Skip to content
2000
Volume 22, Issue 10
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background

Hot-melt Pressure-sensitive Adhesives (HMPSA) are eco-friendly pressure-sensitive adhesives, with the potential of being used as substrates for transdermal patches. However, due to the low hydrophilicity of HMPSA, the application is limited in the field of Traditional Chinese Medicine (TCM) plasters.

Methods

Three modified HMPSA were prepared with acrylic resin EPO, acrylic resin RL100, and Polyvinylpyrrolidone (PVP) as the modifying materials. The physical compatibility between HMPSA and the modifying materials was investigated through release performance, viscosity, softening point, cohesion, and fluidity, so as to determine the most effective modifying material. The impact of the modified HMPSA on the release properties of different TCM ingredients was elucidated by the performance of water absorption and contact angle behavior.

Results

With the addition of the modifying materials, both the viscosity and the softening point of HMPSA were improved, with the flowability reduced and the cohesion maintained. The morphological and structural changes reflected the physical compatibility between HMPSA and the three modifying materials. According to the results of release experiments, PVP effectively improved the release performance of paeoniflorin, ephedrine hydrochloride, and cinnamaldehyde in HMPSA, with no significant impact on the release performance of eugenol. The changes in the drug release performance of HMPSA may be attributed to the improved hydrophilicity of HMPSA after physical modification.

Conclusion

The compatibility and the drug release performance of HMPSA were effectively enhanced after the addition of the modifying materials by the physical blending technique. Among the three modifying materials, PVP has been found to be an ideal modifying material for HMPSA in the field of TCM plasters due to its effects on drug release performance.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018339596241120191113
2025-12-01
2025-11-30
Loading full text...

Full text loading...

References

  1. MawM.R. TanasA.K. DashtimoghadamE. NikitinaE.A. IvanovD.A. DobryninA.V. Vatankhah-VarnosfaderaniM. SheikoS.S. Bottlebrush Thermoplastic Elastomers as Hot-Melt Pressure-Sensitive Adhesives.ACS Appl. Mater. Interfaces20231535418704187910.1021/acsami.3c0782137625250
    [Google Scholar]
  2. CzakajJ. SztorchB. Romanczuk-RuszukE. BrząkalskiD. PrzekopR.E. Organosilicon Compounds in Hot-Melt Adhesive Technologies.Polymers20231518370810.3390/polym1518370837765562
    [Google Scholar]
  3. MusazziU.M. OrtenziM.A. GennariC.G.M. CasiraghiA. MinghettiP. CilurzoF. Design of pressure-sensitive adhesive suitable for the preparation of transdermal patches by hot-melt printing.Int. J. Pharm.202058610.1016/j.ijpharm.2020.11960732652181
    [Google Scholar]
  4. HerbertK.M. DolinskiN.D. BoyntonN.R. MurphyJ.G. LindbergC.A. SibenerS.J. RowanS.J. Controlling the Morphology of Dynamic Thia-Michael Networks to Target Pressure-Sensitive and Hot Melt Adhesives.ACS Appl. Mater. Interfaces20211323274712748010.1021/acsami.1c0581334086431
    [Google Scholar]
  5. LiuH. GengH. ZhangX. WangX. HaoJ. CuiJ. Hot Melt Super Glue: Multi‐Recyclable Polyphenol‐Based Supramolecular Adhesives.Macromol. Rapid Commun.2022437e210083010.1002/marc.20210083035106862
    [Google Scholar]
  6. YinS. WuT. LuJ.Y. LiuZ.D. GuoT. FengN.P. Improvement in compatibility of hot melt pressure-sensitive adhesive with cinnamon volatile oil and in vitro transdermal property by physical blending.Chin J Chin Mater Med.202146215650565710.19540/j.cnki.cjcmm.20210319.30534951218
    [Google Scholar]
  7. PengX. WangY. ChenH. YingJ. WangJ. Preparation and properties of polyisobutene/organic montmorillonite hot melt pressure-sensitive adhesive (HMPSA).J. Adhes.20199513-141134114510.1080/00218464.2018.1476145
    [Google Scholar]
  8. NovákI. PretoJ. VankoV. RychlýJ. PavlinecJ. ChodákI. Modification of Hot-Melt Adhesives Based on Metallocene Poly(ethylene-propylene) Copolymer for High Adhesion to Polar Surfaces.Polymers2022146125310.3390/polym1406125335335582
    [Google Scholar]
  9. ZhaoZ. LiuP. ZhangC. ZhuX. LiuW. LiS. ZhangY. MengF. Hot-melt pressure-sensitive adhesives based on SIS-g-PB copolymer for transdermal delivery of hydrophilic drugs.Int. J. Adhes. Adhes.201991727610.1016/j.ijadhadh.2019.03.003
    [Google Scholar]
  10. ZhaoY. TianW.X. LiW.J. ShenL. HongY.L. Molding matrix formulation of hot-melt pressure-sensitive adhesive plaster of personalized traditional Chinese medicine preparations.Chin J Chin Mater Med.202449364465210.19540/j.cnki.cjcmm.20231121.30238621868
    [Google Scholar]
  11. ArslanM. CeylanO. ArslanR. TasdelenM.A. Facile UV-induced covalent modification and crosslinking of styrene–isoprene–styrene copolymer via Paterno–Büchi [2 + 2] photocycloaddition.RSC Advances202111158585859310.1039/D1RA00033K35423409
    [Google Scholar]
  12. XiangjunW. LiX. LinQ. XiaJ. XueH. A thermoreversible crosslinking hot-melt adhesive: reversibility and performance.RSC Advances20211152325653257210.1039/D1RA05319A35493556
    [Google Scholar]
  13. VellosoI. BastosJ.B.V. LuzR. CandidoL.F. MelloB. CazumbáA. Synthesis and Characterization of Polyester Derived from Renewable Source and its Application as Tackifiers Resins in Hot Melt Pressure Sensitive Adhesives (HMPSA).Macromol. Symp.20203941200011410.1002/masy.202000114
    [Google Scholar]
  14. IlyinS.O. MelekhinaV.Y. KostyukA.V. SmirnovaN.M. Hot-Melt and Pressure-Sensitive Adhesives Based on Styrene-Isoprene-Styrene Triblock Copolymer, Asphaltene/Resin Blend and Naphthenic Oil.Polymers20221420429610.3390/polym1420429636297874
    [Google Scholar]
  15. MangangK.N. ThakranP. HalderJ. YadavK.S. GhoshG. PradhanD. RathG. RaiV.K. PVP-microneedle array for drug delivery: mechanical insight, biodegradation, and recent advances.J. Biomater. Sci. Polym. Ed.2023347986101710.1080/09205063.2022.215577836541167
    [Google Scholar]
  16. Kirmic CosgunS.N. Ceylan TuncaboyluD. Cyclodextrin-linked PVP/PEG supramolecular hydrogels.Carbohydr. Polym.202126911827810.1016/j.carbpol.2021.11827834294310
    [Google Scholar]
  17. Machado-SantosL. BaroudiK. SilikasN. TribstJ.P.M. Coelho SinhoretiM.A. BrandtW.C. LiporoniP.C.S. Physical analysis of an acrylic resin modified by metal and ceramic nanoparticlesles.Dent. Med. Probl.202360465766410.17219/dmp/17184437966919
    [Google Scholar]
  18. RaszewskiZ. ChojnackaK. MikulewiczM. Preparation and characterization of acrylic resins with bioactive glasses.Sci. Rep.20221211662410.1038/s41598‑022‑20840‑136198737
    [Google Scholar]
  19. HuaL. LiY. WangQ. HuY. ZhaoZ. Fabrication of Amphiphilic Hot-Melt Pressure Sensitive Adhesives for Transdermal Drug Delivery.J. Adhes. Sci. Technol.2012268-91109112210.1163/016942411X576590
    [Google Scholar]
  20. DesrochesG. WangY. KubiakJ. MacfarlaneR. Crosslinking of Pressure-Sensitive Adhesives with Polymer-Grafted Nanoparticles.ACS Appl. Mater. Interfaces20221479579958610.1021/acsami.1c2299735147026
    [Google Scholar]
  21. VerkerR. WallachE.R. VidavskyY. BolkerA. GouzmanI. Novel axial dynamic mechanical analysis setup for thermo-analytical study and curing kinetics optimization of thermoset adhesives.Rev. Sci. Instrum.202293303410410.1063/5.007900235364994
    [Google Scholar]
  22. HongH. ZouQ. LiuY. WangS. ShenG. YanX. Supramolecular Nanodrugs Based on Covalent Assembly of Therapeutic Peptides toward In vitro Synergistic Anticancer Therapy.ChemMedChem202116152381238510.1002/cmdc.20210023633908190
    [Google Scholar]
  23. LeeJ.H. ShimG.S. KimH.J. KimY. Adhesion Performance and Recovery of Acrylic PSA with Acrylic Elastomer (AE) Blends via Thermal Crosslinking for Application in Flexible Displays.Polymers20191112195910.3390/polym1112195931795256
    [Google Scholar]
  24. NatoriN. ShibanoY. HirokiA. TaguchiM. MiyajimaA. YoshizawaK. KawanoY. HanawaT. Preparation and Evaluation of Hydrogel Film Containing Tramadol for Reduction of Peripheral Neuropathic Pain.J. Pharm. Sci.2023112113213710.1016/j.xphs.2022.05.01335605686
    [Google Scholar]
  25. KajitaT. NoroA. OdaR. HashimotoS. Highly Impact-Resistant Block Polymer-Based Thermoplastic Elastomers with an Ionically Functionalized Rubber Phase.ACS Omega2022732821283010.1021/acsomega.1c0560935097278
    [Google Scholar]
  26. ChenY. WangS. HuQ. ZhouL. Self-emulsifying System Co-loaded with Paclitaxel and Coix Seed Oil Deeply Penetrated to Enhance Efficacy in Cervical Cancer.Curr. Drug Deliv.202320791992610.2174/156720181966622062809423935762559
    [Google Scholar]
  27. ContardiM. AyyoubA.M.M. SummaM. KossyvakiD. FaddaM. LiessiN. ArmirottiA. FragouliD. BertorelliR. AthanassiouA. Self-Adhesive and Antioxidant Poly(vinylpyrrolidone)/Alginate-Based Bilayer Films Loaded with Malva sylvestris Extracts as Potential Skin Dressings.ACS Appl. Bio Mater.2022562880289310.1021/acsabm.2c0025435583459
    [Google Scholar]
  28. Ossowicz-RupniewskaP. BednarczykP. NowakM. NowakA. DuchnikW. KucharskiŁ. RokickaJ. KlimowiczA. CzechZ. Sustainable UV-Crosslinkable Acrylic Pressure-Sensitive Adhesives for Medical Application.Int. J. Mol. Sci.202122211184010.3390/ijms22211184034769271
    [Google Scholar]
  29. DzeikalaO. ProchonM. MarzecA. SzczepanikS. Preparation and Characterization of Gelatin-Agarose and Gelatin-Starch Blends Using Alkaline Solvent.Int. J. Mol. Sci.2023242147310.3390/ijms2402147336674988
    [Google Scholar]
  30. PaulR. JohnB. SahooS.K. UV-Curable Bio-Based Pressure-Sensitive Adhesives: Tuning the Properties by Incorporating Liquid-Phase Alkali Lignin-Acrylates.Biomacromolecules202223381682810.1021/acs.biomac.1c0124935061364
    [Google Scholar]
  31. MedlejM.K. Le FlochS. NasserG. LiS. HijaziA. Pochat-BohatierC. Correlations between rheological and mechanical properties of fructo-polysaccharides extracted from Ornithogalum billardieri as biobased adhesive for biomedical applications.Int. J. Biol. Macromol.2022209Pt A1100111010.1016/j.ijbiomac.2022.04.106
    [Google Scholar]
  32. ChenX. LiuW. ZhaoY. JiangL. XuH. YangX. Preparation and characterization of PEG-modified polyurethane pressure-sensitive adhesives for transdermal drug delivery.Drug Dev. Ind. Pharm.200935670471110.1080/0363904080251223519514985
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018339596241120191113
Loading
/content/journals/cdd/10.2174/0115672018339596241120191113
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): compatibility; drug release; HMPSA; hydrophilicity; physical modification; PVP; TCM plaster
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test