Skip to content
2000
image of Optimizing Transdermal Drug Delivery with Novasome Nanocarriers: A Quality by Design (QbD) Framework

Abstract

A revolutionary encapsulation-based drug delivery technique called novasome technology outperforms conventional liposome systems in terms of effectiveness and efficiency. It is comprised of free fatty acid, cholesterol, and surfactant, which combine to yield better vesicle properties for medication administration. Numerous research endeavors have examined the ideal blend of surfactant types, free fatty acids, and their proportions, along with the formulation elements that might substantially impact the vesicle properties. It has been shown that novasome technology may be used to deliver various drugs, such as vaccines, niflumic acid, zolmitriptan, and terconazole. To develop the most effective novasomal formulations with significant drug loading and nano-metric form, it is important to find the appropriate ratio between core components along with critical manufacturing process determinants. Understanding the interplay between these factors requires applying Quality by Design (QBD) in combination with Design of Experiments (DoE). These may be applied for both scale-up and lab-scale applications. This manuscript includes a detailed view of novasomes and the involvement of QBD.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018367563250318083438
2025-04-07
2025-09-25
Loading full text...

Full text loading...

References

  1. Ramadon D. McCrudden M.T. Courtenay A.J. Donnelly R.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Deliv. Transl. Res. 2021 ••• 1 34 10.1007/s13346‑021‑00909‑6 33474709
    [Google Scholar]
  2. Dahan A. Miller J.M. Amidon G.L. Prediction of solubility and permeability class membership: Provisional BCS classification of the world’s top oral drugs. AAPS J. 2009 11 4 740 746 10.1208/s12248‑009‑9144‑x 19876745
    [Google Scholar]
  3. Phatale V. Vaiphei K.K. Jha S. Patil D. Agrawal M. Alexander A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J. Control. Release 2022 351 361 380 10.1016/j.jconrel.2022.09.025 36169040
    [Google Scholar]
  4. Yu Y.Q. Yang X. Wu X.F. Fan Y.B. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications. Front. Bioeng. Biotechnol. 2021 9 646554 10.3389/fbioe.2021.646554 33855015
    [Google Scholar]
  5. Qindeel M. Ullah M.H. Fakhar-ud-Din Ahmed N. Rehman A. Recent trends, challenges and future outlook of transdermal drug delivery systems for rheumatoid arthritis therapy. J. Control. Release 2020 327 595 615 10.1016/j.jconrel.2020.09.016 32920080
    [Google Scholar]
  6. Lee A.Y. Molecular mechanism of epidermal barrier dysfunction as primary abnormalities. Int. J. Mol. Sci. 2020 21 4 1194 10.3390/ijms21041194 32054030
    [Google Scholar]
  7. Yokouchi M. Kubo A. Maintenance of tight junction barrier integrity in cell turnover and skin diseases. Exp. Dermatol. 2018 27 8 876 883 10.1111/exd.13742 30019465
    [Google Scholar]
  8. Sahani S. Sharma Y.C. Advancements in applications of nanotechnology in global food industry. Food Chem. 2021 342 128318 10.1016/j.foodchem.2020.128318 33189478
    [Google Scholar]
  9. Liga S. Paul C. Moacă E.A. Péter F. Niosomes: Composition, formulation techniques, and recent progress as delivery systems in cancer therapy. Pharmaceutics 2024 16 2 223 10.3390/pharmaceutics16020223 38399277
    [Google Scholar]
  10. Mojumdar E.H. Kariman Z. Kerckhove v.L. Gooris G.S. Bouwstra J.A. The role of ceramide chain length distribution on the barrier properties of the skin lipid membranes. Biochim. Biophys. Acta Biomembr. 2014 1838 10 2473 2483 10.1016/j.bbamem.2014.05.023 24875266
    [Google Scholar]
  11. Bäsler K. Bergmann S. Heisig M. Naegel A. Zorn-Kruppa M. Brandner J.M. The role of tight junctions in skin barrier function and dermal absorption. J. Control. Release 2016 242 105 118 10.1016/j.jconrel.2016.08.007 27521894
    [Google Scholar]
  12. Mosallam S. Ragaie M.H. Moftah N.H. Elshafeey A.H. Abdelbary A.A. Use of novasomes as a vesicular carrier for improving the topical delivery of terconazole: in vitro characterization, in vivo assessment and exploratory clinical experimentation. Int. J. Nanomed. 2021 16 119 132 10.2147/IJN.S287383 33447031
    [Google Scholar]
  13. Rangsimawong W. Opanasopit P. Rojanarata T. Ngawhirunpat T. Terpene-containing PEGylated liposomes as transdermal carriers of a hydrophilic compound. Biol. Pharm. Bull. 2014 37 12 1936 1943 10.1248/bpb.b14‑00535 25297807
    [Google Scholar]
  14. Li J. Sun Q. Sun L. Fu X. Deng G. Li Z. Fabrication of pH-responsive co-delivery system for nano selenium and doxorubicin with PEGylated chitosan: Effect of PEGylation. J. Drug Deliv. Sci. Technol. 2023 86 104706 10.1016/j.jddst.2023.104706
    [Google Scholar]
  15. Taweel E.M.M. Tawfik M.A. Soliman K. Khattab M.S. Farag M.M. Tailoring of topically applied curcumin loaded pro-novasomes for skin cancer treatment: In-vitro characterization, statistical optimization and histopathological assessment of subcutaneous Ehrlich carcinoma mice model. J. Drug Deliv. Sci. Technol. 2023 88 104957 10.1016/j.jddst.2023.104957
    [Google Scholar]
  16. Abdelkader H. Alani A.W.G. Alany R.G. Recent advances in non-ionic surfactant vesicles (niosomes): Self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv. 2014 21 2 87 100 10.3109/10717544.2013.838077 24156390
    [Google Scholar]
  17. Elkomy M.H. Menshawe E.S.F. Kharshoum R.M. Abdeltwab A.M. Hussein R.R.S. Hamad D.S. Alsalahat I. Aboud H.M. Innovative pulmonary targeting of terbutaline sulfate-laded novasomes for non-invasive tackling of asthma: Statistical optimization and comparative in vitro / in vivo evaluation. Drug Deliv. 2022 29 1 2058 2071 10.1080/10717544.2022.2092236 35801404
    [Google Scholar]
  18. Abdelbari M.A. El-Gazar A.A. Abdelbary A.A. Elshafeey A.H. Mosallam S. Investigating the potential of novasomes in improving the trans-tympanic delivery of niflumic acid for effective treatment of acute otitis media. J. Drug Deliv. Sci. Technol. 2024 98 105912 10.1016/j.jddst.2024.105912
    [Google Scholar]
  19. Atsugi T. Yokouchi M. Hirano T. Hirabayashi A. Nagai T. Ohyama M. Abe T. Kaneko M. Zouboulis C.C. Amagai M. Kubo A. Holocrine secretion occurs outside the tight junction barrier in multicellular glands: Lessons from claudin-1–deficient mice. J. Invest. Dermatol. 2020 140 2 298 308.e5 10.1016/j.jid.2019.06.150 31445004
    [Google Scholar]
  20. Hashimoto K. Demonstration of the intercellular spaces of the human eccrine sweat gland by lanthanum II. The duct. J. Ultrastruct. Res. 1971 37 5-6 504 520 10.1016/S0022‑5320(71)80021‑7 5136271
    [Google Scholar]
  21. Yamaga K. Murota H. Tamura A. Miyata H. Ohmi M. Kikuta J. Ishii M. Tsukita S. Katayama I. Claudin-3 loss causes leakage of sweat from the sweat gland to contribute to the pathogenesis of atopic dermatitis. J. Invest. Dermatol. 2018 138 6 1279 1287 10.1016/j.jid.2017.11.040 29277540
    [Google Scholar]
  22. Gorzelanny C. Mess C. Schneider S.W. Huck V. Brandner J.M. Skin barriers in dermal drug delivery: Which barriers have to be overcome and how can we measure them? Pharmaceutics 2020 12 7 684 10.3390/pharmaceutics12070684 32698388
    [Google Scholar]
  23. Varia U. Joshi D. Jadeja M. Katariya H. Detholia K. Soni V. Development and evaluation of ultradeformable vesicles loaded transdermal film of boswellic acid. Futur. J. Pharm. Sci. 2022 8 1 39 10.1186/s43094‑022‑00428‑2
    [Google Scholar]
  24. Parhi R. Suresh P. Patnaik S. Physical means of stratum corneum barrier manipulation to enhance transdermal drug delivery. Curr. Drug Deliv. 2015 12 2 122 138 10.2174/1567201811666140515145329 24827915
    [Google Scholar]
  25. Yuan L. Pan M. Shi K. Hu D. Li Y. Chen Y. Qian Z. Nanocarriers for promoting skin delivery of therapeutic agents. Appl. Mater. Today 2022 27 101438 10.1016/j.apmt.2022.101438
    [Google Scholar]
  26. Sala M. Diab R. Elaissari A. Fessi H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int. J. Pharm. 2018 535 1-2 1 17 10.1016/j.ijpharm.2017.10.046 29111097
    [Google Scholar]
  27. Smeden V.J Bouwstra JA Stratum corneum lipids: Their role for the skin barrier function in healthy subjects and atopic dermatitis patients. Curr. Probl. Dermatol. 2016 49 8 26 10.1159/000441540
    [Google Scholar]
  28. Ntimenou V. Fahr A. Antimisiaris S.G. Elastic vesicles for transdermal drug delivery of hydrophilic drugs: A comparison of important physicochemical characteristics of different vesicle types. J. Biomed. Nanotechnol. 2012 8 4 613 623 10.1166/jbn.2012.1426 22852471
    [Google Scholar]
  29. Lin H. Xie Q. Huang X. Ban J. Wang B. Wei X. Chen Y. Lu Z. Increased skin permeation efficiency of imperatorin via charged ultradeformable lipid vesicles for transdermal delivery. Int. J. Nanomedicine 2018 13 831 842 10.2147/IJN.S150086 29467573
    [Google Scholar]
  30. Chai C. Park J. Food liposomes: Structures, components, preparations, and applications. Food Chem. 2024 432 137228 10.1016/j.foodchem.2023.137228 37633138
    [Google Scholar]
  31. Witika B.A. Bassey K.E. Demana P.H. Siwe-Noundou X. Poka M.S. Current advances in specialised niosomal drug delivery: Manufacture, characterization and drug delivery applications. Int. J. Mol. Sci. 2022 23 17 9668 10.3390/ijms23179668 36077066
    [Google Scholar]
  32. Nsairat H. Khater D. Sayed U. Odeh F. Bawab A.A. Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  33. Akbarzadeh A. Rezaei-Sadabady R. Davaran S. Joo S.W. Zarghami N. Hanifehpour Y. Samiei M. Kouhi M. Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013 8 1 102 10.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  34. Alshawwa S.Z. Kassem A.A. Farid R.M. Mostafa S.K. Labib G.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics 2022 14 4 883 10.3390/pharmaceutics14040883 35456717
    [Google Scholar]
  35. Yasamineh S. Yasamineh P. Kalajahi G.H. Gholizadeh O. Yekanipour Z. Afkhami H. Eslami M. Kheirkhah H.A. Taghizadeh M. Yazdani Y. Dadashpour M. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int. J. Pharm. 2022 624 121878 10.1016/j.ijpharm.2022.121878 35636629
    [Google Scholar]
  36. Marianecci C. Marzio D.L. Rinaldi F. Celia C. Paolino D. Alhaique F. Esposito S. Carafa M. Niosomes from 80s to present: The state of the art. Adv. Colloid Interface Sci. 2014 205 187 206 10.1016/j.cis.2013.11.018 24369107
    [Google Scholar]
  37. Azeem A. Anwer M.K. Talegaonkar S. Niosomes in sustained and targeted drug delivery: Some recent advances. J. Drug Target. 2009 17 9 671 689 10.3109/10611860903079454 19845484
    [Google Scholar]
  38. Verma S Utreja P Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian J. Pharm. Sci. 2019 14 2 117 129 10.1016/j.ajps.2018.05.007
    [Google Scholar]
  39. Limongi T. Susa F. Marini M. Allione M. Torre B. Pisano R. Fabrizio d.E. Lipid-based nanovesicular drug delivery systems. Nanomaterials 2021 11 12 3391 10.3390/nano11123391 34947740
    [Google Scholar]
  40. Arundhasree R. R R. R A. Kumar A.R. Kumar S.S. Nair S.C. Ufasomes: Unsaturated fatty acid based vesicular drug delivery system. Inter. J. App. Pharm. 2021 13 2 76 83 10.22159/ijap.2021v13i2.39526
    [Google Scholar]
  41. Cristiano M.C. Froiio F. Mancuso A. Cosco D. Dini L. Marzio D.L. Fresta M. Paolino D. Oleuropein-laded ufasomes improve the nutraceutical efficacy. Nanomaterials 2021 11 1 105 10.3390/nano11010105 33406805
    [Google Scholar]
  42. Mittal R. Sharma A. Arora S. Ufasomes mediated cutaneous delivery of dexamethasone: Formulation and evaluation of anti-inflammatory activity by carrageenin-induced rat paw edema model. J. Pharm. 2013 2013 1 1 12 10.1155/2013/680580 26555990
    [Google Scholar]
  43. Thatyana M. Dube N.P. Kemboi D. Manicum A.L.E. Mokgalaka-Fleischmann N.S. Tembu J.V. Advances in phytonanotechnology: A plant-mediated green synthesis of metal nanoparticles using phyllanthus plant extracts and their antimicrobial and anticancer applications. Nanomaterials 2023 13 19 2616 10.3390/nano13192616 37836257
    [Google Scholar]
  44. KRISHNAN K. AS S. KK A. Novasome: A pioneering advancement in vesicular drug delivery. Int J Appl Pharm. 2021 13 1 59 64 10.22159/ijap.2021v13i1.39528
    [Google Scholar]
  45. Kersten G. Crommelin D.J. Liposomes and ISCOMs. Vaccine 2003 21 9-10 915 920 10.1016/S0264‑410X(02)00540‑6 12547602
    [Google Scholar]
  46. Bahy R. Helal D. Evaluation of the antimycotic activity of terconazole proniosomal gel. Egypt. J. Med. Microbiol. 2022 31 2 121 126 10.21608/ejmm.2022.229668
    [Google Scholar]
  47. Roy B. Guha P. Bhattarai R. Nahak P. Karmakar G. Chettri P. Panda A.K. Influence of lipid composition, pH, and temperature on physicochemical properties of liposomes with curcumin as model drug. J. Oleo Sci. 2016 65 5 399 411 10.5650/jos.ess15229 27150333
    [Google Scholar]
  48. Fareed N.Y. Kassab H.J. Effect of formulation variables on the properties of a new vesicular system of an anthraquinone derivative ‎. J. Adv. Pharm. Educ. Res. 2023 13 4 25 29 10.51847/JDGOLCgVXm
    [Google Scholar]
  49. Kaoud R.M. Heikal E.J. Hammady T.M. Diacerein-loaded niosomes (DC-NS): A new technique to sustain the release of drug action. Inter. J. App. Pharm. 2022 14 1 156 163 10.22159/ijap.2022v14i1.43353
    [Google Scholar]
  50. Zakaria M.Y. Eraqi W.A. Mohamed S.A. Ultra-deformable free fatty acid based nano-carriers for topical delivery of Luteolin: A potential paradigm for management of Methicillin-Resistant Staphylococcus aureus skin infections. Int. J. Pharm. 2023 643 123259 10.1016/j.ijpharm.2023.123259 37479100
    [Google Scholar]
  51. Zafar A Alruwaili NK Imam SS Alsaidan OA Yasir M Ghoneim MM Alshehri S Anwer MK Almurshedi AS Alanazi AS Development and evaluation of luteolin loaded pegylated bilosome: Optimization, in vitro characterization, and cytotoxicity study. Drug Deliv. 2021 28 1 2562 2578 10.1080/10717544.2021.2008055
    [Google Scholar]
  52. Kakkar S. Kaur I.P. Spanlastics—A novel nanovesicular carrier system for ocular delivery. Int. J. Pharm. 2011 413 1-2 202 210 10.1016/j.ijpharm.2011.04.027 21540093
    [Google Scholar]
  53. Kumar L. Verma S. Kumar S. Prasad D.N. Jain A.K. Fatty acid vesicles acting as expanding horizon for transdermal delivery. Artif. Cells Nanomed. Biotechnol. 2017 45 2 251 260 10.3109/21691401.2016.1146729 26890090
    [Google Scholar]
  54. Zakir F. Vaidya B. Goyal A.K. Malik B. Vyas S.P. Development and characterization of oleic acid vesicles for the topical delivery of fluconazole. Drug Deliv. 2010 17 4 238 248 10.3109/10717541003680981 20235758
    [Google Scholar]
  55. Chambers M.A. Wright D.C. Brisker J. Williams A. Hatch G. Gavier-Widén D. Hall G. Marsh P.D. Hewinson R.G. A single dose of killed Mycobacterium bovis BCG in a novel class of adjuvant (Novasome™) protects guinea pigs from lethal tuberculosis. Vaccine 2004 22 8 1063 1071 10.1016/j.vaccine.2003.05.002 15161084
    [Google Scholar]
  56. Singh A. Yadagiri G. Parvez S. Singh O.P. Verma A. Sundar S. Mudavath S.L. Formulation, characterization and in vitro anti-leishmanial evaluation of amphotericin B loaded solid lipid nanoparticles coated with vitamin B12-stearic acid conjugate. Mater. Sci. Eng. C 2020 117 111279 10.1016/j.msec.2020.111279 32919641
    [Google Scholar]
  57. Rosalina A. Sagita E. Iskandarsyah I. Novasome: Combining ufasome and niosome for excellent vesicular drug delivery system. Sci. Pharm. 2023 2 1 35 49 10.58920/sciphar02010035
    [Google Scholar]
  58. Rajera R. Nagpal K. Singh S.K. Mishra D.N. Niosomes: A controlled and novel drug delivery system. Biol. Pharm. Bull. 2011 34 7 945 953 10.1248/bpb.34.945 21719996
    [Google Scholar]
  59. Agarwal S.W. Kumari P.V. Advances in Novasome technology-a review. Int J App Pharm. 2013 5 1 1 4
    [Google Scholar]
  60. Albash R. Ragaie M.H. Hassab M.A.E. El-Haggar R. Eldehna W.M. Al-Rashood S.T. Mosallam S. Fenticonazole nitrate loaded trans-novasomes for effective management of tinea corporis: Design characterization, in silico study, and exploratory clinical appraisal. Drug Deliv. 2022 29 1 1100 1111 10.1080/10717544.2022.2057619 35373684
    [Google Scholar]
  61. Gulshan S. Shah S. Shah P.A. Irfan M. Saadullah M. Abbas G. Hanif M. Rasul A. Ahmad N. Mahmood A. Basheer E. Habib M.O. Alotaibi H.F. Obaidullah A.J. Alsabhan J.F. Alwassil O. Development and pharmacokinetic evaluation of novasomes for the trans-nasal delivery of fluvoxamine using arachidonic acid-carboxymethyl chitosan conjugate. Pharmaceutics 2023 15 9 2259 10.3390/pharmaceutics15092259 37765228
    [Google Scholar]
  62. Patti A. Lecocq H. Serghei A. Acierno D. Cassagnau P. The universal usefulness of stearic acid as surface modifier: Applications to the polymer formulations and composite processing. J. Ind. Eng. Chem. 2021 96 1 33 10.1016/j.jiec.2021.01.024
    [Google Scholar]
  63. Katrajkar K. Darji L. Kethavath D. Thakkar S. Kshirsagar B. Misra M. Shedding light on interaction of so called inactive ingredients (excipients) with permeability-glycoprotein. J. Drug Deliv. Sci. Technol. 2019 52 531 552 10.1016/j.jddst.2019.05.022
    [Google Scholar]
  64. Abd-Elal R.M.A. Shamma R.N. Rashed H.M. Bendas E.R. Trans-nasal zolmitriptan novasomes: in-vitro preparation, optimization and in-vivo evaluation of brain targeting efficiency. Drug Deliv. 2016 23 9 3374 3386 10.1080/10717544.2016.1183721 27128792
    [Google Scholar]
  65. Nakama Y. Cosmetic science and technology. Theoret. Princip. App. 2017 231 244
    [Google Scholar]
  66. Al-mahallawi A.M. Abdelbary A.A. Aburahma M.H. Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int. J. Pharm. 2015 485 1-2 329 340 10.1016/j.ijpharm.2015.03.033 25796122
    [Google Scholar]
  67. Yoshioka T. Sternberg B. Florence A. Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85). Int. J. Pharm. 1994 105 1 1 6 10.1016/0378‑5173(94)90228‑3
    [Google Scholar]
  68. Devaraj G.N. Parakh S.R. Devraj R. Apte S.S. Rao B.R. Rambhau D. Release studies on niosomes containing fatty alcohols as bilayer stabilizers instead of cholesterol. J. Colloid Interface Sci. 2002 251 2 360 365 10.1006/jcis.2002.8399 16290741
    [Google Scholar]
  69. Abdelbary G.A. Aburahma M.H. Oro-dental mucoadhesive proniosomal gel formulation loaded with lornoxicam for management of dental pain. J. Liposome Res. 2015 25 2 107 121 10.3109/08982104.2014.941861 25058447
    [Google Scholar]
  70. Al-mahallawi A.M. Khowessah O.M. Shoukri R.A. Nano-transfersomal ciprofloxacin loaded vesicles for non-invasive trans-tympanic ototopical delivery: In-vitro optimization, ex-vivo permeation studies, and in-vivo assessment. Int. J. Pharm. 2014 472 1-2 304 314 10.1016/j.ijpharm.2014.06.041 24971692
    [Google Scholar]
  71. Zaki R.M. Ali A.A. Menshawe E.S.F. Bary A.A. Formulation and in vitro evaluation of diacerein loaded niosomes. Int. J. Pharm. Pharm. Sci. 2014 6 Suppl. 2 515 521
    [Google Scholar]
  72. Jadon P.S. Gajbhiye V. Jadon R.S. Gajbhiye K.R. Ganesh N. Enhanced oral bioavailability of griseofulvin via niosomes. AAPS PharmSciTech 2009 10 4 1186 1192 10.1208/s12249‑009‑9325‑z 19856107
    [Google Scholar]
  73. Ramadan A.A. Eladawy S.A. El-Enin A.S.M.A. Hussein Z.M. Development and investigation of timolol maleate niosomal formulations for the treatment of glaucoma. J. Pharm. Investig. 2020 50 1 59 70 10.1007/s40005‑019‑00427‑1
    [Google Scholar]
  74. Liew C.V. Chua S.M. Heng P.W.S. Elucidation of spheroid formation with and without the extrusion step. AAPS Pharm. Sci. Tech. 2007 8 1 E70 E81 10.1208/pt0801010 17408210
    [Google Scholar]
  75. Thamer A.K. Abood A.N. Preparation and in vitro characterization of aceclofenac nanosuspension (ACNS) for enhancement of percutaneous absorption using hydrogel dosage form. Iraqi J. Pharm. Sci. 2021 30 2 1 9 10.31351/vol30iss2pp86‑98
    [Google Scholar]
  76. Patel DM Jani RH Patel CN Ufasomes: A vesicular drug delivery. Syst. Rev. Pharm. 2011 2 2 72 78 10.4103/0975‑8453.86290
    [Google Scholar]
  77. Owodeha-Ashaka K. Ilomuanya M.O. Iyire A. Evaluation of sonication on stability-indicating properties of optimized pilocarpine hydrochloride-loaded niosomes in ocular drug delivery. Prog. Biomater. 2021 10 3 207 220 10.1007/s40204‑021‑00164‑5 34549376
    [Google Scholar]
  78. Abdelbary G.A. Amin M.M. Zakaria M.Y. Ocular ketoconazole-loaded proniosomal gels: Formulation, ex vivo corneal permeation and in vivo studies. Drug Deliv. 2017 24 1 309 319 10.1080/10717544.2016.1247928 28165809
    [Google Scholar]
  79. Kumar G.P. Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm. Sin. B 2011 1 4 208 219 10.1016/j.apsb.2011.09.002
    [Google Scholar]
  80. Mavaddati M.A. Moztarzadeh F. Baghbani F. Effect of formulation and processing variables on dexamethasone entrapment and release of niosomes. J. Cluster Sci. 2015 26 6 2065 2078 10.1007/s10876‑015‑0908‑4
    [Google Scholar]
  81. El-Samaligy M.S. Afifi N.N. Mahmoud E.A. Increasing bioavailability of silymarin using a buccal liposomal delivery system: Preparation and experimental design investigation. Int. J. Pharm. 2006 308 1-2 140 148 10.1016/j.ijpharm.2005.11.006 16356669
    [Google Scholar]
  82. Singh A. Malviya R. Sharma P.K. Novasome-a breakthrough in pharmaceutical technology a review article. Adv. Biol. Res. 2011 5 4 184 189
    [Google Scholar]
  83. Mills R. Mathur R. Lawrence N. Prime Pharmaceutical Corp, assignee. Mahonia aquifolium extract, extraction process and pharmaceutical composition containing the same. Patent US 7,621,740. 2009
  84. Martin N. Douliez J.P. Fatty acid vesicles and coacervates as model prebiotic protocells. ChemSystemsChem 2021 3 6 e2100024 10.1002/syst.202100024
    [Google Scholar]
  85. Ahmed S. Amin M.M. El-Korany S.M. Sayed S. Corneal targeted fenticonazole nitrate-loaded novasomes for the management of ocular candidiasis: Preparation, in vitro characterization, ex vivo and in vivo assessments. Drug Deliv. 2022 29 1 2428 2441 10.1080/10717544.2022.2103600 35880688
    [Google Scholar]
  86. Fatima I. Rasul A. Shah S. Saadullah M. Islam N. Khames A. Salawi A. Ahmed M.M. Almoshari Y. Abbas G. Abourehab M.A.S. Khan M.S. Chauhdary Z. Alshamrani M. Namazi N.I. Naguib D.M. Novasomes as nano-vesicular carriers to enhance topical delivery of fluconazole: A new approach to treat fungal infections. Molecules 2022 27 9 2936 10.3390/molecules27092936 35566287
    [Google Scholar]
  87. ElShagea H.N. Makar R.R. Salama A.H. Elkasabgy N.A. Salama A. Basalious E.B. Terpene-augmented novasomal gels for the sustainment of rasagiline mesylate delivery; A new approach for treating Parkinson’s disease induced by rotenone in rats. J. Drug Deliv. Sci. Technol. 2024 92 105369 10.1016/j.jddst.2024.105369
    [Google Scholar]
  88. Charcosset C. Juban A. Valour J.P. Urbaniak S. Fessi H. Preparation of liposomes at large scale using the ethanol injection method: Effect of scale-up and injection devices. Chem. Eng. Res. Des. 2015 94 508 515 10.1016/j.cherd.2014.09.008
    [Google Scholar]
  89. Du G Sun X Ethanol injection method for liposome preparation. Methods Mol. Biol. 2023 2622 65 70 10.1007/978‑1‑0716‑2954‑3_5
    [Google Scholar]
  90. Jaafar-Maalej C. Diab R. Andrieu V. Elaissari A. Fessi H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J. Liposome Res. 2010 20 3 228 243 10.3109/08982100903347923 19899957
    [Google Scholar]
  91. Guimarães D. Noro J. Loureiro A. Lager F. Renault G. Cavaco-Paulo A. Nogueira E. Increased encapsulation efficiency of methotrexate in liposomes for rheumatoid arthritis therapy. Biomedicines 2020 8 12 630 10.3390/biomedicines8120630 33353028
    [Google Scholar]
  92. Lombardo D. Kiselev M.A. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics 2022 14 3 543 10.3390/pharmaceutics14030543 35335920
    [Google Scholar]
  93. Gouda A. Sakr O.S. Nasr M. Sammour O. Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications. J. Drug Deliv. Sci. Technol. 2021 61 102174 10.1016/j.jddst.2020.102174
    [Google Scholar]
  94. Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. Liposomes. Methods Mol. Biol. 2017 1522 17 22 10.1007/978‑1‑4939‑6591‑5_2 27837527
    [Google Scholar]
  95. Albassam N.Y. Kassab H.J. Diacerein loaded novasome for transdermal delivery: Prepartion , in-vitro characterization and factors affecting formulation. J. Pharm. Sci. 2023 32 Suppl 214 224 10.31351/vol32issSuppl.pp214‑224
    [Google Scholar]
  96. Aboud H.M. Hussein A.K. Zayan A.Z. Makram T.S. Sarhan M.O. El-Sharawy D.M. Tailoring of selenium-plated novasomes for fine-tuning pharmacokinetic and tumor uptake of quercetin: in vitro optimization and in vivo radiobiodistribution assessment in ehrlich tumor-bearing mice. Pharmaceutics 2022 14 4 875 10.3390/pharmaceutics14040875 35456709
    [Google Scholar]
  97. Xiang B Cao DY Preparation of drug liposomes by thin-film hydration and homogenization. Liposome-Based Drug Delivery Systems. Lu W.L. Qi X.R. Springer, Berlin, Heidelberg Biomaterial Engineering. 2021 10.1007/978‑3‑662‑49320‑5_2
    [Google Scholar]
  98. Umbarkar M. Thakare S. Surushe T. Giri A. Chopade V. Formulation and evaluation of liposome by thin film hydration method. J. Drug Deliv. Ther. 2021 11 1 72 76 10.22270/jddt.v11i1.4677
    [Google Scholar]
  99. Basha M. Abd El-Alim S.H. Shamma R.N. Awad G.E.A. Design and optimization of surfactant-based nanovesicles for ocular delivery of Clotrimazole. J. Liposome Res. 2013 23 3 203 210 10.3109/08982104.2013.788025 23607316
    [Google Scholar]
  100. Souza I.D.L. Saez V. Mansur C.R.E. Lipid nanoparticles containing coenzyme Q10 for topical applications: An overview of their characterization. Colloids Surf. B Biointerfaces 2023 230 113491 10.1016/j.colsurfb.2023.113491 37574615
    [Google Scholar]
  101. Swamy N.G.N. Abbas Z. Preparation and in vitro characterization of mucoadhesive hydroxypropyl guar microspheres containing amlodipine besylate for nasal administration. Indian J. Pharm. Sci. 2011 73 6 608 614 10.4103/0250‑474X.100233 23112393
    [Google Scholar]
  102. Bergh d.v.B.A.I. Wertz P.W. Junginger H.E. Bouwstra J.A. Elasticity of vesicles assessed by electron spin resonance, electron microscopy and extrusion measurements. Int. J. Pharm. 2001 217 1-2 13 24 10.1016/S0378‑5173(01)00576‑2 11292538
    [Google Scholar]
  103. Lei W Yu C Lin H Zhou X. Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian J. Pharm. Sci. 2013 8 6 336 345 10.1016/j.ajps.2013.09.005
    [Google Scholar]
  104. Jinturkar K.A. Anish C. Kumar M.K. Bagchi T. Panda A.K. Misra A.R. Liposomal formulations of Etoposide and Docetaxel for p53 mediated enhanced cytotoxicity in lung cancer cell lines. Biomaterials 2012 33 8 2492 2507 10.1016/j.biomaterials.2011.11.067 22200537
    [Google Scholar]
  105. Aziz D.E. Abdelbary A.A. Elassasy A.I. Fabrication of novel elastosomes for boosting the transdermal delivery of diacerein: Statistical optimization, ex-vivo permeation, in-vivo skin deposition and pharmacokinetic assessment compared to oral formulation. Drug Deliv. 2018 25 1 815 826 10.1080/10717544.2018.1451572 29557244
    [Google Scholar]
  106. Salem F. Ahammed S.M. Hassaballah A.S. Omar M.M. Targeting brain cells with glutathione-modulated nanoliposomes: in vitro and in vivo study. Drug Des. Devel. Ther. 2015 9 3705 3727 10.2147/DDDT.S85302 26229435
    [Google Scholar]
  107. Watkins E.R. Newbold A. Factorial designs help to understand how psychological therapy works. Front. Psychiatry 2020 11 429 10.3389/fpsyt.2020.00429 32477195
    [Google Scholar]
  108. Sabir F. Katona G. Pallagi E. Dobó D.G. Akel H. Berkesi D. Kónya Z. Csóka I. Quality-by-design-based development of n-propyl-gallate-loaded hyaluronic-acid-coated liposomes for intranasal administration. Molecules 2021 26 5 1429 10.3390/molecules26051429 33800788
    [Google Scholar]
  109. Porfire A. Achim M. Barbalata C. Rus I. Tomuta I. Cristea C. Pharmaceutical development of liposomes using the QbD approach. Liposomes Adv. Perspect. 2019 2019 1 20 10.5772/intechopen.85374
    [Google Scholar]
  110. Woodcock J. The concept of pharmaceutical quality. Am. Pharm. Rev. 2004 7 6 10 15
    [Google Scholar]
  111. Awotwe-Otoo D. Agarabi C. Wu G.K. Casey E. Read E. Lute S. Brorson K.A. Khan M.A. Shah R.B. Quality by design: Impact of formulation variables and their interactions on quality attributes of a lyophilized monoclonal antibody. Int. J. Pharm. 2012 438 1-2 167 175 10.1016/j.ijpharm.2012.08.033 22944306
    [Google Scholar]
  112. Charoo N.A. Shamsher A.A.A. Zidan A.S. Rahman Z. Quality by design approach for formulation development: A case study of dispersible tablets. Int. J. Pharm. 2012 423 2 167 178 10.1016/j.ijpharm.2011.12.024 22209997
    [Google Scholar]
  113. Park S.J. Choo G.H. Hwang S.J. Kim M.S. Quality by design: Screening of critical variables and formulation optimization of Eudragit E nanoparticles containing dutasteride. Arch. Pharm. Res. 2013 36 5 593 601 10.1007/s12272‑013‑0064‑z 23446651
    [Google Scholar]
  114. Verma S. Lan Y. Gokhale R. Burgess D.J. Quality by design approach to understand the process of nanosuspension preparation. Int. J. Pharm. 2009 377 1-2 185 198 10.1016/j.ijpharm.2009.05.006 19446617
    [Google Scholar]
  115. Singh J. International conference on harmonization of technical requirements for registration of pharmaceuticals for human use. J. Pharmacol. Pharmacother. 2015 6 3 185 187 10.4103/0976‑500X.162004 26312010
    [Google Scholar]
  116. Li Z. Cho B.R. Melloy B.J. Quality by design studies on multi-response pharmaceutical formulation modeling and optimization. J. Pharm. Innov. 2013 8 1 28 44 10.1007/s12247‑012‑9145‑7
    [Google Scholar]
  117. Plackett R.L. Burman J.P. The design of optimum multifactorial experiments. Biometrika 1946 33 4 305 325 10.1093/biomet/33.4.305
    [Google Scholar]
  118. Zhang L Mao S Application of quality by design in the current drug development. Asian J. Pharm. Sci. 2017 12 1 1 8 10.1016/j.ajps.2016.07.006
    [Google Scholar]
  119. Box G.E. Wilson K.B. On the experimental attainment of optimum conditions. InBreakthroughs in statistics: Methodology and distribution. New York, NY Springer New York 1992 270 310 10.1007/978‑1‑4612‑4380‑9_23
    [Google Scholar]
  120. Collins A. Toward a design science of education. Berlin Heidelberg Springer 1992 10.1007/978‑3‑642‑77750‑9_2
    [Google Scholar]
  121. Rahman A.S. Effects of nanofibers on properties of geopolymer composites. Nanotechnology in Eco-efficient Construction. Cambridge Woodhead Publishing. 2019 123 140 10.1016/B978‑0‑08‑102641‑0.00006‑2
    [Google Scholar]
  122. Araújo J. Gonzalez-Mira E. Egea M.A. Garcia M.L. Souto E.B. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int. J. Pharm. 2010 393 1-2 168 176 10.1016/j.ijpharm.2010.03.034 20362042
    [Google Scholar]
  123. Yang Y. Multiple criteria third-order response surface design and comparison. 2008 Retrieved from
  124. Box GE Hunter WH Hunter S Statistics for experimenters. New York John Wiley and sons; 1978
    [Google Scholar]
  125. Araujo P.W. Brereton R.G. Experimental design III. Quantification. Trends Analyt. Chem. 1996 15 3 156 163 10.1016/0165‑9936(95)00086‑0
    [Google Scholar]
  126. Singh B Kumar R Ahuja N Optimizing drug delivery systems using systematic "design of experiments." Part I: Fundamental aspects. Crit. Rev. Ther. Drug Carrier Syst. 2005 22 1 27 105 10.1615/CritRevTherDrugCarrierSyst.v22.i1.20
    [Google Scholar]
  127. Pinto J.F. Podczeck F. Newton J.M. Investigations of tablets prepared from pellets produced by extrusion and spheronisation. II. Modelling the properties of the tablets produced using regression analysis. Int. J. Pharm. 1997 152 1 7 16 10.1016/S0378‑5173(97)04880‑1
    [Google Scholar]
  128. Chatchawalsaisin J. Podczeck F. Newton J.M. The influence of chitosan and sodium alginate and formulation variables on the formation and drug release from pellets prepared by extrusion/spheronisation. Int. J. Pharm. 2004 275 1-2 41 60 10.1016/j.ijpharm.2004.01.025 15081137
    [Google Scholar]
  129. M P.J.F. G L.C.M. PINILLOS JF LOPERA CM. A pharmaceutical formulation development using a experimental mixture design. Vitae 2009 16 3 338 353 10.17533/udea.vitae.2804
    [Google Scholar]
  130. Scheffé H. Experiments with Mixtures. J. R. Stat. Soc. Series B Stat. Methodol. 1958 20 2 344 360 10.1111/j.2517‑6161.1958.tb00299.x
    [Google Scholar]
  131. Lewis G.A. Non classical experimental designs in pharmaceutical formulation. Drug Dev. Ind. Pharm. 1991 17 12 1551 1570 10.3109/03639049109057308
    [Google Scholar]
  132. Wehrlé P. Palmieri G.F. Stamm A. The Taguchi’s performance statistic to optimize theophylline beads production in a high-speed granulator. Drug Dev. Ind. Pharm. 1994 20 18 2823 2843 10.3109/03639049409042683
    [Google Scholar]
  133. Chariot M. Lewis G.A. Mathieu D. Phan-tan-luu R. Stevens H.N.E. Experimental design for pharmaceutical process characterisation and optimisation using an exchange algorithm. Drug Dev. Ind. Pharm. 1988 14 15-17 2535 2556 10.3109/03639048809152031
    [Google Scholar]
  134. Nielloud F. Mestres J.P. Fortuné R. Draussin S. Marti-Mestres G. Formulation of oil‐in‐water submicron emulsions in the dermatological field using experimental design. Polym. Int. 2003 52 4 610 613 10.1002/pi.1100
    [Google Scholar]
  135. Rechtschaffner R.L. Saturated fractions of 2 n and 3 n factorial designs. Technometrics 1967 9 4 569 575 10.2307/1266195
    [Google Scholar]
  136. Nayak A. Laha B. Sen K. Development of hydroxyapatite-ciprofloxacin bone-implants using »Quality by design«. Acta Pharm. 2011 61 1 25 36 10.2478/v10007‑011‑0002‑x 21406341
    [Google Scholar]
  137. Grangeia H.B. Silva C. Simões S.P. Reis M.S. Quality by design in pharmaceutical manufacturing: A systematic review of current status, challenges and future perspectives. Eur. J. Pharm. Biopharm. 2020 147 19 37 10.1016/j.ejpb.2019.12.007 31862299
    [Google Scholar]
  138. Garg N.K. Sharma G. Singh B. Nirbhavane P. Tyagi R.K. Shukla R. Katare O.P. Quality by Design (QbD)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): An improved dermatokinetic profile for inflammatory disorder(s). Int. J. Pharm. 2017 517 1-2 413 431 10.1016/j.ijpharm.2016.12.010 27956192
    [Google Scholar]
  139. Maltesen M.J. Bjerregaard S. Hovgaard L. Havelund S. Weert d.v.M. Quality by design – Spray drying of insulin intended for inhalation. Eur. J. Pharm. Biopharm. 2008 70 3 828 838 10.1016/j.ejpb.2008.07.015 18755270
    [Google Scholar]
  140. Mishra V. Thakur S. Patil A. Shukla A. Quality by design (QbD) approaches in current pharmaceutical set-up. Expert Opin. Drug Deliv. 2018 15 8 737 758 10.1080/17425247.2018.1504768 30044646
    [Google Scholar]
  141. Katona G. Balogh G.T. Dargó G. Gáspár R. Márki Á. Ducza E. Sztojkov-Ivanov A. Tömösi F. Kecskeméti G. Janáky T. Kiss T. Ambrus R. Pallagi E. Szabó-Révész P. Csóka I. Development of meloxicam-human serum albumin nanoparticles for nose-to-brain delivery via application of a quality by design approach. Pharmaceutics 2020 12 2 97 10.3390/pharmaceutics12020097 31991767
    [Google Scholar]
  142. European commission detailed commission guidelines on good manufacturing practice for investigational medicinal products for human use pursuant to the second subparagraph of article. OJEU 2017 63 1 16
    [Google Scholar]
  143. Pielenhofer J. Meiser S.L. Gogoll K. Ciciliani A.M. Denny M. Klak M. Lang B.M. Staubach P. Grabbe S. Schild H. Radsak M.P. Spahn-Langguth H. Langguth P. Quality by design (QbD) approach for a Nanoparticulate Imiquimod formulation as an investigational medicinal product. Pharmaceutics 2023 15 2 514 10.3390/pharmaceutics15020514 36839835
    [Google Scholar]
  144. Yu L.X. Amidon G. Khan M.A. Hoag S.W. Polli J. Raju G.K. Woodcock J. Understanding pharmaceutical quality by design. AAPS J. 2014 16 4 771 783 10.1208/s12248‑014‑9598‑3 24854893
    [Google Scholar]
  145. Guideline I.C.H.H.T. Step Committee for Human Medicinal Products. ICH Guidel. Q9 Qual. Risk Manage. 2015 4 408
    [Google Scholar]
  146. Guideline I.C.H.H.T. ICHHT Guideline. International Conference on Harmonisation of Technical Requirements for Pharmaceuticals for Human Use Pharmaceutical Quality System Q10. ICH Harmon. Tripart. Guidel. 2008, vol. 4, pp. 1–23.
    [Google Scholar]
  147. Gulsun T. Cayli A.Y. Izat N. Cetin M. Oner L. Sahin S. Development and evaluation of terbutaline sulfate orally disintegrating tablets by direct compression and freeze drying methods. J. Drug Deliv. Sci. Technol. 2018 46 251 258 10.1016/j.jddst.2018.05.014
    [Google Scholar]
  148. Abdelbary A.A. AbouGhaly M.H.H. Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: Application of Box–Behnken design, in-vitro evaluation and in-vivo skin deposition study. Int. J. Pharm. 2015 485 1-2 235 243 10.1016/j.ijpharm.2015.03.020 25773359
    [Google Scholar]
  149. Goyal G. Garg T. Malik B. Chauhan G. Rath G. Goyal A.K. Development and characterization of niosomal gel for topical delivery of benzoyl peroxide. Drug Deliv. 2015 22 8 1027 1042 10.3109/10717544.2013.855277 24251352
    [Google Scholar]
  150. Buckingham J. Glen R.C. Hill A.P. Hyde R.M. Martin G.R. Robertson A.D. Salmon J.A. Woollard P.M. Computer-aided design and synthesis of 5-substituted tryptamines and their pharmacology at the 5-HT1D receptor: Discovery of compounds with potential anti-migraine properties. J. Med. Chem. 1995 38 18 3566 3580 10.1021/jm00018a016 7658443
    [Google Scholar]
  151. Abdelbary G.A. Tadros M.I. Brain targeting of olanzapine via intranasal delivery of core–shell difunctional block copolymer mixed nanomicellar carriers: In vitro characterization, ex vivo estimation of nasal toxicity and in vivo biodistribution studies. Int. J. Pharm. 2013 452 1-2 300 310 10.1016/j.ijpharm.2013.04.084 23684658
    [Google Scholar]
  152. Waghmare S. Patil A. Patil P. Novasome: Advance in liposome and niosome. Pharma Innov. 2016 5 5, Part A 34
    [Google Scholar]
  153. Németh Z. Csóka I. Jazani S.R. Sipos B. Haspel H. Kozma G. Kónya Z. Dobó D.G. Quality by design-driven zeta potential optimisation study of liposomes with charge imparting membrane additives. Pharmaceutics 2022 14 9 1798 10.3390/pharmaceutics14091798 36145546
    [Google Scholar]
  154. Bhattacharyya S. Sogali B.S. Application of statistical design to assess the critical process parameters of ethanol injection method for the preparation of liposomes. Dhaka Univer. J. Pharma. Sci. 2019 18 1 103 111 10.3329/dujps.v18i1.41897
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018367563250318083438
Loading
/content/journals/cdd/10.2174/0115672018367563250318083438
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test