Current Drug Delivery - Volume 22, Issue 7, 2025
Volume 22, Issue 7, 2025
-
-
Lipid Nanoparticles as a Platform for miRNA and siRNA Delivery in Hepatocellular Carcinoma
Authors: Gaidaa M. Dogheim, Sampath Chinnam and Mohamed T. AmrallaLiver cancer is the sixth most common cancer and the fourth leading cause of death worldwide. Hepatocellular carcinoma (HCC) comprises 75-80% of liver cancer cases. Therapeutic strategies for HCC are available and have been shown to prolong survival but do not treat HCC. Gene expression and regulation are responsible for the pathogenesis and progression of HCC. Altering these genetic networks can impact cellular behaviors and in turn cure HCC. Single-stranded and double-stranded non-coding ribonucleic acid known as microRNA and small interfering RNA, respectively have been investigated as possible therapeutic options. Currently, efficient delivery systems that ensure cell-specific targeting and efficient transfection into tumor cells are still under investigation. Viral vectors have been studied extensively, but immunogenicity hinders their use as delivery systems. Non-viral vectors which include inorganic, lipid, or polymeric nanoparticles are promising delivery systems. However, there are a lot of challenges during the formulation of such systems to ensure efficient and specific delivery. In vitro and in vivo studies have investigated different lipid nanoparticles (LNPs) to deliver miRNA or siRNA. In this review, we highlight the role of LNPs as a delivery system for miRNA and siRNA in HCC in addition to the latest results achieved using this approach.
-
-
-
Applications of Inorganic Nanomaterials against Tuberculosis: A Comprehensive Review
Authors: Debabrata Ghosh Dastidar, Arnab Roy, Gourav Ghosh and Supratim MandalTuberculosis (TB) continues to pose a significant global health threat, with millions of new infections recorded annually. Current treatment strategies, such as Directly Observed Treatment (DOT), face challenges, including patient non-compliance and the emergence of drug-resistant TB strains. In response to these obstacles, innovative approaches utilizing inorganic/metallic nanomaterials have been developed to enhance drug delivery to target alveolar macrophages, where Mycobacterium tuberculosis resides. These nanomaterials have shown effectiveness against various strains of TB, offering benefits such as improved drug efficacy, minimized side effects, and sustained drug release at the infection site. This comprehensive review explores the applications of different metal nanoparticles, metal oxide nanoparticles, and metal-metal oxide hybrid nanoparticles in the management of TB, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. The synergistic effects of combining inorganic nanoparticles with conventional anti-TB drugs have demonstrated promising results in combating TB infections. Further research and development in this field hold great promise for overcoming the challenges faced in current TB therapy and improving patient outcomes.
-
-
-
Microneedles: An Efficient Technique to Increase Transdermal Drug Delivery System
Authors: Sanjit Kr. Roy, Kazi Asraf Ali, Mahua Biswas, Abhijit Dey, Amlan Bishal and Abhradeep KuiryTransdermal Drug Delivery Systems (TDDS) have gained attention as a viable substitute for traditional drug administration methods because of their controlled release capabilities and non-invasive design. Microneedles are a new and effective technology that has attracted a lot of attention recently to enhance the capabilities of TDDS further. The study on microneedles and their potential to improve transdermal medication delivery is thoroughly reviewed in this review article. The study initiates by clarifying the difficulties linked to traditional medication delivery techniques and the benefits provided by transdermal channels. The article then explores the development of microneedle technology, outlining the several kinds of microneedles-solid, hollow, and dissolving-as well as their uses. Because of their special capacity to penetrate the skin's protective layer painlessly and their ability to distribute drugs precisely and accurately, microneedles are a highly useful instrument in pharmaceutical research. The materials, geometry, and manufacturing processes that affect the design and creation of microneedles are critically analyzed and presented. The manuscript delves into the latest developments in microneedle technology, encompassing the utilization of biodegradable polymers, smart materials, and sensing components for in-the-moment monitoring. This analysis concludes by highlighting the noteworthy advancements in the field of microneedles and their potential to transform transdermal drug delivery systems. This thorough knowledge seeks to further the current discussion in pharmaceutical research, encouraging creativity and opening the door for the creation of safer, more effective drug delivery systems.
-
-
-
Nanocarriers: Exploring the Potential of Oligonucleotide Delivery
More LessNanoparticle-based delivery systems have emerged as promising tools in oligonucleotide therapeutics, facilitating precise and targeted delivery to address several disease conditions. The multifaceted landscape of nanoparticle-based oligonucleotide delivery encompasses the fundamental aspects of nanotechnology in delivery systems, various classes of oligonucleotides, and the growing field of ON-based therapeutics. These ON-based therapeutics are utilized to target specific genetic sequences within cells, offering promising avenues for treating various diseases by regulating gene expression or interfering with specific cellular processes. The integration of nanotechnology in delivery systems offers several advantages, given their intricate systems. Being a diverse class of agents, oligonucleotides provide a wide range of potential owed to each class of agents that support therapeutic interventions. Oligonucleotide-based platforms have demonstrated their versatility in molecular targeting and intervention strategies. Moreover, the complexities and delivery challenges in oligonucleotide therapeutics are expected to be overcome by the application of nanotechnology-based platforms.Because nanoparticles can overcome biological barriers and improve bioavailability, stability, and specificity, their role in developing oligonucleotide delivery systems is greatly valued. The innovative solutions facilitated by nanoparticles are efficient strategies to address the arduous barriers. These strategies beat obstacles like enzymatic degradation, cellular uptake, and immune response, which in turn paves the way for enhanced therapeutic efficacy. This review paper intends to explore the various applications of nanoparticle-mediated oligonucleotide delivery in a variety of diseases. It outlines the promising growth of therapies enabled by these systems, extending from cancer to genetic disorders, neurodegenerative diseases, etc. We have underscored the pivotal role of nanoparticle-based delivery systems in uncovering the full potential of oligonucleotide therapeutics, thereby fostering advancements in precision medicine and targeted therapies.
-
-
-
Advancements and Challenges of Plant-derived Extracellular Vesicles in Anti-Cancer Strategies and Drug Delivery
Authors: Fen Zhang, Xiao Liang, Hao Liu, Umer Anayyat, Zhuohang Yang and Xiaomei WangBackgroundPlant-derived extracellular vesicles (PDEVs) are vital for intercellular material exchange and information transfer. They significantly regulate cellular functions, tissue repair, and self-defense mechanisms.
ObjectiveThis review summarizes the formation pathways, composition, and potential applications of PDEVs in anti-tumor research and drug delivery systems.
MethodsWe conducted a literature search using keywords such as “plant-derived extracellular vesicles,” “exosomes,” “drug delivery,” “isolation and purification,” “stability,” “anti-tumor,” and “tumor therapy” in databases including PubMed, Web of Science, and Scopus. We examined studies on the formation pathways of PDEVs, including fusion of multivesicular bodies with the plasma membrane, exosome-positive organelles, and vacuole release. We also reviewed isolation and purification techniques critical for studying their biological functions. Furthermore, we analyzed research on the application of PDEVs in cancer therapy, focusing on their inhibitory effects in various cancer models and their role as carriers in drug delivery systems.
ResultsPDEVs have demonstrated potential in anti-tumor research, particularly with vesicles from plants like tea, garlic, and Artemisia annua showing inhibitory effects in breast, lung, and gastric cancer models. Additionally, PDEVs serve as effective carriers in drug delivery systems, offering possibilities for developing ideal therapeutic solutions.
ConclusionWhile PDEVs show promise in cancer treatment and drug delivery, challenges such as standardization, storage stability, and elucidation of action mechanisms remain. Further research is needed to overcome these challenges and advance the clinical translation of PDEVs.
-
-
-
Fecal Microbiota Transplantation Induced by Wumei Pills Improves Chemotherapy-Induced Intestinal Mucositis in BALB/c Mice by Modulating the TLR4/MyD88/NF-κB Signaling Pathway
Authors: Dongxue Lu, Lijiang Ji, Feng Liu, Haixia Liu, Zhiguang Sun, Jing Yan and Hua WuBackgroundOur previous studies have found that Wumei Pills can regulate the intestinal flora to inhibit chemotherapy-induced intestinal mucositis (CIM). However, there is still insufficient evidence to confirm that intestinal flora is the main link in the regulation of CIM by Wumei Pills, and its downstream mechanism is still unclear.
MethodsWe first obtained the signal pathway of the intervention of Wumei Pill on CIM through network pharmacological analysis and then transplanted the bacterial solution into CIM mice, combined with Western Blot, HE, ELISA and other biological technology-related proteins and inflammatory factors.
ResultsIt showed that 97 kinds of effective ingredients and 205 kinds of targets of Wumei pills were screened out and the potential mechanism of Wumei Pills on CIM may be the NF-κB signaling pathway. In contrast with the control group, the results displayed that the weight, food intake, and mice’s colon length were apparently decreased in the 5-Fu group, while the diarrhea score was increased. However, FMT reversed this change, and the difference was statistically significant. Additionally, FMT could improve the pathological state of inflammatory cell infiltration in mice, reduce histopathological scores of colon and jejunum, decrease the expression levels of IL-1β, MPO, TNF-α, and IL-6, reverse the activation of signaling pathway named TLR4/Myd88/NF-κB and down-regulate protein expression, thereby exerting its anti-inflammatory activities. Further experiments have found that FMT could reverse the decreasing of tight junction proteins and mucins caused by 5-Fu, thereby repairing the intestinal mucosal barrier, and FMT could also increase the content of acetic acid, propanoic acid, and butanoic acid in the feces of 5-Fu group.
ConclusionFMT can defend the intestinal mucosal barrier integrality by increasing the content of exercise fatty acids, and its mechanism may be in connection with its inhibition of TLR4/MyD88/NF-κB signal pathway to relieve inflammation.
-
-
-
Improved Therapeutic Efficacy: Liposome-Coated Mesoporous Silica Nanoparticles Delivering Thymoquinone to MCF-7 Cells
BackgroundBreast cancer remains a significant global health challenge, with thymoquinone showing promise as a therapeutic agent, but hindered by poor solubility.
ObjectiveThis study aimed to enhance TQ delivery to MCF-7 breast cancer cells using mesitylene-mesoporous silica nanoparticles coated with liposomes, designed for controlled drug release.
MethodsNanoparticles were synthesized using the sol-gel method and coated with phosphatidylserine-cholesterol liposomes. Different nanocharacterization techniques and in vitro assays were employed to assess the drug release kinetics, cellular uptake, cytotoxicity, and apoptosis.
ResultsThe nanoparticles exhibited favorable properties, including a large pore size of 3.6 nm, a surface area of 248.96 m2/g, and a hydrodynamic size of 171.571 ± 8.342 nm with a polydispersity index of 0.182 ± 0.017, indicating uniformity and stability. The successful lipid bilayer coating was confirmed by a zeta potential shift from +6.25 mV to -5.65 mV. The coated nanoparticles demonstrated a slow and sustained drug release profile, with cellular uptake of FITC-formulated nanoparticles being approximately 5-fold higher than free FITC (P < 0.0001). Cytotoxicity assays revealed a significant reduction in cell viability (P < 0.0001), reaching an IC50 value of 25 µM at 48 hours. Apoptosis rates were significantly higher in cells treated with the formulated TQ compared to the free drug and control at both 24 and 48 hours (P < 0.0001).
ConclusionThis nanoformulation significantly enhanced TQ delivery, offering a promising strategy for targeted breast cancer therapy. Further preclinical studies are recommended to advance this approach in cancer treatment.
-
-
-
Capecitabine-loaded NLC for Breast Cancer Treatment: Preparation, Characterization, and In vitro Evaluation
BackgroundCancer treatment often involves the use of potent antineoplastic drugs like Capecitabine (CAP), which can lead to serious toxicities. There is a need for dosage forms to manage these toxicities that can deliver the medication effectively to the target site while maintaining therapeutic efficacy at lower doses. To achieve the aforesaid objective, NLC containing capecitabine (NANOBIN) was prepared and evaluated. Different formulations of NANOBIN, denoted as CaTS, CaT1S, CaT2S, CaTS1, and CaTS2, were designed and evaluated to improve drug delivery and therapeutic outcomes.
MethodsThe NANOBIN formulations were prepared using the hot homogenization method. The characterization of these formulations was conducted based on various parameters such as particle size, Polydispersity Index (PDI), Zeta Potential (ZP), Transmission Electron Microscopy (TEM) imaging, and Encapsulation Efficiency (EE). In vitro evaluations included stability testing, release studies to assess drug release kinetics, and a cytotoxicity assay (MTT assay) to evaluate the efficacy of these formulations against human breast cancer cells (MCF-7).
ResultsThe characterization results revealed that all NANOBIN formulations exhibited particle sizes ranging from 65 to 193 nm, PDI values within the range of 0.26-0.37, ZP values between 46.47 to 61.87 mV (-ve), and high EE percentages ranging from 94.121% to 96.64%. Furthermore, all NANOBIN formulations demonstrated sustained and slow-release profiles of CAP. The MTT assay showed that the NANOBINs exhibited significantly enhanced cytotoxic efficacy, approximately 10 times greater than free CAP when tested on MCF-7 cells. These findings indicate the potential of NANOBINs to deliver CAP effectively to the target site, enabling prolonged drug availability and enhanced therapeutic effects at lower doses.
ConclusionThe study demonstrates that NANOBINs can effectively deliver CAP to target sites, prolonging drug exposure and enhancing therapeutic efficacy while reducing the required dose. Further studies are necessary to validate these findings and establish NANOBINs as a preferred treatment option for cancer therapy.
-
-
-
Exploring the Physicochemical Compatibility of Minoxidil in Combination with Different Active Pharmaceutical Ingredients in Ready-to-use Vehicles for Alopecia Treatment
Authors: Bruna Marianni, Savvas Koulouridas and Hudson Caetano PoloniniBackgroundAlopecia is globally known as a distressing medical disorder that affects men and women, and current commercially available minoxidil solutions are formulated with irritant vehicles with frequent complaints of dermatologic adverse effects.
ObjectivesThis study aimed to investigate further the compatibility of ready-to-use vehicles for the preparation of tailored formulations for alopecia treatment, namely TrichoSol™ (a ready-to-use vehicle for personalized hair solutions) and TrichoFoam™ (a ready-to-use vehicle for personalized foam formulations), in combination with minoxidil and other active pharmaceutical ingredients (APIs), to establish adequate beyond-use dates (BUD) for the given formulations.
MethodsProducts under evaluation were compounded using TrichoSol™ or TrichoFoam™, with direct incorporation of the APIs into these vehicles. Samples were then stored at controlled room temperature for up to 180 days. High-performance liquid chromatography (HPLC) methods were developed and validated, and then utilized to evaluate the compatibility of the APIs in TrichoSol™ and TrichoFoam™. Forced degradation studies were conducted to assess API stability under various stress conditions, and Antimicrobial Effectiveness Testing (AET) was performed at 0 and 180 days after compounding.
ResultsAccording to our results, BUDs of up to 90-180 days were obtained for the examined formulations stored at room temperature, considering a degradation of maximum 10% of the nominal concentration of the APIs within them. The formulations exhibited no discernible physical alterations throughout this period and maintained chemical stability within acceptable limits. Microbiological evaluations confirmed the efficacy of the preservative system.
ConclusionProducts compounded with TrichoSol™ and TrichoFoam™ showed suitable stability to be used as personalized treatments for alopecia. We can then suggest that the vehicles TrichoSol™ and TrichoFoam™ present effective solutions for compounding personalized hair care treatments.
-
-
-
Fluconazole-loaded Hyaluronic Acid-modified Transfersomal Hydrogels Containing D-panthenol for Ocular Delivery in Fungal Keratitis Management
Authors: Biswarup Das, Amit Kumar Nayak and Subrata MallickBackgroundFungal keratitis (mycotic keratitis) is an eye infection in which the cornea is infected by fungi and such fungal keratitis management can be effectively possible by ocular administration of antifungal drugs.
ObjectiveThe main objectives of the present research were to develop and evaluate fluconazole-loaded transfersomal hydrogels for ocular delivery in the effective management of fungal keratitis.
MethodsA 23 factorial design-based approach was used for statistical optimization, where (A) the ratio of lipid to edge activators, (B) the amount of hyaluronic acid (% HA), and (C) the ratio of edge activators (sodium deoxycholate to Span 80) were taken as three factors. The average vesicle diameter (Z, nm) of transfersomes was taken as a response. Further, fluconazole-loaded transfersomes (FTO) were incorporated into 1% Carbopol 940-based hydrogel (OF1) and 2% HMPC K4M-based hydrogel (OF2) containing D-panthenol (5% w/w).
ResultsThe optimal variable setting for the optimized formulations of FTO was (A) = 9.15, (B) = 0.30%, and (C) = 3.00. FTO exhibited 66.39 nm Z, 0.247 polydispersity index, – 33.10 mV zeta potential, and 65.38 ± 1.77% DEE, and desirable elasticity. TEM image of FTO demonstrated a unilamellar vesicular structure. The ex vivo ocular permeation of fluconazole from transfersomal hydrogels was sustained over 24 h. All the transfersomal hydrogels showed good bioadhesion and excellent antifungal activity with respect to the zone of inhibition against Candida albicans than Aspergillus fumigates, in vitro. HET-CAM study results demonstrated that both the hydrogels were non-irritant and safe for ocular. Short-term physical stability study suggested the stability of the developed formulation.
ConclusionThe current research demonstrated a new way to enhance the ocular penetration of fluconazole via transfersomal hydrogel formulations for ocular delivery in the effective management of fungal keratitis.
-
-
-
Development of Mixed Micelles for Enhancing Fenretinide Apparent Solubility and Anticancer Activity Against Neuroblastoma Cells
Authors: Guendalina Zuccari, Alessia Zorzoli, Danilo Marimpietri and Silvana AlfeiIntroduction/ObjectivesThe purpose of the study was to evaluate the suitability of mixed micelles prepared with D-α-tocopheryl polyethylene glycol succinate (TPGS) and 1,2-distearoyl-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-PEG) to encapsulate the poorly soluble anticancer drug fenretinide (4-HPR).
MethodsAfter assaying the solubilization ability of the surfactants by the equilibrium method, the micelles were prepared using the solvent casting technique starting from different 4-HPR:TPGS: DSPE-PEG w/w ratios. The resulting formulations were investigated for their stability under storage conditions and upon dilution, modelling the reaching of physiological concentrations after intravenous administration. The characterization of micelles included the determination of DL%, EE %, particle size distribution, Z-potential, and thermal analysis by DSC. The cytotoxicity studies were performed on HTLA-230 and SK-N-BE-2C neuroblastoma cells by the MTT essay.
ResultsThe colloidal dispersions showed a mean diameter of 12 nm, negative Zeta potential, and a narrow dimensional distribution. 4-HPR was formulated in the mixed micelles with an encapsulation efficiency of 88% and with an increment of the apparent solubility of 363-fold. The 4-HPR entrapment remained stable up to the surfactants’ concentration of 2.97E-05 M. The loaded micelles exhibited a slow-release behaviour, with about 28% of the drug released after 24 h. On the most resistant SK-N-BE-2C cells, the encapsulated 4-HPR was significantly more active than free 4-HPR in reducing cell viability.
ConclusionLoaded micelles demonstrated their suitability as a new adjuvant tool potentially useful for the treatment of neuroblastoma.
-
Volumes & issues
-
Volume 22 (2025)
-
Volume 21 (2024)
-
Volume 20 (2023)
-
Volume 19 (2022)
-
Volume 18 (2021)
-
Volume 17 (2020)
-
Volume 16 (2019)
-
Volume 15 (2018)
-
Volume 14 (2017)
-
Volume 13 (2016)
-
Volume 12 (2015)
-
Volume 11 (2014)
-
Volume 10 (2013)
-
Volume 9 (2012)
-
Volume 8 (2011)
-
Volume 7 (2010)
-
Volume 6 (2009)
-
Volume 5 (2008)
-
Volume 4 (2007)
-
Volume 3 (2006)
-
Volume 2 (2005)
-
Volume 1 (2004)
Most Read This Month

Most Cited Most Cited RSS feed
-
-
Preface
Authors: Deng-Guang Yu and He Lv
-
- More Less