaluation. J. Biomater. Sci. Polym. Ed. 2020 31 5 658 678 10.1080/09205063.2019.1710370 31903857
    [Google Scholar]
  47. Pluta K. Florkiewicz W. Malina D. Rudnicka K. Michlewska S. Królczyk J.B. Sobczak-Kupiec A. Measurement methods for the mechanical testing and biocompatibility assessment of polymer-ceramic connective tissue replacements. Measurement 2021 171 108733 10.1016/j.measurement.2020.108733
    [Google Scholar]
  48. Ren M. Li J. Lv L. Zhang M. Yang X. Zhou Q. Wang D. Dhakal R. Yao Z. Li Y. Kim N.Y. A wearable and high-performance capacitive pressure sensor based on a biocompatible PVP nanofiber membrane via electrospinning and UV treatment. J. Mater. Chem. C Mater. Opt. Electron. Devices 2022 10 29 10491 10499 10.1039/D2TC00955B
    [Google Scholar]
  49. Vasquez-Martínez N. Guillen D. Moreno-Mendieta S.A. Sanchez S. Rodríguez-Sanoja R. The role of Mucoadhesion and Mucopenetration in the immune response induced by polymer-based mucosal adjuvants. Polymers 2023 15 1615 10.3390/polym15071615
    [Google Scholar]
  50. Oeyen A.L. Kircher J. Vogl M. Ickert I. Osada N. Krauspe R. Bittersohl B. Herten M. Dexamethasone does not compensate for local anesthetic cytotoxic effects on tenocytes: Morphine or morphine plus Dexamethasone may be a safe alternative. Arthrosc. Sports Med. Rehabil. 2022 4 2 e459 e469 10.1016/j.asmr.2021.11.004 35494256
    [Google Scholar]
  51. Wong J. Tran L.T. Lynch K.A. Wood L.J. Dexamethasone exacerbates cytotoxic chemotherapy induced lethargy and weight loss in female tumor free mice. Cancer Biol. Ther. 2018 19 1 87 96 10.1080/15384047.2017.1394549 29231783
    [Google Scholar]
  52. Dubashynskaya N.V. Bokatyi A.N. Skorik Y.A. Dexamethasone conjugates: Synthetic approaches and medical prospects. Biomedicines 2021 9 4 341 10.3390/biomedicines9040341 33801776
    [Google Scholar]
  53. Duarah S. Sharma M. Wen J. Rapid and simultaneous determination of dexamethasone and dexamethasone sodium phosphate using HPLC-UV: Application in microneedle-assisted skin permeation and deposition studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021 1170 122609 10.1016/j.jchromb.2021.122609 33713946
    [Google Scholar]
  54. Veit J. Birru B. Wang Y. Singh R. Arrigali E. Park R. Miller B. Firpo M. Park A. Serban M. An evaluation of the drug permeability properties of human cadaveric in situ tympanic and round window membranes. Pharmaceuticals 2022 15 1037 10.3390/ph15091037
    [Google Scholar]
  55. Cho S.J. Jung S.M. Kang M. Shin H.S. Youk J.H. Preparation of hydrophilic PCL nanofiber scaffolds via electrospinning of PCL/PVP-b-PCL block copolymers for enhanced cell biocompatibility. Polymer (Guildf.) 2015 69 95 102 10.1016/j.polymer.2015.05.037
    [Google Scholar]
  56. Kuźmińska A. Butruk-Raszeja B.A. Stefanowska A. Ciach T. Polyvinylpyrrolidone (PVP) hydrogel coating for cylindrical polyurethane scaffolds. Colloids Surf. B Biointerfaces 2020 192 111066 10.1016/j.colsurfb.2020.111066 32361074
    [Google Scholar]
  57. Ammar H.O. Ghorab M.M. Mahmoud A.A. Shahin H.I. Design and in vitro/in vivo evaluation of ultra-thin mucoadhesive buccal film containing Fluticasone propionate. AAPS Pharm. Sci. Tech. 2017 18 1 93 103 10.1208/s12249‑016‑0496‑0 26883262
    [Google Scholar]
  58. Xu Y. Sun Q. Chen W. Han Y. Gao Y. Ye J. Wang H. Gao L. Liu Y. Yang Y. The taste-masking mechanism of chitosan at the molecular level on bitter drugs of alkaloids and flavonoid glycosides from traditional Chinese medicine. Molecules 2022 27 21 7455 10.3390/molecules27217455
    [Google Scholar]
  59. Muoka L.C. Ross S.A. Mithu M.S.H. Nandi U. Douroumis D. Comparative taste-masking evaluation of microencapsulated bitter drugs using Smartseal 30D and ReadyMix for paediatric dosage forms. AAPS Pharm. Sci. Tech 2021 22 4 141 10.1208/s12249‑021‑02002‑0 33884533
    [Google Scholar]
  60. Abdelhakim H.E. Williams G.R. Craig D.Q.M. Orlu M. Tuleu C. Human mouthfeel panel investigating the acceptability of electrospun and solvent cast orodispersible films. Int. J. Pharm. 2020 585 119532 10.1016/j.ijpharm.2020.119532 32531448
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018356821250323083549
Loading
/content/journals/cdd/10.2174/0115672018356821250323083549
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: irritation test ; multilayer ; mucoadhesive ; cytotoxicity ; poly-vinyl pyrrolidone ; Electrospinning
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test