Skip to content
2000
Volume 22, Issue 7
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Tuberculosis (TB) continues to pose a significant global health threat, with millions of new infections recorded annually. Current treatment strategies, such as Directly Observed Treatment (DOT), face challenges, including patient non-compliance and the emergence of drug-resistant TB strains. In response to these obstacles, innovative approaches utilizing inorganic/metallic nanomaterials have been developed to enhance drug delivery to target alveolar macrophages, where Mycobacterium tuberculosis resides. These nanomaterials have shown effectiveness against various strains of TB, offering benefits such as improved drug efficacy, minimized side effects, and sustained drug release at the infection site. This comprehensive review explores the applications of different metal nanoparticles, metal oxide nanoparticles, and metal-metal oxide hybrid nanoparticles in the management of TB, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. The synergistic effects of combining inorganic nanoparticles with conventional anti-TB drugs have demonstrated promising results in combating TB infections. Further research and development in this field hold great promise for overcoming the challenges faced in current TB therapy and improving patient outcomes.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018295247240426055330
2024-04-30
2025-09-17
Loading full text...

Full text loading...

References

  1. ChakayaJ. KhanM. NtoumiF. AklilluE. FatimaR. MwabaP. KapataN. MfinangaS. HasnainS. E. KatotoP. D. M. C. BulabulaA. N. H. Sam-AguduN. A. NachegaJ. B. TiberiS. McHughT. D. AbubakarI. ZumlaA. Global tuberculosis report 2020 : Reflections on the Global TB burden, treatment and prevention efforts.Int J Infect Dis.2021113Suppl 1S7S1210.1016/j.ijid.2021.02.107
    [Google Scholar]
  2. PhamD.D. FattalE. TsapisN. Pulmonary drug delivery systems for tuberculosis treatment.Int. J. Pharm.2015478251752910.1016/j.ijpharm.2014.12.00925499020
    [Google Scholar]
  3. KnechelN.A. Tuberculosis: pathophysiology, clinical features, and diagnosis.Crit. Care Nurse2009292344310.4037/ccn200996819339446
    [Google Scholar]
  4. TurnerR.D. BothamleyG.H. Cough and the transmission of tuberculosis.J. Infect. Dis.201521191367137210.1093/infdis/jiu62525387581
    [Google Scholar]
  5. BalabanovaY. DrobniewskiF. FedorinI. ZakharovaS. NikolayevskyyV. AtunR. CokerR. The directly observed therapy short-course (DOTS) strategy in samara oblast, russian federation.Respir. Res.2006714410.1186/1465‑9921‑7‑4416556324
    [Google Scholar]
  6. SeungK.J. KeshavjeeS. RichM.L. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis.Cold Spring Harb. Perspect. Med.201559a017863a01786310.1101/cshperspect.a01786325918181
    [Google Scholar]
  7. LiangT. ZhangR. LiuX. DingQ. WuS. LiC. LinY. YeY. ZhongZ. ZhouM. Recent advances in macrophage-mediated drug delivery systems.Int. J. Nanomedicine2021162703271410.2147/IJN.S29815933854316
    [Google Scholar]
  8. MahendraC. ChandraM.N. MuraliM. AbhilashM.R. SinghS.B. SatishS. SudarshanaM.S. Phyto-fabricated ZnO nanoparticles from Canthium dicoccum (L.) for antimicrobial, anti-tuberculosis and antioxidant activity.Process Biochem.20208922022610.1016/j.procbio.2019.10.020
    [Google Scholar]
  9. ChoiS. BritiganB.E. MoranD.M. NarayanasamyP. Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages.PLoS One2017125e017798710.1371/journal.pone.017798728542623
    [Google Scholar]
  10. NarayanasamyP. SwitzerB.L. BritiganB.E. Prolonged-acting, multi-targeting gallium nanoparticles potently inhibit growth of both HIV and mycobacteria in co-infected human macrophages.Sci. Rep.201551882410.1038/srep0882425744727
    [Google Scholar]
  11. BanuA. Biosynthesis of Monodispersed Silver Nanoparticles and their Activity against Mycobacterium tuberculosis.J. Nanomed. Biotherapeut. Discov.20133110.4172/2155‑983X.1000110
    [Google Scholar]
  12. VieiraA.C.C. MagalhãesJ. RochaS. CardosoM.S. SantosS.G. BorgesM. PinheiroM. ReisS. Targeted macrophages delivery of rifampicin-loaded lipid nanoparticles to improve tuberculosis treatment.Nanomedicine201712242721273610.2217/nnm‑2017‑024829119867
    [Google Scholar]
  13. MakledS. BoraieN. NafeeN. Nanoparticle-mediated macrophage targeting-a new inhalation therapy tackling tuberculosis.Drug Deliv. Transl. Res.20211131037105510.1007/s13346‑020‑00815‑332617866
    [Google Scholar]
  14. SinghP. RameshwaramN.R. GhoshS. MukhopadhyayS. Cell envelope lipids in the pathophysiology of Mycobacterium tuberculosis.Future Microbiol.201813668971010.2217/fmb‑2017‑013529771143
    [Google Scholar]
  15. GygliS.M. BorrellS. TraunerA. GagneuxS. Antimicrobial resistance in Mycobacterium tuberculosis: Mechanistic and evolutionary perspectives.FEMS Microbiol. Rev.201741335437310.1093/femsre/fux01128369307
    [Google Scholar]
  16. AngalaS.K. BelardinelliJ.M. Huc-ClaustreE. WheatW.H. JacksonM. The cell envelope glycoconjugates of Mycobacterium tuberculosis.Crit. Rev. Biochem. Mol. Biol.201449536139910.3109/10409238.2014.92542024915502
    [Google Scholar]
  17. KaurD. GuerinM.E. ŠkovierováH. BrennanP.J. Biogenesis of the cell wall and other glycoconjugates.Adv. Appl. Microbiol.200969237810.1016/S0065‑2164(09)69002‑X.Biogenesis
    [Google Scholar]
  18. BesraG. S. ChatterjeeD. Lipids and carbohydrates of mycobacterium tuberculosis.Tuberc. Pathog. Prot. Cont.199428530610.1128/9781555818357.ch20
    [Google Scholar]
  19. KalscheuerR. PalaciosA. AnsoI. CifuenteJ. AnguitaJ. JacobsW.R.Jr GuerinM.E. Prados-RosalesR. The Mycobacterium tuberculosis capsule: A cell structure with key implications in pathogenesis.Biochem. J.2019476141995201610.1042/BCJ2019032431320388
    [Google Scholar]
  20. ToossiZ. Virological and immunological impact of tuberculosis on human immunodeficiency virus type 1 disease.J. Infect. Dis.200318881146115510.1086/37867614551885
    [Google Scholar]
  21. FentonM.J. VermeulenM.W. Immunopathology of Tuberculosis: Roles of Macrophages and Monocytes.Infection and ImmunityAmerican Society for Microbiology199668369010.1128/iai.64.3.683‑690.1996
    [Google Scholar]
  22. StengerS. RöllinghoffM. Role of cytokines in the innate immune response to intracellular pathogens.Ann. Rheum. Dis.200160Suppl 3Suppl. 3iii43iii4610.1136/ard.60.90003.iii4311890652
    [Google Scholar]
  23. RosenkrandsI. SlaydenR.A. CrawfordJ. AagaardC. BarryC.E.III AndersenP. Hypoxic response of Mycobacterium tuberculosis studied by metabolic labeling and proteome analysis of cellular and extracellular proteins.J. Bacteriol.2002184133485349110.1128/JB.184.13.3485‑3491.200212057942
    [Google Scholar]
  24. NicodL.P. FlynnJ.L. ChanJ. Immunology of tuberculosis.Swiss Med. Wkly.200713725-2635736210.1146/annurev.immunol.19.1.9317629798
    [Google Scholar]
  25. FriedenT.R. SterlingT.R. MunsiffS.S. WattC.J. DyeC. Tuberculosis.Lancet.Elsevier Limited2003Vol. 36288789910.1016/S0140‑6736(03)14333‑4
    [Google Scholar]
  26. DhedaK. BoothH. HuggettJ.F. JohnsonM.A. ZumlaA. RookG.A.W. Lung remodeling in pulmonary tuberculosis.J. Infect. Dis.200519271201120910.1086/44454516136463
    [Google Scholar]
  27. GrotzE. TateosianN. AmianoN. CagelM. BernabeuE. ChiappettaD.A. MorettonM.A. Nanotechnology in Tuberculosis: State of the art and the challenges ahead.Pharm. Res.2018351121310.1007/s11095‑018‑2497‑z30238168
    [Google Scholar]
  28. SchmitK.M. WansaulaZ. PrattR. PriceS.F. LangerA.J. Tuberculosis : United States, 2016.MMWR Morb. Mortal. Wkly. Rep.2017661128929410.15585/mmwr.mm6611a228333908
    [Google Scholar]
  29. ChanE.D. IsemanM.D. Multidrug-resistant and extensively drug-resistant tuberculosis: A review.Curr. Opin. Infect. Dis.200821658759510.1097/QCO.0b013e328319bce618978526
    [Google Scholar]
  30. KhawbungJ.L. NathD. ChakrabortyS. Drug resistant Tuberculosis: A review.Comp. Immunol. Microbiol. Infect. Dis.20217410157410.1016/j.cimid.2020.10157433249329
    [Google Scholar]
  31. SinghV. ChibaleK. Strategies to combat multi-drug resistance in tuberculosis.Acc. Chem. Res.202154102361237610.1021/acs.accounts.0c0087833886255
    [Google Scholar]
  32. MiglioriG.B. SotgiuG. GandhiN.R. FalzonD. DeRiemerK. CentisR. Hollm-DelgadoM.G. PalmeroD. Pérez-GuzmánC. VargasM.H. D’AmbrosioL. SpanevelloA. BauerM. ChanE.D. SchaafH.S. KeshavjeeS. HoltzT.H. MenziesD. AhujaS. AshkinD. AvendanoM. BanerjeeR. BayonaJ.N. BecerraM.C. BenedettiA. BurgosM. ChiangC.Y. CoxH. DungN.H. EnarsonD. FlanaganK. FloodJ. Garcia-GarciaL. GranichR.M. IsemanM.D. JarlsbergL.G. KimH.R. KohW.J. LancasterJ. LangeC. De LangeW.C.M. LeimaneV. LeungC.C. LiJ. MishustinS.P. MitnickC.D. NaritaM. O’RiordanP. PaiM. ParkS.K. PasvolG. PenaJ. Ponce-De-LeonA. QuelapioM.I.D. RiekstinaV. RobertJ. RoyceS. SeungK.J. ShahL. ShimT.S. ShinS.S. ShiraishiY. Sifuentes-OsornioJ. StrandM.J. TabarsiP. TupasiT.E. Van AltenaR. Van Der WaltM. Van Der WerfT.S. ViikleppP. WestenhouseJ. YewW.W. YimJ.J. Drug resistance beyond extensively drug-resistant tuberculosis: Individual patient data meta-analysis.Eur. Respir. J.201342116917910.1183/09031936.0013631223060633
    [Google Scholar]
  33. FurinJ. The clinical management of drug-resistant tuberculosis.Curr. Opin. Pulm. Med.200713321221710.1097/MCP.0b013e3280f3c0b217414129
    [Google Scholar]
  34. SotgiuG. CentisR. D’AmbrosioL. AlffenaarJ.W.C. AngerH.A. CamineroJ.A. CastigliaP. De LorenzoS. FerraraG. KohW.J. SchecterG.F. ShimT.S. SinglaR. SkrahinaA. SpanevelloA. UdwadiaZ.F. VillarM. ZampognaE. ZellwegerJ.P. ZumlaA. MiglioriG.B. Efficacy, safety and tolerability of linezolid containing regimens in treating MDR-TB and XDR-TB: Systematic review and meta-analysis.Eur. Respir. J.20124061430144210.1183/09031936.0002291222496332
    [Google Scholar]
  35. AmaralL. Thioridazine: An old neuroleptic effective against totally drug resistant tuberculosis.Acta Med. Port.201225211812122985923
    [Google Scholar]
  36. DeyT. BrigdenG. CoxH. ShubberZ. CookeG. FordN. Outcomes of clofazimine for the treatment of drug-resistant tuberculosis: A systematic review and meta-analysis.J. Antimicrob. Chemother.201368228429310.1093/jac/dks38923054996
    [Google Scholar]
  37. MärtsonA.G. BurchG. GhimireS. AlffenaarJ.W.C. PeloquinC.A. Therapeutic drug monitoring in patients with tuberculosis and concurrent medical problems.Expert Opin. Drug Metab. Toxicol.2021171233910.1080/17425255.2021.183615833040625
    [Google Scholar]
  38. StephanieF. SaragihM. TambunanU.S.F. Recent progress and challenges for drug-resistant tuberculosis treatment.Pharmaceutics202113559210.3390/pharmaceutics1305059233919204
    [Google Scholar]
  39. LiY. SunF. ZhangW. Bedaquiline and delamanid in the treatment of multidrug-resistant tuberculosis: promising but challenging.Drug Development Research.Wiley-Liss Inc201919810510.1002/ddr.21498
    [Google Scholar]
  40. TăbăranA.F. MateaC.T. MocanT. TăbăranA. MihaiuM. IancuC. MocanL. Silver nanoparticles for the therapy of tuberculosis.Int. J. Nanomedicine2020152231225810.2147/IJN.S24118332280217
    [Google Scholar]
  41. NasiruddinM. NeyazM. K. DasS. Nanotechnology-based approach in tuberculosis treatment.Tuberc. Res. Treat.2017201711210.1155/2017/4920209
    [Google Scholar]
  42. SinghR. NawaleL.U. ArkileM. ShedbalkarU.U. WadhwaniS.A. SarkarD. ChopadeB.A. Chemical and biological metal nanoparticles as antimycobacterial agents: A comparative study.Int. J. Antimicrob. Agents201546218318810.1016/j.ijantimicag.2015.03.01426009020
    [Google Scholar]
  43. KumarD.A. PalanichamyV. RoopanS.M. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity.Spectrochim. Acta A Mol. Biomol. Spectrosc.201412716817110.1016/j.saa.2014.02.05824632169
    [Google Scholar]
  44. PandeyR. SharmaA. ZahoorA. SharmaS. KhullerG.K. PrasadB. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis.J. Antimicrob. Chemother.200352698198610.1093/jac/dkg47714613962
    [Google Scholar]
  45. VyasS.P. KannanM.E. JainS. MishraV. SinghP. SP Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages.Int. J. Pharm.20042691374910.1016/j.ijpharm.2003.08.01714698575
    [Google Scholar]
  46. Garcia-ContrerasL. SethuramanV. KazantsevaM. HickeyA. Efficacy of combined rifampicin formulations delivered by the pulmonary route to treat tuberculosis in the guinea pig model.Pharm.2021138130910.3390/pharmaceutics13081309
    [Google Scholar]
  47. PandeyR. KhullerG.K. Antitubercular inhaled therapy: Opportunities, progress and challenges.J. Antimicrob. Chemother.200555443043510.1093/jac/dki02715761077
    [Google Scholar]
  48. GelperinaS. KisichK. IsemanM.D. HeifetsL. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis.Am. J. Respir. Crit. Care Med.2005172121487149010.1164/rccm.200504‑613PP16151040
    [Google Scholar]
  49. PandeyR. KhullerG.K. Subcutaneous nanoparticle-based antitubercular chemotherapy in an experimental model.J. Antimicrob. Chemother.200454126626810.1093/jac/dkh26015128731
    [Google Scholar]
  50. RawalT. ParmarR. TyagiR.K. ButaniS. Rifampicin loaded chitosan nanoparticle dry powder presents an improved therapeutic approach for alveolar tuberculosis.Colloids Surf. B Biointerfaces201715432133010.1016/j.colsurfb.2017.03.04428363192
    [Google Scholar]
  51. PatiR. SahuR. PandaJ. SonawaneA. Encapsulation of zinc-rifampicin complex into transferrin-conjugated silver quantum-dots improves its antimycobacterial activity and stability and facilitates drug delivery into macrophages.Sci. Rep.2016612418410.1038/srep2418427113139
    [Google Scholar]
  52. MukherjeeS. PerveenS. NegiA. SharmaR. Evolution of tuberculosis diagnostics: From molecular strategies to nanodiagnostics.Tuberculosis202314010234010.1016/j.tube.2023.10234037031646
    [Google Scholar]
  53. RussellA.D. HugoW.B. Antimicrobial activity and action of silver.Prog. Med. Chem.199431C35137010.1016/S0079‑6468(08)70024‑98029478
    [Google Scholar]
  54. FranciG. FalangaA. GaldieroS. PalombaL. RaiM. MorelliG. GaldieroM. Silver nanoparticles as potential antibacterial agents.Molecules20152058856887410.3390/molecules2005885625993417
    [Google Scholar]
  55. PrabaV.L. KathirvelM. VallayyachariK. SurendarK. MuthurajM. JesurajP.J. GovindarajanS. RamanK.V. Bactericidal effect of silver nanoparticles against Mycobacterium tuberculosis.J. Bionanosci.20137328228710.1166/jbns.2013.1138
    [Google Scholar]
  56. Montalvo-QuirósS. Gómez-GrañaS. Vallet-RegíM. Prados-RosalesR.C. GonzálezB. Luque-GarciaJ.L. Mesoporous silica nanoparticles containing silver as novel antimycobacterial agents against mycobacterium tuberculosis.Colloids Surf. B Biointerfaces2020202119710.1016/j.colsurfb.2020.11140533130523
    [Google Scholar]
  57. WolschendorfF. AckartD. ShresthaT.B. Hascall-DoveL. NolanS. LamichhaneG. WangY. BossmannS.H. BasarabaR.J. NiederweisM. Copper resistance is essential for virulence of Mycobacterium tuberculosis.Proc. Natl. Acad. Sci.201110841621162610.1073/pnas.100926110821205886
    [Google Scholar]
  58. GuptaA. PandeyS. YadavJ.S. A review on recent trends in green synthesis of gold nanoparticles for tuberculosis.Adv. Pharm. Bull.2020111102710.34172/apb.2021.00233747849
    [Google Scholar]
  59. GuptaA. PandeyS. VariyaB. ShahS. YadavJ.S. Green synthesis of gold nanoparticles using different leaf extracts of ocimum gratissimum linn for anti-tubercular activity.Curr. Nanomed.20199214615710.2174/2468187308666180807125058
    [Google Scholar]
  60. GovindarajuK. VasantharajaR. Uma SuganyaK.S. AnbarasuS. RevathyK. PugazhendhiA. KarthickeyanD. SingaraveluG. Unveiling the anticancer and antimycobacterial potentials of bioengineered gold nanoparticles.Process Biochem.20209621321910.1016/j.procbio.2020.06.016
    [Google Scholar]
  61. ChopadeB.A. SinghR. NawaleL. ArkileM. WadhwaniS. ShedbalkarU. ChopadeS. SarkarD. Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents.Int. J. Nanomedicine2016111889189710.2147/IJN.S10248827217751
    [Google Scholar]
  62. VijayakumarS. NilavukkarasiM. SakthivelB. Bio-synthesized zinc oxide nanoparticles for anti-tuberculosis agent: Scientifically unexplored.Gene Rep.20202010076410.1016/j.genrep.2020.100764
    [Google Scholar]
  63. Yaghubi kaluraziT. JafariA. Evaluation of magnesium oxide and zinc oxide nanoparticles against multi-drug-resistance Mycobacterium tuberculosis.Indian J. Tuberc.202168219520010.1016/j.ijtb.2020.07.03233845951
    [Google Scholar]
  64. HeidaryM. Zaker BostanabadS. AminiS.M. JafariA. Ghalami NobarM. GhodousiA. KamalzadehM. Darban-SarokhalilD. The Anti-Mycobacterial Activity Of Ag, ZnO, And Ag- ZnO nanoparticles against MDR- And XDR-Mycobacterium tuberculosis. Infect. Drug Resist.2019123425343510.2147/IDR.S22140831807033
    [Google Scholar]
  65. ChoiS. BritiganB.E. NarayanasamyP. Treatment of virulent mycobacterium tuberculosis and hiv coinfected macrophages with gallium nanoparticles inhibits pathogen growth and modulates macrophage cytokine production.MSphere201944e00443-1910.1128/mSphere.00443‑1931341073
    [Google Scholar]
  66. ChoiS. BritiganB.E. NarayanasamyP. Ga(III) nanoparticles inhibit growth of both mycobacterium tuberculosis and hiv and release of interleukin-6 (IL-6) and IL-8 in coinfected macrophages.Antimicrob. Agents Chemother.2017614e02505-1610.1128/AAC.02505‑1628167548
    [Google Scholar]
  67. OlakanmiO. BritiganB.E. SchlesingerL.S. Gallium disrupts iron metabolism of mycobacteria residing within human macrophages.Infect. Immun.200068105619562710.1128/IAI.68.10.5619‑5627.200010992462
    [Google Scholar]
  68. EstevezH. Garcia-LidonJ.C. Luque-GarciaJ.L. CamaraC. Effects of chitosan-stabilized selenium nanoparticles on cell proliferation, apoptosis and cell cycle pattern in HepG2 cells: Comparison with other selenospecies.Colloids Surf. B Biointerfaces201412218419310.1016/j.colsurfb.2014.06.06225038448
    [Google Scholar]
  69. Fairweather-TaitS.J. BaoY. BroadleyM.R. CollingsR. FordD. HeskethJ.E. HurstR. Selenium in human health and disease.Antioxid. Redox Signal.20111471337138310.1089/ars.2010.327520812787
    [Google Scholar]
  70. WangH. WeiW. ZhangS.Y. ShenY.X. YueL. WangN.P. XuS.Y. Melatonin‐selenium nanoparticles inhibit oxidative stress and protect against hepatic injury induced by Bacillus Calmette–Guérin/lipopolysaccharide in mice.J. Pineal Res.200539215616310.1111/j.1600‑079X.2005.00231.x16098093
    [Google Scholar]
  71. EstevezH. PalaciosA. GilD. AnguitaJ. Vallet-RegiM. GonzálezB. Prados-RosalesR. Luque-GarciaJ.L. Antimycobacterial effect of selenium nanoparticles on Mycobacterium tuberculosis. Front. Microbiol.20201180010.3389/fmicb.2020.0080032425916
    [Google Scholar]
  72. PiJ. ShenL. YangE. ShenH. HuangD. WangR. HuC. JinH. CaiH. CaiJ. ZengG. ChenZ.W. Macrophage-targeted isoniazid–selenium nanoparticles promote antimicrobial immunity and synergize bactericidal destruction of tuberculosis bacilli.Angew. Chem. Int. Ed.20205983226323410.1002/anie.20191212231756258
    [Google Scholar]
  73. AdibianF. GhaderiR.S. SabouriZ. DavoodiJ. KazemiM. GhazviniK. YoussefiM. SoleimanpourS. DarroudiM. Green synthesis of selenium nanoparticles using Rosmarinus officinalis and investigated their antimicrobial activity.Biometals202235114715810.1007/s10534‑021‑00356‑335018556
    [Google Scholar]
  74. KiriaN. AvalianiT. BablishviliN. KiriaN. PhichkhaiaG. Study of rifampicin and silver nanoparticle composite efficacy on rifampicin-resistant mycobacterium tuberculosis strains.Eur. Respir. J.202260Suppl. 66119810.1183/13993003.congress‑2022.1198
    [Google Scholar]
  75. KreytsbergG.N. GrachevaI.E. KibrikB.S. GolikovI.V. Antituberculous effect of silver nanoparticles.J. Phys. Conf. Ser.2011291101203010.1088/1742‑6596/291/1/012030
    [Google Scholar]
  76. MistryN. BandyopadhyayaR. MehraS. ZnO nanoparticles and rifampicin synergistically damage the membrane of mycobacteria.CS Appl. Nano Mater.202033174318410.1021/acsanm.9b02089
    [Google Scholar]
  77. SlaterK. B. KimD. ChandP. XuY. ShaikhH. UndaleV. A current perspective on the potential of nanomedicine for anti-tuberculosis therapy.Trop. Med. Infect. Dis.202382100
    [Google Scholar]
  78. SarkarK. KumarM. JhaA. BhartiK. DasM. MishraB. Nanocarriers for tuberculosis therapy: Design of safe and effective drug delivery strategies to overcome the therapeutic challenges.J. Drug Deliv. Sci. Technol.202267September10285010.1016/j.jddst.2021.102850
    [Google Scholar]
  79. RaffetsederJ. Phenotypes interplay of human macrophages and mycobacterium tuberculosis phenotypes.Biology20192101410.3384/diss.diva‑132321
    [Google Scholar]
  80. KalmantaevaO.V. FirstovaV.V. GrishchenkoN.S. RudnitskayaT.I. PotapovV.D. IgnatovS.G. Antibacterial and immunomodulating activity of silver nanoparticles on mice experimental tuberculosis model.Appl. Biochem. Microbiol.202056222623210.1134/S0003683820020088
    [Google Scholar]
  81. SELIMA. ELHAIGM.M. TAHAS.A. NASRE.A. Antibacterial activity of silver nanoparticles against field and reference strains of mycobacterium tuberculosis, mycobacterium bovis and multiple-drug-resistant tuberculosis strains.Rev. Sci. Tech. l’OIE201837382383010.20506/rst.37.3.2888
    [Google Scholar]
  82. Abdel-AzizM.M. ElellaM.H.A. MohamedR.R. Green synthesis of quaternized chitosan/silver nanocomposites for targeting mycobacterium tuberculosis and lung carcinoma cells (A-549).Int. J. Biol. Macromol.202014224425310.1016/j.ijbiomac.2019.09.09631690471
    [Google Scholar]
  83. SarkarS. LeoB.F. CarranzaC. ChenS. Rivas-SantiagoC. PorterA.E. RyanM.P. GowA. ChungK.F. TetleyT.D. ZhangJ.J. GeorgopoulosP.G. Ohman-StricklandP.A. SchwanderS. LeoB.F. CarranzaC. ChenS. Rivas-SantiagoC. PorterA.E. RyanM.P. GowA. ChungK.F. TetleyT.D. ZhangJ.J. GeorgopoulosP.G. Ohman-StricklandP.A. SchwanderS. Modulation of human macrophage responses to mycobacterium tuberculosis by silver nanoparticles of different size and surface modification.PLoS One20151011e014307710.1371/journal.pone.014307726580078
    [Google Scholar]
  84. PatilB.N. TaranathT.C. Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: A potent tool against Mycobacterium tuberculosis.Int. J. Mycobacteriol.20165219720410.1016/j.ijmyco.2016.03.00427242232
    [Google Scholar]
  85. KazemiM. AkbariA. SoleimanpourS. FeiziN. DarroudiM. The role of green reducing agents in gelatin-based synthesis of colloidal selenium nanoparticles and investigation of their antimycobacterial and photocatalytic properties.J. Cluster Sci.201930376777510.1007/s10876‑019‑01537‑4
    [Google Scholar]
  86. RamalingamV. SundaramahalingamS. RajaramR. Size-dependent antimycobacterial activity of titanium oxide nanoparticles against Mycobacterium tuberculosis.J. Mater. Chem. B Mater. Biol. Med.20197274338434610.1039/C9TB00784A
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018295247240426055330
Loading
/content/journals/cdd/10.2174/0115672018295247240426055330
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test