Skip to content
2000
image of Kidneys Toxicity and Biodistribution of Albumin-Based Gold and Silver Nanoclusters

Abstract

Introduction

The interaction of the kidneys with nanoparticles is a fundamental issue that accelerates the proper design of efficient and safe nanotherapeutics. The present study aimed to establish the kidney toxicity and the biodistribution profile of novel gold and silver nanocluster formulations.

Methods

Gold and silver nanoclusters were synthesized in an albumin template to probe their kidney-nano interaction. The interaction was performed on healthy animals to unveil the toxicity of nanoclusters on kidney tissue.

Results

Albumin-based gold nanoclusters (BSA-AuNCs) and albumin-based silver nanoclusters (BSA-AgNCs), exhibited comparable core size (2.2±1.3 nm and 2.5±1.6 nm, respectively) and hydrodynamic diameter (11.3±2.1 nm for BSA-AuNC and 10.7±1.9 nm for BSA-AgNC) indicating similarity in their core and overall sizes. Zeta potential measurements demonstrated a comparable surface charge between BSA- AuNC (18.1±3.2 mV) and BSA- AgNC (20.1±3.6 mV), which closely resembled the surface charge of albumin in water (20.7±3.5 mV). Upon administration to rats intravenous route, ICP-OES measurements showed a significant silver and gold nanocluster accumulation in various vital organs with unequal distribution patterns. BSA-AgNC exhibited higher concentrations in the liver and spleen, while BSA-AuNC showed predominant accumulation in the liver and kidneys. However, the administered BSA-AgNC induced more renal damage than BSA- AuNCs.

Conclusion

The identified renal toxicity linked to BSA-AgNCs, despite their lower kidney accumulation than BSA-AuNCs, illuminates the intricate interplay between nanoparticle biodistribution and toxicity. This underscores the significance of considering the core metal type in nanoparticle design and evaluation. Further investigation is needed to clarify the underlying molecular mechanisms of the observed biodistribution and toxicity.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018369974250321004041
2025-04-09
2025-09-25
Loading full text...

Full text loading...

References

  1. Longmire M Choyke PL Kobayashi H Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine 2008 3 5 703 717 10.2217/17435889.3.5.703
    [Google Scholar]
  2. Ohlson M. Sörensson J. Haraldsson B. A gel-membrane model of glomerular charge and size selectivity in series. Am. J. Physiol. Renal Physiol. 2001 280 3 F396 F405 10.1152/ajprenal.2001.280.3.F396 11181401
    [Google Scholar]
  3. Gong L. Wang Y. Liu J. Bioapplications of renal-clearable luminescent metal nanoparticles. Biomater. Sci. 2017 5 8 1393 1406 10.1039/C7BM00257B 28484751
    [Google Scholar]
  4. Dziendzikowska K. Gromadzka-Ostrowska J. Lankoff A. Oczkowski M. Krawczyńska A. Chwastowska J. Sadowska-Bratek M. Chajduk E. Wojewódzka M. Dušinská M. Kruszewski M. Time‐dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J. Appl. Toxicol. 2012 32 11 920 928 10.1002/jat.2758 22696427
    [Google Scholar]
  5. Lien Nghiem T.H. Nguyen T.T. Fort E. Nguyen T.P. Nhung Hoang T.M. Nguyen T.Q. Nhung Tran H. Capping and in vivo toxicity studies of gold nanoparticles. Adv. Nat. Sci: Nanosci. Nanotechnol 2012 3 1 015002 10.1088/2043‑6262/3/1/015002
    [Google Scholar]
  6. Jia Y.P. Ma B.Y. Wei X.W. Qian Z.Y. The in vitro and in vivo toxicity of gold nanoparticles. Chin. Chem. Lett. 2017 28 4 691 702 10.1016/j.cclet.2017.01.021
    [Google Scholar]
  7. Zhang Q. Yin R. Guan G. Liu H. Song G. Renal clearable magnetic nanoparticles for magnetic resonance imaging and guided therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024 16 1 e1929 10.1002/wnan.1929 37752407
    [Google Scholar]
  8. Mosleh-Shirazi S. Abbasi M. Shafiee M. Kasaee S.R. Amani A.M. Renal clearable nanoparticles: An expanding horizon for improving biomedical imaging and cancer therapy. Mater. Today Commun. 2021 26 102064 10.1016/j.mtcomm.2021.102064
    [Google Scholar]
  9. Loynachan C.N. Soleimany A.P. Dudani J.S. Lin Y. Najer A. Bekdemir A. Chen Q. Bhatia S.N. Stevens M.M. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 2019 14 9 883 890 10.1038/s41565‑019‑0527‑6 31477801
    [Google Scholar]
  10. Yi S. Hu Q. Chi Y. Qu H. Xiao Y. Bright and renal-clearable au nanoclusters with NIR-II excitation and emission for high-resolution fluorescence imaging of kidney dysfunction. ACS Mater. Lett. 2023 5 8 2164 2173 10.1021/acsmaterialslett.3c00379
    [Google Scholar]
  11. Tao Z. Wang J. Wu H. Hu J. Li L. Zhou Y. Zheng Q. Zha L. Zha Z. Renal clearable Mo-based polyoxometalate nanoclusters: A promising radioprotectant against ionizing irradiation. ACS Appl. Mater. Interfaces 2023 15 9 11474 11484 10.1021/acsami.2c19282 36702809
    [Google Scholar]
  12. Naz S. Gul A. Zia M. Javed R. Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Appl. Microbiol. Biotechnol. 2023 107 4 1039 1061 10.1007/s00253‑023‑12364‑z 36635395
    [Google Scholar]
  13. Mabrouk M. Das D.B. Salem Z.A. Beherei H.H. Nanomaterials for biomedical applications: Production, characterisations, recent trends and difficulties. Molecules 2021 26 4 1077 10.3390/molecules26041077 33670668
    [Google Scholar]
  14. Alkilany A.M. Murphy C.J. Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J. Nanopart. Res. 2010 12 7 2313 2333 10.1007/s11051‑010‑9911‑8 21170131
    [Google Scholar]
  15. Dumontel B. Canta M. Engelke H. Chiodoni A. Racca L. Ancona A. Limongi T. Canavese G. Cauda V. Enhanced biostability and cellular uptake of zinc oxide nanocrystals shielded with a phospholipid bilayer. J. Mater. Chem. B Mater. Biol. Med. 2017 5 44 8799 8813 10.1039/C7TB02229H 29456858
    [Google Scholar]
  16. Zhang W. Ye J. Zhang Y. Li Q. Dong X. Jiang H. Wang X. One-step facile synthesis of fluorescent gold nanoclusters for rapid bio-imaging of cancer cells and small animals. RSC Advances 2015 5 78 63821 63826 10.1039/C5RA11321K
    [Google Scholar]
  17. Mathew A. Sajanlal P.R. Pradeep T. A fifteen atom silver cluster confined in bovine serum albumin. J. Mater. Chem. 2011 21 30 11205 11212 10.1039/c1jm11452b
    [Google Scholar]
  18. Hamaly M.A. Abulateefeh S.R. Al-Qaoud K.M. Alkilany A.M. Freeze-drying of monoclonal antibody-conjugated gold nanorods: Colloidal stability and biological activity. Int. J. Pharm. 2018 550 1-2 269 277 10.1016/j.ijpharm.2018.08.045 30145244
    [Google Scholar]
  19. Yaqoob S.B. Adnan R. Rameez Khan R.M. Rashid M. Gold, silver, and palladium nanoparticles: A chemical tool for biomedical applications. Front Chem. 2020 8 376 10.3389/fchem.2020.00376 32582621
    [Google Scholar]
  20. Ibrahim K.E. Al-Mutary M.G. Bakhiet A.O. Khan H.A. Histopathology of the liver, kidney, and spleen of mice exposed to gold nanoparticles. Molecules 2018 23 8 1848 10.3390/molecules23081848 30044410
    [Google Scholar]
  21. Augustine R. Hasan A. Primavera R. Wilson R.J. Thakor A.S. Kevadiya B.D. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater. Today Commun. 2020 25 101692 10.1016/j.mtcomm.2020.101692
    [Google Scholar]
  22. Ferdous Z. Nemmar A. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. Int. J. Mol. Sci. 2020 21 7 2375 10.3390/ijms21072375 32235542
    [Google Scholar]
  23. Wu T. Tang M. Review of the effects of manufactured nanoparticles on mammalian target organs. J. Appl. Toxicol. 2018 38 1 25 40 10.1002/jat.3499 28799656
    [Google Scholar]
  24. Makhdoumi P. Karimi H. Khazaei M. Review on metal-based nanoparticles: Role of reactive oxygen species in renal toxicity. Chem. Res. Toxicol. 2020 33 10 2503 2514 10.1021/acs.chemrestox.9b00438 32909744
    [Google Scholar]
  25. Xue Y. Zhang S. Huang Y. Zhang T. Liu X. Hu Y. Zhang Z. Tang M. Acute toxic effects and gender‐related biokinetics of silver nanoparticles following an intravenous injection in mice. J. Appl. Toxicol. 2012 32 11 890 899 10.1002/jat.2742 22522906
    [Google Scholar]
  26. Bourquin J. Milosevic A. Hauser D. Lehner R. Blank F. Petri-Fink A. Rothen-Rutishauser B. Biodistribution, clearance, and long‐term fate of clinically relevant nanomaterials. Adv. Mater. 2018 30 19 1704307 10.1002/adma.201704307 29389049
    [Google Scholar]
  27. Yang L. Kuang H. Zhang W. Aguilar Z.P. Wei H. Xu H. Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice. Sci. Rep. 2017 7 1 3303 10.1038/s41598‑017‑03015‑1 28607366
    [Google Scholar]
  28. Wei Y. Quan L. Zhou C. Zhan Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine 2018 13 12 1495 1512 10.2217/nnm‑2018‑0040 29972677
    [Google Scholar]
  29. Xia Q. Li H. Xiao K. Factors affecting the pharmacokinetics, biodistribution and toxicity of gold nanoparticles in drug delivery. Curr. Drug Metab. 2016 17 9 849 861 10.2174/1389200217666160629114941 27364829
    [Google Scholar]
  30. Lopez-Chaves C. Soto-Alvaredo J. Montes-Bayon M. Bettmer J. Llopis J. Sanchez-Gonzalez C. Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine 2018 14 1 1 12 10.1016/j.nano.2017.08.011 28882675
    [Google Scholar]
  31. Nosrati H. Hamzepoor M. Sohrabi M. Saidijam M. Assari M.J. Shabab N. Gholami Mahmoudian Z. Alizadeh Z. The potential renal toxicity of silver nanoparticles after repeated oral exposure and its underlying mechanisms. BMC Nephrol. 2021 22 1 228 10.1186/s12882‑021‑02428‑5 34144690
    [Google Scholar]
  32. Roda E. Barni S. Milzani A. Dalle-Donne I. Colombo G. Coccini T. Single silver nanoparticle instillation induced early and persisting moderate cortical damage in rat kidneys. Int. J. Mol. Sci. 2017 18 10 2115 10.3390/ijms18102115 28994738
    [Google Scholar]
  33. Kim S. Ryu D.Y. Silver nanoparticle‐induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J. Appl. Toxicol. 2013 33 2 78 89 10.1002/jat.2792 22936301
    [Google Scholar]
  34. Flores-López L.Z. Espinoza-Gómez H. Somanathan R. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. J. Appl. Toxicol. 2019 39 1 16 26 10.1002/jat.3654 29943411
    [Google Scholar]
  35. Zhang T. Wang L. Chen Q. Chen C. Cytotoxic potential of silver nanoparticles. Yonsei Med. J. 2014 55 2 283 291 10.3349/ymj.2014.55.2.283 24532494
    [Google Scholar]
  36. Panzarini E. Mariano S. Carata E. Mura F. Rossi M. Dini L. Intracellular transport of silver and gold nanoparticles and biological responses: An update. Int. J. Mol. Sci. 2018 19 5 1305 10.3390/ijms19051305 29702561
    [Google Scholar]
  37. Sani A. Cao C. Cui D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem. Biophys. Rep. 2021 26 100991 10.1016/j.bbrep.2021.100991 33912692
    [Google Scholar]
  38. Kiarashi M. Yasamineh S. Albumin nanoparticles are a promising drug delivery system in dentistry. Biomed. Eng. Online 2024 23 1 122 10.1186/s12938‑024‑01318‑9 39605007
    [Google Scholar]
  39. Eker F. Duman H. Akdaşçi E. Bolat E. Sarıtaş S. Karav S. Witkowska A.M. A comprehensive review of nanoparticles: From classification to application and toxicity. Molecules 2024 29 15 3482 10.3390/molecules29153482 39124888
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018369974250321004041
Loading
/content/journals/cdd/10.2174/0115672018369974250321004041
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: nanoclusters ; silver ; kidney ; toxicity ; Gold ; biodistribution ; renal tissues
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test