Skip to content
2000
image of Precision Drug Delivery to the Liver: A Nanoparticle Approach

Abstract

The global burden of Chronic Liver Diseases (CLDs) is escalating, with increasing prevalence and mortality. Various conditions ranging from fibrosis, cirrhosis, and hepatocellular carcinoma are associated with conditions such as toxin accumulation, viral infections, and metabolic derangements. In this already difficult context, the emergence of metabolic dysfunction-associated steatotic liver disease and steatohepatitis complicated the picture even further. While there has been much advancement in medical research, there is currently no standard cure; hence, the best treatment options are limited, providing a rising need for new therapeutic approaches. Nanoparticle drug delivery systems represent a promising avenue, providing targeted delivery and enhanced therapeutic effectiveness. Nanosystems can protect therapeutic agents from degradation, evade rapid clearance mechanisms, and target drugs directly to a specific hepatic cell type. However, the complex architecture of the liver presents challenges for these therapies, including the need to precisely target individual cells and retain the stability of nanoparticles within the hepatic microenvironment. This review presents recent advances in nanoparticle and targeted ligands-based technologies. These technologies help to navigate barriers associated with similar therapies. As these challenges are addressed, nanotechnological advancements could potentially lead to a major revolution in the treatment of CLDs, paving the way for improved management strategies and providing new hope for affected individuals worldwide.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018350438250311045745
2025-04-03
2025-09-09
Loading full text...

Full text loading...

References

  1. Cheemerla S. Balakrishnan M. Global epidemiology of chronic liver disease. Clin. Liver Dis. 2021 17 5 365 370 10.1002/cld.1061 34136143
    [Google Scholar]
  2. Moon A.M. Singal A.G. Tapper E.B. Contemporary epidemiology of chronic liver disease and cirrhosis. Clin. Gastroenterol. Hepatol. 2020 18 12 2650 2666 10.1016/j.cgh.2019.07.060 31401364
    [Google Scholar]
  3. Eskridge W. Cryer D.R. Schattenberg J.M. Gastaldelli A. Malhi H. Allen A.M. Noureddin M. Sanyal A.J. Metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis: The patient and physician perspective. J. Clin. Med. 2023 12 19 6216 10.3390/jcm12196216 37834859
    [Google Scholar]
  4. Xue R. Meng Q. The management of glucocorticoid therapy in liver failure. Front. Immunol. 2019 10 2490 10.3389/fimmu.2019.02490
    [Google Scholar]
  5. Singeap A.M. Minea H. Petrea O. Robea M.A. Balmuș I.M. Duta R. Ilie O.D. Cimpoesu C.D. Stanciu C. Trifan A. Real-world utilization of corticosteroids in severe alcoholic hepatitis: Eligibility, response, and outcomes. Medicina 2024 60 2 311 10.3390/medicina60020311 38399598
    [Google Scholar]
  6. Assimakopoulos S.F. Thomopoulos K.C. Labropoulou-Karatza C. Pentoxifylline: A first line treatment option for severe alcoholic hepatitis and hepatorenal syndrome? World J. Gastroenterol. 2009 15 25 3194 3195 10.3748/wjg.15.3194 19575503
    [Google Scholar]
  7. Caballeria J. Is there a role for pentoxifylline in the treatment of alcoholic hepatitis?. Gastroenterol. Hepatol. 2016 39 8 560 565 10.1016/j.gastrohep.2015.10.004 26589540
    [Google Scholar]
  8. Minaiyan M. Mazraati P. Hepatoprotective effect of metadoxine on acetaminophen-induced liver toxicity in mice. Adv. Biomed. Res. 2018 7 1 67 10.4103/abr.abr_142_17 29862216
    [Google Scholar]
  9. Vuittonet C.L. Halse M. Leggio L. Fricchione S.B. Brickley M. Haass-Koffler C.L. Tavares T. Swift R.M. Kenna G.A. Pharmacotherapy for alcoholic patients with alcoholic liver disease. Am. J. Health Syst. Pharm. 2014 71 15 1265 1276 10.2146/ajhp140028 25027533
    [Google Scholar]
  10. Yan J. Nie Y. Luo M. Chen Z. He B. Natural compounds: A potential treatment for alcoholic liver disease? Front. Pharmacol. 2021 12 694475 10.3389/fphar.2021.694475 34290612
    [Google Scholar]
  11. Gu L. Zhang F. Wu J. Zhuge Y. Nanotechnology in drug delivery for liver fibrosis. Front. Mol. Biosci. 2022 8 804396 10.3389/fmolb.2021.804396 35087870
    [Google Scholar]
  12. Pradhan M. Alexander A. Ajazuddin Development and validation of a robust RP-HPLC method for analysis of calcipotriol in pharmaceutical dosage form. Res J Pharm Technol. 2019 12 2 579 583 10.5958/0974‑360X.2019.00103.3
    [Google Scholar]
  13. Yadav K. Singh D. Singh M.R. Pradhan M. Multifaceted targeting of cationic liposomes via co-delivery of anti-IL-17 siRNA and corticosteroid for topical treatment of psoriasis. Med. Hypotheses 2020 145 110322 10.1016/j.mehy.2020.110322 33086162
    [Google Scholar]
  14. Singh D. Pradhan M. Nag M. Singh M.R. Vesicular system: Versatile carrier for transdermal delivery of bioactives. Artif. Cells Nanomed. Biotechnol. 2015 43 4 282 290 10.3109/21691401.2014.883401 24564350
    [Google Scholar]
  15. Yadav K. Pradhan M. Singh D. Singh M.R. Targeting autoimmune disorders through metal nanoformulation in overcoming the fences of conventional treatment approaches. Translational Autoimmunity. Chapter 16 Rezaei N. Academic Press 2022 361 393 10.1016/B978‑0‑12‑824390‑9.00017‑7
    [Google Scholar]
  16. Ezhilarasan D. Advantages and challenges in nanomedicines for chronic liver diseases: A hepatologist’s perspectives. Eur. J. Pharmacol. 2021 893 173832 10.1016/j.ejphar.2020.173832 33359144
    [Google Scholar]
  17. Yadav R. Pradhan M. Yadav K. Mahalvar A. Yadav H. Present scenarios and future prospects of herbal nanomedicine for antifungal therapy. J. Drug Deliv. Sci. Technol. 2022 74 103430 10.1016/j.jddst.2022.103430 35582019
    [Google Scholar]
  18. Pradhan M. Parihar A.K. Singh D. Singh M.R. Quality by design and formulation optimization using statistical tools for safe and efficient bioactive loading. Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents Chapter 19 Chauhan A. Academic Press 2020 555 594 10.1016/B978‑0‑12‑819666‑3.00019‑5
    [Google Scholar]
  19. Ezike T.C. Okpala U.S. Onoja U.L. Nwike C.P. Ezeako E.C. Okpara O.J. Okoroafor C.C. Eze S.C. Kalu O.L. Odoh E.C. Nwadike U.G. Ogbodo J.O. Umeh B.U. Ossai E.C. Nwanguma B.C. Advances in drug delivery systems, challenges and future directions. Heliyon 2023 9 6 e17488 10.1016/j.heliyon.2023.e17488 37416680
    [Google Scholar]
  20. Singh S. Sharma N. Shukla S. Behl T. Gupta S. Anwer M.K. Vargas-De-La-Cruz C. Bungau S.G. Brisc C. Understanding the potential role of nanotechnology in liver fibrosis: A paradigm in therapeutics. Molecules 2023 28 6 2811 10.3390/molecules28062811 36985782
    [Google Scholar]
  21. Acharya P. Chouhan K. Weiskirchen S. Weiskirchen R. Cellular mechanisms of liver fibrosis. Front. Pharmacol. 2021 12 671640 10.3389/fphar.2021.671640 34025430
    [Google Scholar]
  22. De Muynck K. Vanderborght B. Van Vlierberghe H. Devisscher L. The gut–liver axis in chronic liver disease: A macrophage perspective. Cells 2021 10 11 2959 10.3390/cells10112959 34831182
    [Google Scholar]
  23. Kessoku T. Kobayashi T. Tanaka K. Yamamoto A. Takahashi K. Iwaki M. Ozaki A. Kasai Y. Nogami A. Honda Y. Ogawa Y. Kato S. Imajo K. Higurashi T. Hosono K. Yoneda M. Usuda H. Wada K. Saito S. Nakajima A. The role of leaky gut in nonalcoholic fatty liver disease: A novel therapeutic target. Int. J. Mol. Sci. 2021 22 15 8161 10.3390/ijms22158161 34360923
    [Google Scholar]
  24. Roohani S. Tacke F. Liver injury and the macrophage issue: Molecular and mechanistic facts and their clinical relevance. Int. J. Mol. Sci. 2021 22 14 7249 10.3390/ijms22147249 34298870
    [Google Scholar]
  25. Bourebaba N. Marycz K. Hepatic stellate cells role in the course of metabolic disorders development – A molecular overview. Pharmacol. Res. 2021 170 105739 10.1016/j.phrs.2021.105739 34171492
    [Google Scholar]
  26. Kamm D.R. McCommis K.S. Hepatic stellate cells in physiology and pathology. J. Physiol. 2022 600 8 1825 1837 10.1113/JP281061 35307840
    [Google Scholar]
  27. Wilkinson A.L. Qurashi M. Shetty S. The role of sinusoidal endothelial cells in the axis of inflammation and cancer within the liver. Front. Physiol. 2020 11 990 10.3389/fphys.2020.00990 32982772
    [Google Scholar]
  28. Singh M.R. Yadav K. Chaurasiya N.D. Singh D. Immune system and mechanism of immunomodulation. Plants and Phytomolecules for Immunomodulation: Recent Trends and Advances. Sangwan N.S. Farag M.A. Modolo L.V. Springer Nature Singapore Singapore 2022 1 31 10.1007/978‑981‑16‑8117‑2_1
    [Google Scholar]
  29. Lau A.H. Thomson A.W. Dendritic cells and immune regulation in the liver. Gut 2003 52 2 307 314 10.1136/gut.52.2.307 12524419
    [Google Scholar]
  30. Lurje I. Hammerich L. Tacke F. Dendritic cell and T cell crosstalk in liver fibrogenesis and hepatocarcinogenesis: Implications for prevention and therapy of liver cancer. Int. J. Mol. Sci. 2020 21 19 7378 10.3390/ijms21197378 33036244
    [Google Scholar]
  31. Nguyen-Lefebvre A.T. Horuzsko A. Kupffer cell metabolism and function. J. Enzymol. Metab. 2015 1
    [Google Scholar]
  32. Singh S.K. Dwivedi S.D. Yadav K. Shah K. Chauhan N.S. Pradhan M. Singh M.R. Singh D. Novel biotherapeutics targeting biomolecular and cellular approaches in diabetic wound healing. Biomedicines 2023 11 2 613 10.3390/biomedicines11020613 36831151
    [Google Scholar]
  33. Tiwari P. Shukla R.P. Yadav K. Panwar D. Agarwal N. Kumar A. Singh N. Bakshi A.K. Marwaha D. Gautam S. Rai N. Mishra P.R. Exploring nanocarriers as innovative materials for advanced drug delivery strategies in onco-immunotherapies. J. Mol. Graph. Model. 2024 128 108702 10.1016/j.jmgm.2024.108702 38219505
    [Google Scholar]
  34. Yadav H. Mahalvar A. Pradhan M. Yadav K. Kumar Sahu K. Yadav R. Exploring the potential of phytochemicals and nanomaterial: A boon to antimicrobial treatment. Med. Drug Discov. 2023 17 100151 10.1016/j.medidd.2023.100151
    [Google Scholar]
  35. Sahu K. Minz S. Pradhan M. Kaurav M. Yadav K. Antiviral nanomaterials as potential targets for malaria prevention and treatment. Viral and Antiviral Nanomaterials. 1st ed CRC Press 2022 401 424 10.1201/9781003136644‑21
    [Google Scholar]
  36. Yadav K. Singh D. Singh M.R. Minz S. Sahu K.K. Kaurav M. Pradhan M. Dermal nanomedicine: Uncovering the ability of nucleic acid to alleviate autoimmune and other related skin disorders. J. Drug Deliv. Sci. Technol. 2022 73 103437 10.1016/j.jddst.2022.103437
    [Google Scholar]
  37. Sahu K.K. Kaurav M. Bhatt P. Minz S. Pradhan M. Khan J. Sahu R.K. Yadav K. 5 - Utility of nanomaterials in wound management. Nanotechnological Aspects for Next-Generation Wound Management. Solanki P.R. Kumar A. Pratap Singh R. Singh J. Singh K.R.B. Academic Press 2024 101 130 10.1016/B978‑0‑323‑99165‑0.00006‑X
    [Google Scholar]
  38. Mitchell M.J. Billingsley M.M. Haley R.M. Wechsler M.E. Peppas N.A. Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021 20 2 101 124 10.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  39. Bodaghi A. Fattahi N. Ramazani A. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon 2023 9 2 e13323 10.1016/j.heliyon.2023.e13323 36744065
    [Google Scholar]
  40. Hora S. Wuestefeld T. Liver injury and regeneration: Current understanding, new approaches, and future perspectives. Cells 2023 12 17 2129 10.3390/cells12172129 37681858
    [Google Scholar]
  41. Xu J.H. Yu Y.Y. Xu X.Y. Management of chronic liver diseases and cirrhosis: Current status and future directions. Chin. Med. J. 2020 133 22 2647 2649 10.1097/CM9.0000000000001084 32925282
    [Google Scholar]
  42. Sandireddy R. Sakthivel S. Gupta P. Behari J. Tripathi M. Singh B.K. Systemic impacts of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) on heart, muscle, and kidney related diseases. Front. Cell Dev. Biol. 2024 12 1433857 10.3389/fcell.2024.1433857 39086662
    [Google Scholar]
  43. Chávez-López L.M. Carballo-López G.I. A comprehensive framework for managing metabolic dysfunction-associated steatotic liver disease: Analyzing novel risk factors and advances in nanotechnology-based treatments and diagnosis. RSC Med Chem 2024 10.1039/D4MD00420E
    [Google Scholar]
  44. Wang Y. Lai R. Zong P. Xu Q. Shang J. Zhang X. Zhong W. Tang J. Han X. Chen C. Mao Y. Bicyclol for the treatment of drug-induced liver injury: A propensity score matching analysis using a nationwide inpatient database. J. Int. Med. Res. 2021 49 4 03000605211005945 10.1177/03000605211005945 33853430
    [Google Scholar]
  45. Khoo T. Lam D. Olynyk J.K. Impact of modern antiviral therapy of chronic hepatitis B and C on clinical outcomes of liver disease. World J. Gastroenterol. 2021 27 29 4831 4845 10.3748/wjg.v27.i29.4831 34447229
    [Google Scholar]
  46. Rasheed Z. Superoxide dismutase: Challenges, opportunities, and promises for clinical translation. Int. J. Health Sci. 2024 18 3 1 3 38721138
    [Google Scholar]
  47. Praharaj D.L. Anand A.C. Acharya S.K. Dosage of N-acetyl cysteine in acute liver failure not related to acetaminophen. J. Clin. Exp. Hepatol. 2022 12 2 726 728 10.1016/j.jceh.2022.01.002 35535093
    [Google Scholar]
  48. Li X. Zhou J. Chen S. Guan M. Wang Y. Zhao L. Ying H. Zhou Y. Role of bicyclol in preventing chemotherapeutic agent-induced liver injury in patients over 60 years of age with cancer. J. Int. Med. Res. 2014 42 4 906 914 10.1177/0300060514527058 24903556
    [Google Scholar]
  49. Wen H. Deng H. Yang L. Li L. Lin J. Zheng P. Bjelakovic M. Ji G. Vitamin E for people with non-alcoholic fatty liver disease. Cochrane Libr. 2024 2024 10 CD015033 10.1002/14651858.CD015033.pub2 39412049
    [Google Scholar]
  50. Mehedint M.G. Zeisel S.H. Choline’s role in maintaining liver function: New evidence for epigenetic mechanisms. Curr. Opin. Clin. Nutr. Metab. Care 2013 16 3 339 345 10.1097/MCO.0b013e3283600d46 23493015
    [Google Scholar]
  51. Kim D.J. Yoon S. Ji S.C. Yang J. Kim Y.K. Lee S. Yu K.S. Jang I.J. Chung J.Y. Cho J.Y. Ursodeoxycholic acid improves liver function via phenylalanine/tyrosine pathway and microbiome remodelling in patients with liver dysfunction. Sci. Rep. 2018 8 1 11874 10.1038/s41598‑018‑30349‑1 30089798
    [Google Scholar]
  52. Licata A. Minissale M.G. Stankevičiūtė S. Sanabria-Cabrera J. Lucena M.I. Andrade R.J. Almasio P.L. N-acetylcysteine for preventing acetaminophen-induced liver injury: A comprehensive review. Front. Pharmacol. 2022 13 828565 10.3389/fphar.2022.828565 36034775
    [Google Scholar]
  53. Langen M.L. Madsen K. Pre- and probiotics in liver health and function. Bioactive Foods in Promoting Health Probiotics and Prebiotics. Chapter 7 Preedy H. Boston Academic Press 2010 97 116 10.1016/B978‑0‑12‑374938‑3.00007‑4
    [Google Scholar]
  54. Perazza F. Leoni L. Colosimo S. Musio A. Bocedi G. D’Avino M. Agnelli G. Nicastri A. Rossetti C. Sacilotto F. Marchesini G. Petroni M.L. Ravaioli F. Metformin and the liver: Unlocking the full therapeutic potential. Metabolites 2024 14 4 186 10.3390/metabo14040186 38668314
    [Google Scholar]
  55. Spooner M.H. Jump D.B. Omega-3 fatty acids and nonalcoholic fatty liver disease in adults and children. Curr. Opin. Clin. Nutr. Metab. Care 2019 22 2 103 110 10.1097/MCO.0000000000000539 30601174
    [Google Scholar]
  56. Wang C. Ma C. Gong L. Dai S. Li Y. Preventive and therapeutic role of betaine in liver disease: A review on molecular mechanisms. Eur. J. Pharmacol. 2021 912 174604 10.1016/j.ejphar.2021.174604 34743980
    [Google Scholar]
  57. Pradhan M. Srivastava S. Singh D. Saraf S. Saraf S. Singh M.R. Perspectives of lipid-based drug carrier systems for transdermal delivery. Crit. Rev. Ther. Drug Carrier Syst. 2018 35 4 331 367 10.1615/CritRevTherDrugCarrierSyst.2018020856 29972681
    [Google Scholar]
  58. Melgert B.N. Olinga P. Van Der Laan J.M.S. Weert B. Cho J. Schuppan D. Groothuis G.M.M. Meijer D.K.F. Poelstra K. Targeting dexamethasone to Kupffer cells: Effects on liver inflammation and fibrosis in rats. Hepatology 2001 34 4 719 728 10.1053/jhep.2001.27805 11584368
    [Google Scholar]
  59. Yu X. Chen L. Liu J. Dai B. Xu G. Shen G. Luo Q. Zhang Z. Immune modulation of liver sinusoidal endothelial cells by melittin nanoparticles suppresses liver metastasis. Nat. Commun. 2019 10 1 574 10.1038/s41467‑019‑08538‑x 30718511
    [Google Scholar]
  60. Shetty S. Lalor P.F. Adams D.H. Liver sinusoidal endothelial cells — gatekeepers of hepatic immunity. Nat. Rev. Gastroenterol. Hepatol. 2018 15 9 555 567 10.1038/s41575‑018‑0020‑y 29844586
    [Google Scholar]
  61. Lee A.R. Nam K. Lee B.J. Lee S.W. Baek S.M. Bang J.S. Choi S.K. Park S.J. Kim T.H. Jeong K.S. Lee D.Y. Park J.K. Hepatic cellular distribution of silica nanoparticles by surface energy modification. Int. J. Mol. Sci. 2019 20 15 3812 10.3390/ijms20153812 31387201
    [Google Scholar]
  62. Ma H. Dallas A. Ilves H. Shorenstein J. MacLachlan I. Klumpp K. Johnston B.H. Formulated minimal-length synthetic small hairpin RNAs are potent inhibitors of hepatitis C virus in mice with humanized livers. Gastroenterology 2014 146 63 66 10.1053/j.gastro.2013.09.049
    [Google Scholar]
  63. D’Souza A.A. Devarajan P.V. Asialoglycoprotein receptor mediated hepatocyte targeting — Strategies and applications. J. Control. Release 2015 203 126 139 10.1016/j.jconrel.2015.02.022 25701309
    [Google Scholar]
  64. Poisson J. Lemoinne S. Boulanger C. Durand F. Moreau R. Valla D. Rautou P.E. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J. Hepatol. 2017 66 1 212 227 10.1016/j.jhep.2016.07.009 27423426
    [Google Scholar]
  65. Beljaars L. Molema G. Weert B. Bonnema H. Olinga P. Groothuis G.M. Meijer D.K. Poelstra K. Albumin modified with mannose 6-phosphate: A potential carrier for selective delivery of antifibrotic drugs to rat and human hepatic stellate cells. Hepatology 1999 29 5 1486 1493 10.1002/hep.510290526 10216133
    [Google Scholar]
  66. Roehlen N. Crouchet E. Baumert T.F. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells 2020 9 4 875 10.3390/cells9040875 32260126
    [Google Scholar]
  67. Azzam M. El Safy S. Abdelgelil S.A. Weiskirchen R. Asimakopoulou A. de Lorenzi F. Lammers T. Mansour S. Tammam S. Targeting activated hepatic stellate cells using collagen-binding chitosan nanoparticles for siRNA delivery to fibrotic livers. Pharmaceutics 2020 12 6 590 10.3390/pharmaceutics12060590 32630415
    [Google Scholar]
  68. Kaźmierczak Z. Szostak-Paluch K. Przybyło M. Langner M. Witkiewicz W. Jędruchniewicz N. Dąbrowska K. Endocytosis in cellular uptake of drug delivery vectors: Molecular aspects in drug development. Bioorg. Med. Chem. 2020 28 18 115556 10.1016/j.bmc.2020.115556 32828419
    [Google Scholar]
  69. Hashim M. Mujahid H. Hassan S. Bukhari S. Anjum I. Hano C. Abbasi B.H. Anjum S. Implication of nanoparticles to combat chronic liver and kidney diseases: Progress and perspectives. Biomolecules 2022 12 10 1337 10.3390/biom12101337 36291548
    [Google Scholar]
  70. Meister P. Dechêne A. Büchter M. Kälsch J. Gerken G. Canbay A. Jochum C. Spleen stiffness differentiates between acute and chronic liver damage and predicts hepatic decompensation. J. Clin. Gastroenterol. 2019 53 6 457 463 10.1097/MCG.0000000000001044 29738353
    [Google Scholar]
  71. Pradhan M. Singh D. Murthy S.N. Singh M.R. Design, characterization and skin permeating potential of Fluocinolone acetonide loaded nanostructured lipid carriers for topical treatment of psoriasis. Steroids 2015 101 56 63 10.1016/j.steroids.2015.05.012 26049018
    [Google Scholar]
  72. Sahu K.K. Pradhan M. Singh D. Singh M.R. Yadav K. Non-viral nucleic acid delivery approach: A boon for state-of-the-art gene delivery. J. Drug Deliv. Sci. Technol. 2023 80 104152 10.1016/j.jddst.2023.104152
    [Google Scholar]
  73. Singh D. Srivastava S. Pradhan M. Kanwar J.R. Singh M.R. Inflammatory bowel disease: Pathogenesis, causative factors, issues, drug treatment strategies, and delivery approaches. Crit. Rev. Ther. Drug Carrier Syst. 2015 32 3 181 214 10.1615/CritRevTherDrugCarrierSyst.2015011095 26080808
    [Google Scholar]
  74. Rawat Singh M. Singh D. Sahu K.K. Pradhan M. Yadav K. A method of preparation of Triamcinolone Acetonide encapsulated nanostructured lipid carriers for psoriasis treatment. Patent AU2021106678A4, 2021
  75. Yusuf A. Almotairy A.R.Z. Henidi H. Alshehri O.Y. Aldughaim M.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers 2023 15 7 1596 10.3390/polym15071596 37050210
    [Google Scholar]
  76. Singh D. Pradhan M. Shrivastava S. Murthy S.N. Singh M.R. Chapter 11 - Skin autoimmune disorders: Lipid biopolymers and colloidal delivery systems for topical delivery. Nanobiomaterials in Galenic Formulations and Cosmetics Applications of Nanobiomaterials. William Andrew Publishing 2016 10 257 296 10.1016/B978‑0‑323‑42868‑2.00011‑5
    [Google Scholar]
  77. Yadav K. Singh D. Singh M.R. Protein biomarker for psoriasis: A systematic review on their role in the pathomechanism, diagnosis, potential targets and treatment of psoriasis. Int. J. Biol. Macromol. 2018 118 Pt B 1796 1810 10.1016/j.ijbiomac.2018.07.021 30017989
    [Google Scholar]
  78. Yadav K. Soni A. Singh D. Singh M.R. Polymers in topical delivery of anti-psoriatic medications and other topical agents in overcoming the barriers of conventional treatment strategies. Prog. Biomater. 2021 10 1 1 17 10.1007/s40204‑021‑00154‑7 33738750
    [Google Scholar]
  79. Poilil Surendran S. George Thomas R. Moon M.J. Jeong Y.Y. Nanoparticles for the treatment of liver fibrosis. Int. J. Nanomedicine 2017 12 6997 7006 10.2147/IJN.S145951 29033567
    [Google Scholar]
  80. Mahmoud K. Swidan S. El-Nabarawi M. Teaima M. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: A comprehensive review on targeting and recent advances. J. Nanobiotechnology 2022 20 1 109 10.1186/s12951‑022‑01309‑9 35248080
    [Google Scholar]
  81. Agrawal M. Saraf S. Pradhan M. Patel R.J. Singhvi G. Ajazuddin A. Alexander A. Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design. Biomed. Pharmacother. 2021 141 111919 10.1016/j.biopha.2021.111919 34328108
    [Google Scholar]
  82. Pradhan M. Alexander A. Singh M.R. Singh D. Saraf S. Saraf S. Yadav K. Ajazuddin Statistically optimized calcipotriol fused nanostructured lipid carriers for effectual topical treatment of psoriasis. J. Drug Deliv. Sci. Technol. 2021 61 102168 10.1016/j.jddst.2020.102168
    [Google Scholar]
  83. Agrawal M. Pradhan M. Singhvi G. Patel R. Ajazuddin A. Alexander A. Thermoresponsive in situ gel of curcumin loaded solid lipid nanoparticle: Design, optimization and in vitro characterization. J. Drug Deliv. Sci. Technol. 2022 71 103376 10.1016/j.jddst.2022.103376
    [Google Scholar]
  84. Yadav K. Singh D. Singh M.R. Pradhan M. Nano-constructs targeting the primary cellular energy source of cancer cells for modulating tumor progression. OpenNano 2022 8 100107 10.1016/j.onano.2022.100107
    [Google Scholar]
  85. Elzoheiry A. Ayad E. Omar N. Elbakry K. Hyder A. Anti-liver fibrosis activity of curcumin/chitosan-coated green silver nanoparticles. Sci. Rep. 2022 12 1 18403 10.1038/s41598‑022‑23276‑9 36319750
    [Google Scholar]
  86. Abdullah A.S. Sayed I.E.T.E. El-Torgoman A.M.A. Kalam A. Wageh S. Kamel M.A. Green synthesis of silymarin–chitosan nanoparticles as a new nano formulation with enhanced anti-fibrotic effects against liver fibrosis. Int. J. Mol. Sci. 2022 23 10 5420 10.3390/ijms23105420 35628233
    [Google Scholar]
  87. Yadav K. Sahu K.K. Sucheta S.P.E. Gnanakani S.P.E. Sure P. Vijayalakshmi R. Sundar V.D. Sharma V. Antil R. Jha M. Minz S. Bagchi A. Pradhan M. Biomedical applications of nanomaterials in the advancement of nucleic acid therapy: Mechanistic challenges, delivery strategies, and therapeutic applications. Int. J. Biol. Macromol. 2023 241 124582 10.1016/j.ijbiomac.2023.124582 37116843
    [Google Scholar]
  88. Nagori K. Nakhate K.T. Yadav K. Ajazuddin M. Pradhan M. Unlocking the therapeutic potential of medicinal plants for Alzheimer’s disease: Preclinical to clinical trial insights. Future Pharmacology 2023 3 4 877 907 10.3390/futurepharmacol3040053
    [Google Scholar]
  89. Pradhan M. Yadav K. Singh D. Singh M.R. Topical delivery of fluocinolone acetonide integrated NLCs and salicylic acid enriched gel: A potential and synergistic approach in the management of psoriasis. J. Drug Deliv. Sci. Technol. 2021 61 102282 10.1016/j.jddst.2020.102282
    [Google Scholar]
  90. Yadav K. Singh D. Singh M.R. Nanovesicles delivery approach for targeting steroid mediated mechanism of antipsoriatic therapeutics. J. Drug Deliv. Sci. Technol. 2021 65 102688 10.1016/j.jddst.2021.102688
    [Google Scholar]
  91. Yadav K. Singh D. Singh M.R. Development and characterization of corticosteroid loaded lipid carrier system for psoriasis. Res. J. Pharm. Technol. 2021 14 2 966 970 10.5958/0974‑360X.2021.00172.4
    [Google Scholar]
  92. Yadav K. Singh D. Singh M.R. Novel archetype in psoriasis management bridging molecular dynamics in exploring novel therapies. Eur. J. Pharmacol. 2021 907 174254 10.1016/j.ejphar.2021.174254 34118225
    [Google Scholar]
  93. Pradhan M. Alexander A. Singh M.R. Singh D. Saraf S. Saraf S. Ajazuddin Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomed. Pharmacother. 2018 107 447 463 10.1016/j.biopha.2018.07.156 30103117
    [Google Scholar]
  94. Mohanty A. Uthaman S. Park I.K. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy. Molecules 2020 25 19 4377 10.3390/molecules25194377 32977707
    [Google Scholar]
  95. Sabu C. Rejo C. Kotta S. Pramod K. Bioinspired and biomimetic systems for advanced drug and gene delivery. J. Control. Release 2018 287 142 155 10.1016/j.jconrel.2018.08.033 30165138
    [Google Scholar]
  96. Tiwari P. Yadav K. Shukla R.P. Gautam S. Marwaha D. Sharma M. Mishra P.R. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J. Control. Release 2023 363 290 348 https://doi.org/https://doi.org/10.1016/j.jconrel.2023.09.016 10.1016/j.jconrel.2023.09.016 37714434
    [Google Scholar]
  97. Tiwari P. Shukla R.P. Yadav K. Singh N. Marwaha D. Gautam S. Bakshi A.K. Rai N. Kumar A. Sharma D. Mishra P.R. Dacarbazine-primed carbon quantum dots coated with breast cancer cell-derived exosomes for improved breast cancer therapy. J. Control. Release 2024 365 43 59 10.1016/j.jconrel.2023.11.005 37935257
    [Google Scholar]
  98. Pradhan M. Singh D. Singh M.R. Development characterization and skin permeating potential of lipid based novel delivery system for topical treatment of psoriasis. Chem. Phys. Lipids 2015 186 9 16 10.1016/j.chemphyslip.2014.11.004 25447290
    [Google Scholar]
  99. Yadav K. Pradhan M. Singh D. Singh M.R. Macrophage-associated disorders: Pathophysiology, treatment challenges, and possible solutions. Macrophage Targeted Delivery Systems. Springer 2022 10.1007/978‑3‑030‑84164‑5_4
    [Google Scholar]
  100. Lee M.S. Kim N.W. Lee J.E. Kim M.G. Yin Y. Kim S.Y. Ko B.S. Kim A. Lee J.H. Lim S.Y. Lim D.W. Kim S.H. Park J.W. Lim Y.T. Jeong J.H. Targeted cellular delivery of robust enzyme nanoparticles for the treatment of drug-induced hepatotoxicity and liver injury. Acta Biomater. 2018 81 231 241 10.1016/j.actbio.2018.09.023 30240953
    [Google Scholar]
  101. Shinn J. Park S. Lee S. Park N. Kim S. Hwang S. Moon J.J. Kwon Y. Lee Y. Antioxidative hyaluronic acid–bilirubin nanomedicine targeting activated hepatic stellate cells for anti-hepatic-fibrosis therapy. ACS Nano 2024 18 6 4704 4716 10.1021/acsnano.3c06107 38288705
    [Google Scholar]
  102. Li Y. Pu S. Liu Q. Li R. Zhang J. Wu T. Chen L. Li H. Yang X. Zou M. Xiao J. Xie W. He J. An integrin-based nanoparticle that targets activated hepatic stellate cells and alleviates liver fibrosis. J. Control. Release 2019 303 77 90 10.1016/j.jconrel.2019.04.022 31004666
    [Google Scholar]
  103. Dhoke D.M. Basaiyye S.S. Khedekar P.B. Development and characterization of L-HSA conjugated PLGA nanoparticle for hepatocyte targeted delivery of antiviral drug. J. Drug Deliv. Sci. Technol. 2018 47 77 94 10.1016/j.jddst.2018.06.006
    [Google Scholar]
  104. Yu Z. Guo J. Liu Y. Wang M. Liu Z. Gao Y. Huang L. Nano delivery of simvastatin targets liver sinusoidal endothelial cells to remodel tumor microenvironment for hepatocellular carcinoma. J. Nanobiotechnology 2022 20 1 9 10.1186/s12951‑021‑01205‑8 34983554
    [Google Scholar]
  105. He X. Chang Z. Chen F. Zhang W. Sun M. Shi T. Liu J. Chen P. Zhang K. Guan S. Zhao Z. Li M. Dong W. Shao D. Yang C. Engineering a biomimetic system for hepatocyte-specific RNAi treatment of non-alcoholic fatty liver disease. Acta Biomater. 2024 174 281 296 10.1016/j.actbio.2023.10.038 37951519
    [Google Scholar]
  106. Hou Y.T. Wu K.C.W. Lee C.Y. Development of glycyrrhizin-conjugated, chitosan-coated, lysine-embedded mesoporous silica nanoparticles for hepatocyte-targeted liver tissue regeneration. Materialia 2020 9 100568 10.1016/j.mtla.2019.100568
    [Google Scholar]
  107. Tan Y. Wang Z. Guo R. Zhou X. Zhang W. Wu M. Guo C. Gao H. Sun X. Zhang Z. Gong T. Dual-targeting macrophages and hepatic stellate cells by modified albumin nanoparticles for liver cirrhosis treatment. ACS Appl. Mater. Interfaces 2024 16 9 11239 11250 10.1021/acsami.3c17670 38395769
    [Google Scholar]
  108. Fu J. Zhang P. Sun Z. Lu G. Cao Q. Chen Y. Wu W. Zhang J. Zhuang C. Sheng C. Xu J. Lu Y. Wang P. A combined nanotherapeutic approach targeting farnesoid X receptor, ferroptosis, and fibrosis for nonalcoholic steatohepatitis treatment. Acta Pharm. Sin. B 2024 14 5 2228 2246 10.1016/j.apsb.2024.02.017 38799646
    [Google Scholar]
  109. Li F. Zhao Y. Cheng Z. Wang Y. Yue Y. Cheng X. Sun J. Atabakhshi-Kashi M. Yao J. Dou J. Yu J. Zhang X. Qi Y. Li X. Qi X. Nie G. Restoration of sinusoid fenestrae followed by targeted nanoassembly delivery of an anti‐fibrotic agent improves treatment efficacy in liver fibrosis. Adv. Mater. 2023 35 17 2212206 10.1002/adma.202212206 36862807
    [Google Scholar]
  110. Pranatharthiharan S. Patel M.D. Malshe V.C. Pujari V. Gorakshakar A. Madkaikar M. Ghosh K. Devarajan P.V. Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma. Drug Deliv. 2017 24 1 20 29 10.1080/10717544.2016.1225856 28155331
    [Google Scholar]
  111. Wang H. Ellipilli S. Lee W.J. Li X. Vieweger M. Ho Y.S. Guo P. Multivalent rubber-like RNA nanoparticles for targeted co-delivery of paclitaxel and MiRNA to silence the drug efflux transporter and liver cancer drug resistance. J. Control. Release 2021 330 173 184 10.1016/j.jconrel.2020.12.007 33316298
    [Google Scholar]
  112. Zhang J. Shen H. Xu J. Liu L. Tan J. Li M. Xu N. Luo S. Wang J. Yang F. Tang J. Li Q. Wang Y. Yu L. Yan Z. Liver-targeted siRNA lipid nanoparticles treat hepatic cirrhosis by dual antifibrotic and anti-inflammatory activities. ACS Nano 2020 14 5 6305 6322 10.1021/acsnano.0c02633 32378877
    [Google Scholar]
  113. Colino C.I. Lanao J.M. Gutierrez-Millan C. Targeting of hepatic macrophages by therapeutic nanoparticles. Front. Immunol. 2020 11 218 10.3389/fimmu.2020.00218 32194546
    [Google Scholar]
  114. Sharma R. Porterfield J.E. An H.-T. Jimenez A.S. Lee S. Kannan S. Sharma A. Kannan R.M. Rationally designed galactose dendrimer for hepatocyte-specific targeting and intracellular drug delivery for the treatment of liver disorders. Biomacromolecules 2021 22 3574 3589 10.1021/acs.biomac.1c00649
    [Google Scholar]
  115. Unagolla J.M. Das S. Flanagan R. Oehler M. Menon J.U. Targeting chronic liver diseases: Molecular markers, drug delivery strategies and future perspectives. Int. J. Pharm. 2024 660 124381 10.1016/j.ijpharm.2024.124381 38917958
    [Google Scholar]
  116. Witzigmann D. Uhl P. Sieber S. Kaufman C. Einfalt T. Schöneweis K. Grossen P. Buck J. Ni Y. Schenk S.H. Hussner J. Meyer zu Schwabedissen H.E. Québatte G. Mier W. Urban S. Huwyler J. Optimization-by-design of hepatotropic lipid nanoparticles targeting the sodium-taurocholate cotransporting polypeptide. eLife 2019 8 e42276 10.7554/eLife.42276 31333191
    [Google Scholar]
  117. Wei X. Yang D. Xing Z. Cai J. Wang L. Zhao C. Wei X. Jiang M. Sun H. Zhou L. Fan Y. Nie H. Liu H. Hepatocyte-targeted delivery using oleanolic acid-loaded liposomes for enhanced hepatocellular carcinoma therapy. Biomater. Sci. 2023 11 11 3952 3964 10.1039/D3BM00261F 37102693
    [Google Scholar]
  118. Singh H. Kim S.J. Kang D.H. Kim H.R. Sharma A. Kim W.Y. Kang C. Kim J.S. Glycyrrhetinic acid as a hepatocyte targeting unit for an anticancer drug delivery system with enhanced cell type selectivity. Chem. Commun. 2018 54 87 12353 12356 10.1039/C8CC05175E 30324188
    [Google Scholar]
  119. Wen Y. Lambrecht J. Ju C. Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell. Mol. Immunol. 2021 18 1 45 56 10.1038/s41423‑020‑00558‑8 33041338
    [Google Scholar]
  120. Minayoshi Y. Maeda H. Yanagisawa H. Hamasaki K. Mizuta Y. Nishida K. Kinoshita R. Enoki Y. Imafuku T. Chuang V.T.G. Koga T. Fujiwara Y. Takeya M. Sonoda K. Wakayama T. Taguchi K. Ishima Y. Ishida T. Iwakiri Y. Tanaka M. Sasaki Y. Watanabe H. Otagiri M. Maruyama T. Development of Kupffer cell targeting type-I interferon for the treatment of hepatitis via inducing anti-inflammatory and immunomodulatory actions. Drug Deliv. 2018 25 1 1055 1065 10.1080/10717544.2018.1464083 29688069
    [Google Scholar]
  121. Maeda H. Ishima Y. Saruwatari J. Mizuta Y. Minayoshi Y. Ichimizu S. Yanagisawa H. Nagasaki T. Yasuda K. Oshiro S. Taura M. McConnell M.J. Oniki K. Sonoda K. Wakayama T. Kinoshita M. Shuto T. Kai H. Tanaka M. Sasaki Y. Iwakiri Y. Otagiri M. Watanabe H. Maruyama T. Nitric oxide facilitates the targeting Kupffer cells of a nano-antioxidant for the treatment of NASH. J. Control. Release 2022 341 457 474 10.1016/j.jconrel.2021.11.039 34856227
    [Google Scholar]
  122. Liu B. Nguyen P.L. Yu H. Li X. Wang H. Nguyen T.G.B. Sahoo P.K. Sur M. Reddy J. Sillman S. Kachman S.D. Altartouri B. Lu G. Natarajan S.K. Pattabiraman M. Yu J. Honey vesicle-like nanoparticles protect aged liver from non-alcoholic steatohepatitis. Acta Pharm. Sin. B 2024 14 8 3661 3679 10.1016/j.apsb.2024.05.002 39220874
    [Google Scholar]
  123. Hu J. Liu J. Yang D. Lu M. Yin J. Physiological roles of asialoglycoprotein receptors (ASGPRs) variants and recent advances in hepatic-targeted delivery of therapeutic molecules via ASGPRs. Protein Pept. Lett. 2014 21 10 1025 1030 10.2174/0929866521666140626102429 24975671
    [Google Scholar]
  124. Sato Y. Murase K. Kato J. Kobune M. Sato T. Kawano Y. Takimoto R. Takada K. Miyanishi K. Matsunaga T. Takayama T. Niitsu Y. Resolution of liver cirrhosis using vitamin A–coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol. 2008 26 4 431 442 10.1038/nbt1396 18376398
    [Google Scholar]
  125. Yadav K. Gnanakani S.P.E. Sahu K.K. Veni Chikkula C.K. Vaddi P.S. Srilakshmi S. Yadav R. Sucheta A. Dubey A. Minz S. Pradhan M. Nano revolution of DNA nanostructures redefining cancer therapeutics—A comprehensive review. Int. J. Biol. Macromol. 2024 274 Pt 1 133244 10.1016/j.ijbiomac.2024.133244 38901506
    [Google Scholar]
  126. Xuan J. Chen Y. Zhu L. Guo Y. Deng L. Zheng Y. Wang Z. Wang Z. Ao M. Ultrasound molecular imaging with cRGD-PLGA-PFOB nanoparticles for liver fibrosis staging in a rat model. Oncotarget 2017 8 65 108676 108691 10.18632/oncotarget.21358 29312560
    [Google Scholar]
  127. Li F. Sun J. Wang J. Du S. Lu W. Liu M. Xie C. Shi J. Effect of hepatocyte growth factor encapsulated in targeted liposomes on liver cirrhosis. J. Control. Release 2008 131 1 77 82 10.1016/j.jconrel.2008.07.021 18692530
    [Google Scholar]
  128. Maslak E. Gregorius A. Chlopicki S. Liver sinusoidal endothelial cells (LSECs) function and NAFLD; NO-based therapy targeted to the liver. Pharmacol. Rep. 2015 67 4 689 694 10.1016/j.pharep.2015.04.010 26321269
    [Google Scholar]
  129. Dilliard S.A. Siegwart D.J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 2023 8 4 282 300 10.1038/s41578‑022‑00529‑7 36691401
    [Google Scholar]
  130. Gil M. Khouri L. Raurell I. Rafael D. Andrade F. Abasolo I. Schwartz S. Jr Martínez-Gómez M. Salcedo M.T. Pericàs J.M. Hide D. Wei M. Metanis N. Genescà J. Martell M. Optimization of statin-loaded delivery nanoparticles for treating chronic liver diseases by targeting liver sinusoidal endothelial cells. Pharmaceutics 2023 15 10 2463 10.3390/pharmaceutics15102463 37896223
    [Google Scholar]
  131. Chakraborty S. Dlie Z.Y. Chakraborty S. Roy S. Mukherjee B. Besra S.E. Dewanjee S. Mukherjee A. Ojha P.K. Kumar V. Sen R. Aptamer-functionalized drug nanocarrier improves hepatocellular carcinoma toward normal by targeting neoplastic hepatocytes. Mol. Ther. Nucleic Acids 2020 20 34 49 10.1016/j.omtn.2020.01.034 32146417
    [Google Scholar]
  132. Kaylan K.B. Paul S. NAFLD no more: A review of current guidelines in the diagnosis and evaluation of metabolic dysfunction-associated steatotic liver disease (MASLD). Curr. Diab. Rep. 2025 25 1 5 10.1007/s11892‑024‑01558‑y 39535566
    [Google Scholar]
  133. Koda Y. Nagasaki Y. Metabolic dysfunction-associated steatohepatitis treated by poly(ethylene glycol)-block-poly(cysteine) block copolymer-based self-assembling antioxidant nanoparticles. J. Control. Release 2024 370 367 378 10.1016/j.jconrel.2024.04.050 38692439
    [Google Scholar]
  134. Zhu M. Cheng Y. Tang Y. Li S. Rao P. Zhang G. Xiao L. Liu J. Nanoparticles alleviate non-alcoholic steatohepatitis via ER stress sensor-mediated intestinal barrier damage and gut dysbiosis. Front. Microbiol. 2024 14 1271835 10.3389/fmicb.2023.1271835 38516345
    [Google Scholar]
  135. Do A. Zahrawi F. Mehal W.Z. Therapeutic landscape of metabolic dysfunction-associated steatohepatitis (MASH). Nat. Rev. Drug Discov. 2024 10.1038/s41573‑024‑01084‑2 39609545
    [Google Scholar]
  136. Chu R. Wang Y. Kong J. Pan T. Yang Y. He J. Lipid nanoparticles as the drug carrier for targeted therapy of hepatic disorders. J. Mater. Chem. B Mater. Biol. Med. 2024 12 20 4759 4784 10.1039/D3TB02766J 38682294
    [Google Scholar]
  137. Tincopa M.A. Anstee Q.M. Loomba R. New and emerging treatments for metabolic dysfunction-associated steatohepatitis. Cell Metab. 2024 36 5 912 926 10.1016/j.cmet.2024.03.011 38608696
    [Google Scholar]
  138. Yuan Y. Li J. Chen M. Zhao Y. Zhang B. Chen X. Zhao J. Liang H. Chen Q. Nano-encapsulation of drugs to target hepatic stellate cells: Toward precision treatments of liver fibrosis. J. Control. Release 2024 376 318 336 10.1016/j.jconrel.2024.10.012 39413846
    [Google Scholar]
  139. Athanasopoulou F. Manolakakis M. Vernia S. Kamaly N. Nanodrug delivery systems for metabolic chronic liver diseases: Advances and perspectives. Nanomedicine 2023 18 1 67 84 10.2217/nnm‑2022‑0261 36896958
    [Google Scholar]
  140. Jo H. Jung L. Kim N. Kim G.W. Lee D. Bile acid-based polydrug nanoparticles for the treatment of acute liver injury. Macromol. Res. 2024 32 5 415 426 10.1007/s13233‑023‑00241‑7
    [Google Scholar]
  141. Lu J. Zeng Y. Zhong H. Guo W. Zhang Y. Mai W. Qin Y. Su X. Zhang B. Wu W. Zhu Y. Huang Q. Ye Y. Dual-stimuli-responsive gut microbiota-targeting nitidine chloride-cs/pt-nps improved metabolic status in NAFLD. Int. J. Nanomedicine 2024 19 2409 2428 10.2147/IJN.S452194 38476281
    [Google Scholar]
  142. Yadav K. Sahu K.K. Sucheta S. Minz S. Raza W. Pradhan M. Microtopographic influence on bacterial biofilm development in habitat-like environments. J. Drug Deliv. Sci. Technol. 2024 101 106311 10.1016/j.jddst.2024.106311
    [Google Scholar]
  143. Ni Y. Li J.M. Liu M.K. Zhang T.T. Wang D.P. Zhou W.H. Hu L.Z. Lv W.L. Pathological process of liver sinusoidal endothelial cells in liver diseases. World J. Gastroenterol. 2017 23 43 7666 7677 10.3748/wjg.v23.i43.7666 29209108
    [Google Scholar]
  144. Baboci L. Capolla S. Di Cintio F. Colombo F. Mauro P. Dal Bo M. Argenziano M. Cavalli R. Toffoli G. Macor P. The dual role of the liver in nanomedicine as an actor in the elimination of nanostructures or a therapeutic target. J. Oncol. 2020 4638192 10.1155/2020/4638192
    [Google Scholar]
  145. Wang Y. Yin Z. Gao L. Ma B. Shi J. Chen H. Lipid nanoparticles-based therapy in liver metastasis management: From tumor cell-directed strategy to liver microenvironment-directed strategy. Int. J. Nanomedicine 2023 18 2939 2954 10.2147/IJN.S402821 37288351
    [Google Scholar]
  146. Yin X. Rong J. Shao M. Zhang S. Yin L. He Z. Wang X. Aptamer-functionalized nanomaterials (AFNs) for therapeutic management of hepatocellular carcinoma. J. Nanobiotechnology 2024 22 1 243 10.1186/s12951‑024‑02486‑5 38735927
    [Google Scholar]
  147. Elumalai K. Srinivasan S. Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomed. Technol. 2024 5 109 122
    [Google Scholar]
  148. Sainz V. Conniot J. Matos A.I. Peres C. Zupanǒiǒ E. Moura L. Silva L.C. Florindo H.F. Gaspar R.S. Regulatory aspects on nanomedicines. Biochem. Biophys. Res. Commun. 2015 468 3 504 510 10.1016/j.bbrc.2015.08.023 26260323
    [Google Scholar]
  149. Mittal A. Kumar N. Chauhan N.S. Curcumin encapsulated pegylated nanoliposomes: A potential anti-infective therapeutic agent. Indian J. Microbiol. 2019 59 3 336 343 10.1007/s12088‑019‑00811‑3 31388211
    [Google Scholar]
  150. Cao D. Tian S. Huang H. Chen J. Pan S. Divalent folate modification on PEG: An effective strategy for improving the cellular uptake and targetability of PEGylated polyamidoamine-polyethylenimine copolymer. Mol. Pharm. 2015 12 1 240 252 10.1021/mp500572v 25514347
    [Google Scholar]
  151. Ventola C.L. Medical applications for 3D printing: Current and projected uses. P&T 2014 39 10 704 711 25336867
    [Google Scholar]
  152. Mladenovska T. Choong P.F. Wallace G.G. O’Connell C.D. The regulatory challenge of 3D bioprinting. Regen. Med. 2023 18 8 659 674 10.2217/rme‑2022‑0194 37403962
    [Google Scholar]
  153. Yang Z. Liu X. Cribbin E.M. Kim A.M. Li J.J. Yong K.T. Liver-on-a-chip: Considerations, advances, and beyond. Biomicrofluidics 2022 16 6 061502 10.1063/5.0106855 36389273
    [Google Scholar]
  154. Debnath S.K. Debnath M. Ghosh A. Srivastava R. Omri A. Targeting tumor hypoxia with nanoparticle-based therapies: Challenges, opportunities, and clinical implications. Pharmaceuticals 2024 17 10 1389 10.3390/ph17101389 39459028
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018350438250311045745
Loading
/content/journals/cdd/10.2174/0115672018350438250311045745
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test