Skip to content
2000
Volume 22, Issue 9
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Introduction

The incidence and mortality rates of liver cancer are high; therefore, developing new drug delivery systems with good biocompatibility and targeting has become a research hotspot.

Methods

Mitoxantrone hydrochloride (MH) loaded in acidic polysaccharide III nanoparticles (MANPs) was prepared using electrostatic adsorption. This was achieved by loading MH in acidic polysaccharide III (APPN III), a natural compound that exhibits anti-tumor activity. Response surface methodology was used to determine the parameters for the best formulation.

Results

Fourier-transform infrared spectroscopy and differential scanning calorimetry indicated that MH in MANPs was amorphous and exhibited good encapsulation efficiency in the carrier. Findings from dynamic dialysis confirmed that MANPs exhibited slow drug release at pH 6.8 and over the pH range of 7.2-7.4. experiments confirmed the anti-tumor effects of MANPs on H22 cells based on the inhibition of cell proliferation and an increase in apoptosis. MANPs also demonstrated an obvious anti-tumor effect without any toxicity in H22 tumor-bearing mice. This effect could be attributed to APPN III enhancing the immune system and exerting a synergistic anti-tumor effect in combination with MH, thereby alleviating MH-induced damage to the immune system in H22 tumor-bearing mice.

Conclusion

As a nano-carrier prepared using natural resources, APPN III shows immense potential in the field of drug delivery and could serve as a novel option for the effective delivery of chemotherapeutic drugs.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018351085250212080829
2025-02-18
2025-12-10
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. AnwanwanD. SinghS.K. SinghS. SaikamV. SinghR. Challenges in liver cancer and possible treatment approaches.Biochim. Biophys. Acta Rev. Cancer20201873118831410.1016/j.bbcan.2019.18831431682895
    [Google Scholar]
  3. OrcuttS.T. AnayaD.A. Liver resection and surgical strategies for management of primary liver cancer.Cancer Control: J. Moffitt Cancer Center20182511073274817744621
    [Google Scholar]
  4. MelehyA. AgopianV. Treating rare tumors with liver transplantation.Curr. Opin. Organ Transplant.2024291303610.1097/MOT.000000000000111837851086
    [Google Scholar]
  5. KairaluomaV. KarjalainenM. PohjanenV.M. SaarnioJ. NiemeläJ. HuhtaH. HelminenO. Treatment trends and outcomes of hepatocellular carcinoma in a single center for 35 years.Minerva Surg.202176325226310.23736/S2724‑5691.21.08426‑133890436
    [Google Scholar]
  6. XieF. GeJ. ShengW. WangD. LiaoW. LiE. WuL. LeiJ. Based on the IWATE criteria: To investigate the influence of different surgical approaches on the perioperative outcomes of hepatectomy.Surg. Endosc.20233721044105210.1007/s00464‑022‑09563‑636109356
    [Google Scholar]
  7. ZiogasI.A. GleisnerA.L. Resection versus transplant for hepatocellular carcinoma.Surg. Clin. North Am.2024104111312710.1016/j.suc.2023.08.00537953031
    [Google Scholar]
  8. ChenW. ChiangC.L. DawsonL.A. Efficacy and safety of radiotherapy for primary liver cancer.Chin. Clin. Oncol.2021101910.21037/cco‑20‑8932576017
    [Google Scholar]
  9. AbolzadehV. ImanparastA. NassirliH. Tayebi MeybodiN. Khalili NajafabadB. SazgarniaA. In vivo evaluation of Sono-chemo therapy via hollow gold nanoshells conjugated to mitoxantrone on breast cancer.Iran. J. Basic Med. Sci.2023263285294[PMID: 36865038
    [Google Scholar]
  10. RezaeivalaZ. ImanparastA. MohammadiZ. NajafabadB.K. SazgarniaA. The multimodal effect of Photothermal/Photodynamic/Chemo therapies mediated by Au-CoFe2O4 @Spiky nanostructure adjacent to mitoxantrone on breast cancer cells.Photodiagn. Photodyn. Ther.20234110326910.1016/j.pdpdt.2022.10326936596330
    [Google Scholar]
  11. GranjaA. Lima-SousaR. AlvesC.G. de Melo-DiogoD. NunesC. SousaC.T. CorreiaI.J. ReisS. Multifunctional targeted solid lipid nanoparticles for combined photothermal therapy and chemotherapy of breast cancer.Biomater. Adv.202315121344310.1016/j.bioadv.2023.21344337146526
    [Google Scholar]
  12. TongC. WangW. HeC. m1A methylation modification patterns and metabolic characteristics in hepatocellular carcinoma.BMC Gastroenterol.20222219310.1186/s12876‑022‑02160‑w35240991
    [Google Scholar]
  13. XieB. HeX. GuoG. ZhangX. LiJ. LiuJ. LinY. High-throughput screening identified mitoxantrone to induce death of hepatocellular carcinoma cells with autophagy involvement.Biochem. Biophys. Res. Commun.2020521123223710.1016/j.bbrc.2019.10.11431653348
    [Google Scholar]
  14. SongG. GuJ. ChenY. ZhangY. HuangX. LouS. DengJ. The applications of mitoxantrone and its liposome in adult acute myeloid leukemia.Open J. Blood Dis.2023131515810.4236/ojbd.2023.131007
    [Google Scholar]
  15. BhatnagarB. ZhaoQ. MimsA.S. VasuS. BehbehaniG.K. LarkinK. BlachlyJ.S. BadawiM.A. HillK.L. DzwigalskiK.R. PhelpsM.A. BlumW. KlisovicR.B. RuppertA.S. RanganathanP. WalkerA.R. GarzonR. Phase 1 study of selinexor in combination with salvage chemotherapy in Adults with relapsed or refractory Acute myeloid leukemia.Leuk. Lymphoma202364132091210010.1080/10428194.2023.225348037665178
    [Google Scholar]
  16. SinghA. BoraS. KhuranaS. KumarP. SarkarN. KukretiR. KukretiS. KaushikM. Advance nanotherapeutic approach for systemic co-delivery of mitoxantrone loaded chitosan coated PLGA nanoparticles to improve the chemotherapy against human non-small cell lung cancer.J. Drug Deliv. Sci. Technol.20238410452310.1016/j.jddst.2023.104523
    [Google Scholar]
  17. ZhaoJ. GuercioB.J. SahasrabudheD. Current trends in chemotherapy in the treatment of metastatic prostate cancer.Cancers20231515396910.3390/cancers1515396937568784
    [Google Scholar]
  18. YangH. WangX. ZhangH. PengJ. LiW. LiuY. HuJ. ZhouH. ZhangB. LiuJ. LinS. LuoH. HuJ. LiZ. Mitoxantrone hydrochloride liposome injection in the treatment of recurrent/metastatic head and neck cancers: A multicenter, open-label, single-arm, phase Ib study.J. Clin. Oncol.20224016Suppl.e18028e1802810.1200/JCO.2022.40.16_suppl.e18028
    [Google Scholar]
  19. HuangY. LiR. GuilingL. LuoY. YangZ. LouG. OuyangW. XieR. LuoW. ChenL. ZhouQ. Safety and efficacy of mitoxantrone hydrochloride liposome in patients with platinum-refractory or platinum-resistant ovarian cancer: A prospective, multicenter, open-label, single-arm, phase Ib clinical trial.J. Clin. Oncol.20224016Suppl.555010.1200/JCO.2022.40.16_suppl.5550
    [Google Scholar]
  20. Ortiz-RiveroS. Peleteiro-VigilA. AbeteL. LozanoE. HammerH.S. GiacomoS.D. AbadM. BoixL. FornerA. ReigM. MaciasR.I.R. PötzO. MarinJ.J.G. BrizO. Sensitization of cholangiocarcinoma cells to chemotherapy through BCRP inhibition with β-caryophyllene oxide.Biomed. Pharmacother.202417011603810.1016/j.biopha.2023.11603838141281
    [Google Scholar]
  21. MinkoI.G. MoellmerS.A. LuzadderM.M. TomarR. StoneM.P. McCulloughA.K. Stephen LloydR. Interaction of mitoxantrone with abasic sites - DNA strand cleavage and inhibition of apurinic/apyrimidinic endonuclease 1, APE1.DNA Repair202413310360610360610.1016/j.dnarep.2023.10360638039951
    [Google Scholar]
  22. WangR. LiN. ZhangT. SunY. HeX. LuX. ChuL. SunK. Tumor microenvironment-responsive micelles assembled from a prodrug of mitoxantrone and 1-methyl tryptophan for enhanced chemo-immunotherapy.Drug Deliv.2023301218225410.1080/10717544.2023.218225436840464
    [Google Scholar]
  23. ShaoL. YeQ. JiaM. AbdulhayE. miR-130-3p promotes MTX-induced immune killing of hepatocellular carcinoma cells by targeting EPHB4.J. Healthc. Eng.2021202111910.1155/2021/465079434336153
    [Google Scholar]
  24. NduwumwamiA.J. HengstJ.A. YunJ.K. Sphingosine kinase inhibition enhances dimerization of calreticulin at the cell surface in mitoxantrone-induced immunogenic cell death.J. Pharmacol. Exp. Ther.2021378330031010.1124/jpet.121.00062934158403
    [Google Scholar]
  25. MeiK.C. LiaoY.P. JiangJ. ChiangM. KhazaieliM. LiuX. WangX. LiuQ. ChangC.H. ZhangX. LiJ. JiY. MelanoB. TelescaD. XiaT. MengH. NelA.E. Liposomal delivery of mitoxantrone and a cholesteryl indoximod prodrug provides effective chemo-immunotherapy in multiple solid tumors.ACS Nano20201410133431336610.1021/acsnano.0c0519432940463
    [Google Scholar]
  26. Reis-MendesA. CarvalhoF. RemiãoF. SousaE. de Lourdes BastosM. CostaV.M. Autophagy (but not metabolism) is a key event in mitoxantrone-induced cytotoxicity in differentiated AC16 cardiac cells.Arch. Toxicol.202397120121610.1007/s00204‑022‑03363‑636216988
    [Google Scholar]
  27. KouwenbergT.W. van DalenE.C. FeijenE.A.M. NeteaS.A. BolierM. SliekerM.G. HoeseinF.A.A.M. KremerL.C.M. GrotenhuisH.B. Mavinkurve-GroothuisA.M.C. Acute and early-onset cardiotoxicity in children and adolescents with cancer: A systematic review.BMC Cancer202323186610.1186/s12885‑023‑11353‑937710224
    [Google Scholar]
  28. YokoyamaM. OkanoT. Targeting of anti-cancer drugs with nano-sized carrier system.Jpn. J. Clin. Med.1998561232273234[PMID: 9883646
    [Google Scholar]
  29. IslamR. MaedaH. FangJ. Factors affecting the dynamics and heterogeneity of the EPR effect: Pathophysiological and pathoanatomic features, drug formulations and physicochemical factors.Expert Opin. Drug Deliv.202219219921210.1080/17425247.2021.187491633430661
    [Google Scholar]
  30. IzciM. MaksoudianC. ManshianB.B. SoenenS.J. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors.Chem. Rev.202112131746180310.1021/acs.chemrev.0c0077933445874
    [Google Scholar]
  31. MaedaH. The 35th anniversary of the discovery of epr effect: A new wave of nanomedicines for tumor-targeted drug delivery—personal remarks and future prospects.J. Pers. Med.202111322910.3390/jpm1103022933810037
    [Google Scholar]
  32. PenkethP.G. WilliamsonH.S. BaumannR.P. ShyamK. Design strategy for the EPR tumor-targeting of 1,2-Bis(sulfonyl)-1-alkylhydrazines.Molecules202126225910.3390/molecules2602025933419160
    [Google Scholar]
  33. MaJ.B. ShenJ.M. YueT. WuZ.Y. ZhangX.L. Size-shrinkable and protein kinase Cα-recognizable nanoparticles for deep tumor penetration and cellular internalization.European J. Pharm. Sci.2021159105693
    [Google Scholar]
  34. LiuQ. SongB. TongS. YangQ. ZhaoH. GuoJ. TianX. ChangR. WuJ. Research progress on the anticancer activity of plant polysaccharides.Recent Pat. Anticancer Drug Discov.2024195573598[PMID: 37724671
    [Google Scholar]
  35. BhatA.A. GuptaG. AlharbiK.S. AfzalO. AltamimiA.S.A. AlmalkiW.H. KazmiI. Al-AbbasiF.A. AlzareaS.I. ChellappanD.K. SinghS.K. MacLoughlinR. OliverB.G. DuaK. Polysaccharide-based nanomedicines targeting lung cancer.Pharmaceutics20221412278810.3390/pharmaceutics1412278836559281
    [Google Scholar]
  36. LindemannH. KühneM. GruneC. WarnckeP. HofmannS. KoschellaA. GodmannM. FischerD. HeinzelT. HeinzeT. Polysaccharide nanoparticles bearing HDAC inhibitor as nontoxic nanocarrier for drug delivery.Macromol. Biosci.2020206200003910.1002/mabi.20200003932249554
    [Google Scholar]
  37. CaoY. ChenZ. SunL. LinY. YangY. CuiX. WangC. Herb polysaccharide-based drug delivery system: Fabrication, properties, and applications for immunotherapy.Pharmaceutics2022148170310.3390/pharmaceutics1408170336015329
    [Google Scholar]
  38. HanM. FanY.K. ZhangY. DongZ. Advances in herbal polysaccharides-based nano-drug delivery systems for cancer immunotherapy.J. Drug Target.202432331132410.1080/1061186X.2024.230966138269853
    [Google Scholar]
  39. ZhangG. QiaoJ. LiuX. LiuY. WuJ. HuangL. JiD. GuanQ. Interactions of self-assembled Bletilla Striata polysaccharide nanoparticles with bovine serum albumin and biodistribution of its docetaxel-loaded nanoparticles.Pharmaceutics20191114310.3390/pharmaceutics1101004330669500
    [Google Scholar]
  40. ZhangY. CuiZ. MeiH. XuJ. ZhouT. ChengF. WangK. Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer.Carbohydr. Polym.201921914315410.1016/j.carbpol.2019.04.04131151511
    [Google Scholar]
  41. LiH. GuL. ZhongY. ChenY. ZhangL. ZhangA.R. SobolR.W. ChenT. LiJ. Administration of polysaccharide from Panax notoginseng prolonged the survival of H22 tumor-bearing mice.OncoTargets Ther.2016934333441[PMID: 27354815
    [Google Scholar]
  42. LiuS. YangY. QuY. GuoX. YangX. CuiX. WangC. Structural characterization of a novel polysaccharide from Panax notoginseng residue and its immunomodulatory activity on bone marrow dendritic cells.Int. J. Biol. Macromol.202016179780910.1016/j.ijbiomac.2020.06.11732553971
    [Google Scholar]
  43. LiuY.H. QinH.Y. ZhongY.Y. LiS. WangH.J. WangH. ChenL.L. TangX. LiY.L. QianZ.Y. LiH.Y. ZhangL. ChenT. Neutral polysaccharide from Panax notoginseng enhanced cyclophosphamide antitumor efficacy in hepatoma H22-bearing mice.BMC Cancer20212113710.1186/s12885‑020‑07742‑z33413214
    [Google Scholar]
  44. LiuY. LiS. PuM. QinH. WangH. ZhaoY. ChenT. Structural characterization of polysaccharides isolated from Panax notoginseng medicinal residue and its protective effect on myelosuppression induced by cyclophosphamide.Chem. Biodivers.2022191e202100681e20210068110.1002/cbdv.20210068134817123
    [Google Scholar]
  45. NallasamyL. SwaminathanA. KrishnamoorthyD. MurugaveluG.S. SelvarajS.L. Optimization of anti-inflammatory activity of Rauvolfia tetraphylla L. Crude extracts using response surface methodology.Indian J. Pharm. Educ. Res.2024583ss934s94310.5530/ijper.58.3s.94
    [Google Scholar]
  46. EbrahimiV. HashemiA. Optimizing recombinant production of L-asparaginase 1 from Saccharomyces cerevisiae using response surface methodology.Folia Microbiol.20246961205121910.1007/s12223‑024‑01163‑238581537
    [Google Scholar]
  47. KabadayıS.N. SadiqN.B. HamayunM. ParkN.I. KimH.Y. Impact of sodium silicate supplemented, IR-treated panax ginseng on extraction optimization for enhanced anti-tyrosinase and antioxidant activity: A response surface methodology (RSM) approach.Antioxidants20231315410.3390/antiox1301005438247479
    [Google Scholar]
  48. CommitteeN. P. People's Republic of China (PRC) Pharmacopoeia II (2020 Edition)china medical science press: Beijing, China202011541156
    [Google Scholar]
  49. YanZ-J. WuX-P. WeiP-P. DengM-Y. YangK. ZhangL-M. DingY-Z. XiaD. MaB-S. ZhangL. YuanX-Y. ChenT. Effective platform for enhancing the bioavailability and anti-cancer efficacy of norcantharidin: Nanoemulsion hybrid lipid carriers.J. Biomed. Nanotechnol.202319452754210.1166/jbn.2023.3574
    [Google Scholar]
  50. KhezriK. SaeediM. Morteza-SemnaniK. AkbariJ. Hedayatizadeh-OmranA. A promising and effective platform for delivering hydrophilic depigmenting agents in the treatment of cutaneous hyperpigmentation: kojic acid nanostructured lipid carrier.Artif. Cells Nanomed. Biotechnol.2021491384710.1080/21691401.2020.186599333438443
    [Google Scholar]
  51. WikiniyadhaneeR. LerksuthiratT. StitchantrakulW. ChitphukS. TakedaS. DejsuphongD. SiemianowiczK. ATR inhibitor synergizes PARP inhibitor cytotoxicity in homologous recombination repair deficiency TK6 cell lines.BioMed Res. Int.202320231789175310.1155/2023/789175336794257
    [Google Scholar]
  52. SartoriG. TarantelliC. SprianoF. GaudioE. CascioneL. MasciaM. BarrecaM. ArribasA.J. LicenziatoL. GolinoG. FerragamoA. PileriS. DamiaG. ZuccaE. StathisA. PolitzO. WengnerA.M. BertoniF. The ATR inhibitor elimusertib exhibits anti-lymphoma activity and synergizes with the PI3K inhibitor copanlisib.Br. J. Haematol.2024204119120510.1111/bjh.1921838011941
    [Google Scholar]
  53. AgrawalM. SaxenaA.K. AgrawalS.K. Essential oil from Ocimum viride exerts caspase-3 interceded apoptosis in human leukemia HL-60 cells.S. Afr. J. Bot.202417519320010.1016/j.sajb.2024.10.021
    [Google Scholar]
  54. LiuY. WangY. WangJ. WangX. ChenL. HanT. LianH. GanM. WangJ. Fangchinoline suppresses hepatocellular carcinoma by regulating ROS accumulation via the TRIM7/Nrf2 signaling pathway.Phytomedicine202413515614310.1016/j.phymed.2024.15614339461200
    [Google Scholar]
  55. LiX. LiX. ChenL. DengY. ZhengZ. MingY. Tabersonine induces the apoptosis of human hepatocellular carcinoma in vitro and in vivo.Anticancer. Agents Med. Chem.2024241076477210.2174/011871520628661224030317223038465429
    [Google Scholar]
  56. ZouQ. WuX. WangJ. XiaD. DengM. DingY. DaiY. ZhaoS. ChenT. Therapeutic effect of Panax notoginseng saponins combined with cyclophosphamide in mice bearing hepatocellular carcinoma H22 cell xenograft.Nan Fang Yi Ke Da Xue Xue Bao2022424538545[PMID: 35527489
    [Google Scholar]
  57. ZhangJ. SangX. YuanY. ShenJ. FangY. QinM. ZhengH. ZhuZ. 4-Deoxy-ε-Pyrromycinone: A promising drug/lead compound to treat tumors.Drug Des. Devel. Ther.2024182367237910.2147/DDDT.S46159438911033
    [Google Scholar]
  58. WangW. TongC. LiuX. LiT. LiuB. XiongW. Preparation and functional characterization of tumor-targeted folic acid-chitosan conjugated nanoparticles loaded with mitoxantrone.J. Cent. South Univ.20152293311331710.1007/s11771‑015‑2871‑5
    [Google Scholar]
  59. HornungA. PoettlerM. FriedrichR. ZalogaJ. UnterwegerH. LyerS. NowakJ. OdenbachS. AlexiouC. JankoC. Treatment efficiency of free and nanoparticle-loaded mitoxantrone for magnetic drug targeting in multicellular tumor spheroids.Molecules20152010180161803010.3390/molecules20101801626437393
    [Google Scholar]
  60. YanZ. YangK. TangX. BiY. DingY. DengM. XiaD. ZhaoY. ChenT. Norcantharidin nanostructured lipid carrier (NCTD-NLC) suppresses the viability of human hepatocellular carcinoma HepG2 cells and accelerates the apoptosis.J. Immunol. Res.20222022011010.1155/2022/385160435497873
    [Google Scholar]
  61. LiQ. XuJ. Research on the inhibitory effect of doxorubicin-loaded liposomes targeting GFAP for glioma cells.Anticancer. Agents Med. Chem.202424317718410.2174/011871520626531123103010230737936466
    [Google Scholar]
  62. JiaoY. LiW. YangW. WangM. XingY. WangS. Icaritin exerts anti-cancer effects through modulating pyroptosis and immune activities in hepatocellular carcinoma.Biomedicines2024128191710.3390/biomedicines1208191739200381
    [Google Scholar]
  63. WangQ. XingN. ZhangZ. PengD. LiY. WangX. WangR. HeY. ZengY. KuangH. Optimization of steaming process for polysaccharides from panax notoginseng by box-behnken response surface methodology and comparison of immunomodulatory effects of raw and steamed panax notoginseng polysaccharides.Pharmacogn. Mag.2021177674375110.4103/pm.pm_42_21
    [Google Scholar]
  64. SalekS. MoazamianE. Mohammadi BardboriA. ShamsdinS.A. The anticancer effect of potential probiotic L. fermentum and L. plantarum in combination with 5-fluorouracil on colorectal cancer cells.World J. Microbiol. Biotechnol.202440513913910.1007/s11274‑024‑03929‑938514489
    [Google Scholar]
  65. PanpanW. ZijunY. MengyueD. Experimental study on anti-fatigue effect of polysaccharides of Panax notoginseng.Chinese Journal of Clinical Pharmacology20244018791
    [Google Scholar]
  66. RajappaS. SinghM. UeharaR. SchachterleS.E. SetiaS. Cancer incidence and mortality trends in Asia based on regions and human development index levels: An analyses from GLOBOCAN 2020.Curr. Med. Res. Opin.20233981127113710.1080/03007995.2023.223176137395248
    [Google Scholar]
  67. LiD. WuY. YinH. FengW. MaX. XiaoH. XinW. LiC. Panax Notoginseng polysaccharide stabilized gel-like Pickering emulsions: Stability and mechanism.Int. J. Biol. Macromol.2023249112589310.1016/j.ijbiomac.2023.12589337473886
    [Google Scholar]
  68. JiangX.L. MaG.F. ZhaoB.B. MengY. ChenL.L. Structural characterization and immunomodulatory activity of a novel polysaccharide from Panax notoginseng.Front. Pharmacol.202314119023310.3389/fphar.2023.119023337256230
    [Google Scholar]
  69. QiH. ZhangZ. LiuJ. ChenZ. HuangQ. LiJ. ChenJ. WangM. ZhaoD. WangZ. LiX. Comparisons of isolation methods, structural features, and bioactivities of the polysaccharides from three common panax species: A review of recent progress.Molecules20212616499710.3390/molecules2616499734443587
    [Google Scholar]
  70. QianY. MaoJ. LengX. ZhuL. RuiX. JinZ. JiangH. LiuH. ZhangF. BiX. ChenZ. WangJ. Co-delivery of proanthocyanidin and mitoxantrone induces synergistic immunogenic cell death to potentiate cancer immunotherapy.Biomater. Sci.202210164549456010.1039/D2BM00611A35790120
    [Google Scholar]
  71. MaM. LiuX. MaC. GuoR. ZhangX. ZhangZ. RenX. Enhancing the antitumor immunosurveillance of PD-L1-targeted gene therapy for metastatic melanoma using cationized Panax Notoginseng polysaccharide.Int. J. Biol. Macromol.20232261309131810.1016/j.ijbiomac.2022.11.24236442564
    [Google Scholar]
  72. WangC. LiuS. XuJ. GaoM. QuY. LiuY. YangY. CuiX. Dissolvable microneedles based on Panax notoginseng polysaccharide for transdermal drug delivery and skin dendritic cell activation.Carbohydr. Polym.202126811821110.1016/j.carbpol.2021.11821134127215
    [Google Scholar]
  73. HeL. XuK. NiuL. LinL. Astragalus polysaccharide (APS) attenuated PD-L1-mediated immunosuppression via the miR-133a-3p/MSN axis in HCC.Pharm. Biol.20226011710172010.1080/13880209.2022.211296336086826
    [Google Scholar]
  74. GuoT. YangY. GaoM. QuY. GuoX. LiuY. CuiX. WangC. Lepidium meyenii Walpers polysaccharide and its cationic derivative re-educate tumor-associated macrophages for synergistic tumor immunotherapy.Carbohydr. Polym.202025011690410.1016/j.carbpol.2020.11690433049880
    [Google Scholar]
  75. MohamedS.S. IbrahimG.S. GhoneimM.A.M. HassanA.I. Evaluating the role of polysaccharide extracted from Pleurotus columbinus on cisplatin-induced oxidative renal injury.Sci. Rep.202313183510.1038/s41598‑022‑27081‑236646729
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018351085250212080829
Loading
/content/journals/cdd/10.2174/0115672018351085250212080829
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test