Skip to content
2000
Volume 22, Issue 7
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Nanoparticle-based delivery systems have emerged as promising tools in oligonucleotide therapeutics, facilitating precise and targeted delivery to address several disease conditions. The multifaceted landscape of nanoparticle-based oligonucleotide delivery encompasses the fundamental aspects of nanotechnology in delivery systems, various classes of oligonucleotides, and the growing field of ON-based therapeutics. These ON-based therapeutics are utilized to target specific genetic sequences within cells, offering promising avenues for treating various diseases by regulating gene expression or interfering with specific cellular processes. The integration of nanotechnology in delivery systems offers several advantages, given their intricate systems. Being a diverse class of agents, oligonucleotides provide a wide range of potential owed to each class of agents that support therapeutic interventions. Oligonucleotide-based platforms have demonstrated their versatility in molecular targeting and intervention strategies. Moreover, the complexities and delivery challenges in oligonucleotide therapeutics are expected to be overcome by the application of nanotechnology-based platforms.Because nanoparticles can overcome biological barriers and improve bioavailability, stability, and specificity, their role in developing oligonucleotide delivery systems is greatly valued. The innovative solutions facilitated by nanoparticles are efficient strategies to address the arduous barriers. These strategies beat obstacles like enzymatic degradation, cellular uptake, and immune response, which in turn paves the way for enhanced therapeutic efficacy. This review paper intends to explore the various applications of nanoparticle-mediated oligonucleotide delivery in a variety of diseases. It outlines the promising growth of therapies enabled by these systems, extending from cancer to genetic disorders, neurodegenerative diseases, . We have underscored the pivotal role of nanoparticle-based delivery systems in uncovering the full potential of oligonucleotide therapeutics, thereby fostering advancements in precision medicine and targeted therapies.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018306882240618093152
2024-06-24
2025-09-17
Loading full text...

Full text loading...

References

  1. SmithC.I.E. ZainR. Therapeutic oligonucleotides: State of the art.Annu. Rev. Pharmacol. Toxicol.201959160563010.1146/annurev‑pharmtox‑010818‑02105030285540
    [Google Scholar]
  2. BostJ.P. BarrigaH. HolmeM.N. GalludA. MaugeriM. GuptaD. LehtoT. ValadiH. EsbjörnerE.K. StevensM.M. El-AndaloussiS. Delivery of Oligonucleotide therapeutics: Chemical modifications, lipid nanoparticles, and extracellular vesicles.ACS Nano2021159139931402110.1021/acsnano.1c0509934505766
    [Google Scholar]
  3. YusufA. AlmotairyA.R.Z. HenidiH. AlshehriO.Y. AldughaimM.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems.Polymers (Basel)2023157159610.3390/polym1507159637050210
    [Google Scholar]
  4. ThakurS. SinhariA. JainP. JadhavH.R. A perspective on oligonucleotide therapy: Approaches to patient customization.Front. Pharmacol.202213100630410.3389/fphar.2022.100630436339619
    [Google Scholar]
  5. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  6. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  7. RizviSAA SalehAM Applications of nanoparticle systems in drug delivery technology.Saudi Pharm. J.2018261647010.1016/j.jsps.2017.10.012
    [Google Scholar]
  8. GowdaB.H.J. AhmedM.G. AlmoyadM.A.A. WahabS. AlmalkiW.H. KesharwaniP. Nanosponges as an emerging platform for cancer treatment and diagnosis.Adv. Funct. Mater.2023347230707410.1002/adfm.202307074
    [Google Scholar]
  9. HaniU. GowdaB.H.J. HaiderN. RameshK.V.R.N.S. PaulK. AshiqueS. AhmedM.G. NarayanaS. MohantoS. KesharwaniP. Nanoparticle-Based approaches for treatment of hematological malignancies: A comprehensive review.AAPS PharmSciTech202324823310.1208/s12249‑023‑02670‑037973643
    [Google Scholar]
  10. ZengL. GowdaB.H.J. AhmedM.G. AbourehabM.A.S. ChenZ.S. ZhangC. LiJ. KesharwaniP. Advancements in nanoparticle-based treatment approaches for skin cancer therapy.Mol. Cancer20232211010.1186/s12943‑022‑01708‑436635761
    [Google Scholar]
  11. AnjumS. IshaqueS. FatimaH. FarooqW. HanoC. AbbasiB.H. AnjumI. Emerging applications of nanotechnology in healthcare systems: Grand challenges and perspectives.Pharmaceuticals (Basel)202114870710.3390/ph1408070734451803
    [Google Scholar]
  12. DubeyS.K. ParabS. AchallaV.P.K. NarwariaA. SharmaS. Jaswanth GowdaB.H. KesharwaniP. Microparticulate and nanotechnology mediated drug delivery system for the delivery of herbal extracts.J. Biomater. Sci. Polym. Ed.202233121531155410.1080/09205063.2022.206540835404217
    [Google Scholar]
  13. BaydaS. AdeelM. TuccinardiT. CordaniM. RizzolioF. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine.Molecules201925111210.3390/molecules2501011231892180
    [Google Scholar]
  14. MirzaA.Z. SiddiquiF.A. Nanomedicine and drug delivery: A mini review.Int. Nano Lett.2014419410.1007/s40089‑014‑0094‑7
    [Google Scholar]
  15. RudramurthyG. SwamyM. SinniahU. GhasemzadehA. Nanoparticles.Molecules201621783610.3390/molecules2107083627355939
    [Google Scholar]
  16. HabaY. KojimaC. HaradaA. UraT. HorinakaH. KonoK. Preparation of poly(ethylene glycol)-modified poly(amido amine) dendrimers encapsulating gold nanoparticles and their heat-generating ability.Langmuir200723105243524610.1021/la070082617419657
    [Google Scholar]
  17. YamadaY. Nucleic acid drugs—current status, issues, and expectations for exosomes.Cancers (Basel)20211319500210.3390/cancers1319500234638486
    [Google Scholar]
  18. HalloyF. BiscansA. BujoldK.E. DebackerA. HillA.C. LacroixA. LuigeO. StrömbergR. SundstromL. VogelJ. GhidiniA. Innovative developments and emerging technologies in RNA therapeutics.RNA Biol.202219131333210.1080/15476286.2022.202715035188077
    [Google Scholar]
  19. BreakerR.R. JoyceG.F. The expanding view of RNA and DNA function.Chem. Biol.20142191059106510.1016/j.chembiol.2014.07.00825237854
    [Google Scholar]
  20. KhakshoorO KoolET Chemistry of nucleic acids: Impacts in multiple fields.Chem Commun (Camb)2011472570182410.1039/c1cc11021g
    [Google Scholar]
  21. BaraniM. Torkzadeh-MahaniM. MirzaeiM. NematollahiM.H. Comprehensive evaluation of gene expression in negative and positive trigger-based targeting niosomes in HEK-293 cell line.Iran. J. Pharm. Res.202019116618032922478
    [Google Scholar]
  22. SridharanK. GogtayN.J. Therapeutic nucleic acids: Current clinical status.Br. J. Clin. Pharmacol.201682365967210.1111/bcp.1298727111518
    [Google Scholar]
  23. CavagnariB.M. [Gene therapy: Nucleic acids as drugs. Action mechanisms and delivery into the cell].Arch. Argent. Pediatr.2011109323724421660389
    [Google Scholar]
  24. DhuriK. BechtoldC. QuijanoE. PhamH. GuptaA. VikramA. BahalR. Antisense Oligonucleotides: An emerging area in drug discovery and development.J. Clin. Med.202096200410.3390/jcm906200432604776
    [Google Scholar]
  25. NiX. CastanaresM. MukherjeeA. LupoldS.E. Nucleic acid aptamers: Clinical applications and promising new horizons.Curr. Med. Chem.201118274206421410.2174/09298671179718960021838685
    [Google Scholar]
  26. BhaskaranM. MohanM. MicroRNAs.Vet. Pathol.201451475977410.1177/030098581350282024045890
    [Google Scholar]
  27. PandeySK SinghRK Recent developments in nucleic acid-based therapies for Parkinson’s disease: Current status, clinical potential, and future strategies.Front. Pharmacol.202213986668
    [Google Scholar]
  28. Health Care (Don Mills)Global Oligonucleotide Therapeutics Market – Industry Trends and Forecast to 2029.2022Available From: https://www.databridgemarketresearch.com/reports/global-oligonucleotide-therapeutics-market
  29. MoumnéL. MarieA.C. CrouvezierN. Oligonucleotide therapeutics: From discovery and development to patentability.Pharmaceutics202214226010.3390/pharmaceutics1402026035213992
    [Google Scholar]
  30. JollyP. EstrelaP. LadomeryM. Oligonucleotide-based systems: DNA, microRNAs, DNA/RNA aptamers.Essays Biochem.2016601273510.1042/EBC2015000427365033
    [Google Scholar]
  31. AmiteyeS. Basic concepts and methodologies of DNA marker systems in plant molecular breeding.Heliyon2021710e0809310.1016/j.heliyon.2021.e0809334765757
    [Google Scholar]
  32. HendlingM. BarišićI. In-silico design of DNA Oligonucleotides: Challenges and approaches.Comput. Struct. Biotechnol. J.2019171056106510.1016/j.csbj.2019.07.00831452858
    [Google Scholar]
  33. KoleR. KrainerA.R. AltmanS. RNA therapeutics: Beyond RNA interference and antisense oligonucleotides.Nat. Rev. Drug Discov.201211212514010.1038/nrd362522262036
    [Google Scholar]
  34. AckermannEJ GuoS BensonMD BootenS FreierS HughesSG Suppressing transthyretin production in mice, monkeys and humans using 2nd-Generation antisense oligonucleotides.Amyloid2016233148157
    [Google Scholar]
  35. ChanL. YokotaT. Development and clinical applications of antisense oligonucleotide gapmers.Methods Mol. Biol.20202176214710.1007/978‑1‑0716‑0771‑8_232865780
    [Google Scholar]
  36. LiangXH SunH NicholsJG CrookeST RNase H1-dependent antisense oligonucleotides are robustly active in directing RNA cleavage in both the cytoplasm and the nucleus.Mol. Ther.20172592075209210.1016/j.ymthe.2017.06.002
    [Google Scholar]
  37. FazilM.H.U.T. OngS.T. ChalasaniM.L.S. LowJ.H. KizhakeyilA. MamidiA. LimC.F.H. WrightG.D. LakshminarayananR. KelleherD. VermaN.K. GapmeR cellular internalization by macropinocytosis induces sequence-specific gene silencing in human primary T-cells.Sci. Rep.2016613772110.1038/srep3772127883055
    [Google Scholar]
  38. PendergraffH.M. KrishnamurthyP.M. DebackerA.J. MoazamiM.P. SharmaV.K. NiitsooL. YuY. TanY.N. HaitchiH.M. WattsJ.K. Locked nucleic acid gapmers and conjugates potently silence ADAM33, an asthma-associated metalloprotease with nuclear-localized mRNA.Mol. Ther. Nucleic Acids2017815816810.1016/j.omtn.2017.06.01228918018
    [Google Scholar]
  39. YüceM. KurtH. HussainB. BudakH. Systematic evolution of ligands by exponential enrichment for aptamer selection. Biomedical applications of functionalized nanomaterials.Biomedical Applications of Functionalized Nanomaterials: Concepts, Development and Clinical TranslationAmsterdamElsevier2018211243
    [Google Scholar]
  40. BauerM. StromM. HammondD.S. ShigdarS. Anything you can do, I can do better: Can aptamers replace antibodies in clinical diagnostic applications?Molecules20192423437710.3390/molecules2423437731801185
    [Google Scholar]
  41. Avci-AdaliM. SteinleH. MichelT. SchlensakC. WendelH.P. Potential capacity of aptamers to trigger immune activation in human blood.PLoS One201387e6881010.1371/journal.pone.006881023935890
    [Google Scholar]
  42. Eyetech Study GroupPreclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration.Retina200222214315210.1097/00006982‑200204000‑0000211927845
    [Google Scholar]
  43. PanigajM. JohnsonM.B. KeW. McMillanJ. GoncharovaE.A. ChandlerM. Aptamers as modular components of therapeutic nucleic acid nanotechnology.ACS Nano2021202182588231664817
    [Google Scholar]
  44. ZhouJ. RossiJ. Aptamers as targeted therapeutics: Current potential and challenges.Nat. Rev. Drug Discov.201716318120210.1038/nrd.2016.19927807347
    [Google Scholar]
  45. AliM.H. ElsherbinyM.E. EmaraM. Emara MJIjoms. Updates on aptamer research.Int. J. Mol. Sci.20192010251110.3390/ijms2010251131117311
    [Google Scholar]
  46. Sequeira-AntunesB. FerreiraH.A. Nucleic acid aptamer-based biosensors: A review.Biomedicines20231112320110.3390/biomedicines1112320138137422
    [Google Scholar]
  47. FranierB.D.L. ThompsonM. Early stage detection and screening of ovarian cancer: A research opportunity and significant challenge for biosensor technology.Biosens. Bioelectron.2019135718110.1016/j.bios.2019.03.04131003031
    [Google Scholar]
  48. ShuklaG.C. SinghJ. BarikS. MicroRNAs: Processing, maturation, target recognition and regulatory functions.Mol. Cell. Pharmacol.201133839222468167
    [Google Scholar]
  49. GizaD.E. VasilescuC. CalinG.A. Key principles of miRNA involvement in human diseases.Discoveries (Craiova)201424e3410.15190/d.2014.2626317116
    [Google Scholar]
  50. RisslandO.S. SubtelnyA.O. WangM. LugowskiA. NicholsonB. LaverJ.D. SidhuS.S. SmibertC.A. LipshitzH.D. BartelD.P. The influence of microRNAs and poly(A) tail length on endogenous mRNA–protein complexes.Genome Biol.201718121110.1186/s13059‑017‑1330‑z29089021
    [Google Scholar]
  51. OlivetoS. MancinoM. ManfriniN. BiffoS. Role of microRNAs in translation regulation and cancer.World J. Biol. Chem.201781455610.4331/wjbc.v8.i1.4528289518
    [Google Scholar]
  52. RobertsonS.A. ZhangB. ChanH. SharkeyD.J. BarryS.C. FullstonT. SchjenkenJ.E. MicroRNA regulation of immune events at conception.Mol. Reprod. Dev.201784991492510.1002/mrd.2282328452160
    [Google Scholar]
  53. SegalM. SlackF.J. Challenges identifying efficacious miRNA therapeutics for cancer.Expert Opin. Drug Discov.202015998799110.1080/17460441.2020.176577032421364
    [Google Scholar]
  54. RupaimooleR. SlackF.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases.Nat. Rev. Drug Discov.201716320322210.1038/nrd.2016.24628209991
    [Google Scholar]
  55. LiZ Therapeutic targeting of microRNAs: Current status and future challenges.Nat. Rev. Drug Discov.201413862238
    [Google Scholar]
  56. ChaW. FanR. MiaoY. ZhouY. QinC. ShanX. WanX. CuiT. MicroRNAs as novel endogenous targets for regulation and therapeutic treatments.MedChemComm20189339640810.1039/C7MD00285H30108932
    [Google Scholar]
  57. LimaJ.F. CerqueiraL. FigueiredoC. OliveiraC. AzevedoN.F. Anti-miRNA oligonucleotides: A comprehensive guide for design.RNA Biol.201815333835210.1080/15476286.2018.144595929570036
    [Google Scholar]
  58. BakR.O. HollensenA.K. MikkelsenJ.G. Managing microRNAs with vector-encoded decoy-type inhibitors.Mol. Ther.20132181478148510.1038/mt.2013.11323752312
    [Google Scholar]
  59. KawamataT. TomariY. Making RISC.Trends Biochem. Sci.201035736837610.1016/j.tibs.2010.03.00920395147
    [Google Scholar]
  60. SajidM.I. MoazzamM. KatoS. Yeseom ChoK. TiwariR.K. Overcoming barriers for siRNA therapeutics: From bench to bedside.Pharmaceuticals (Basel)2020131029410.3390/ph1310029433036435
    [Google Scholar]
  61. VarleyA.J. HammillM.L. SalimL. DesaulniersJ.P. Desaulniers J-PJnat. Effects of chemical modifications on siRNA strand selection in mammalian cells.Nucleic Acid Ther.202030422923610.1089/nat.2020.084832175808
    [Google Scholar]
  62. ZhangM.M. BahalR. RasmussenT.P. ManautouJ.E. ZhongX. The growth of siRNA-based therapeutics: Updated clinical studies.Biochem. Pharmacol.202118911443210.1016/j.bcp.2021.11443233513339
    [Google Scholar]
  63. CoelhoT. AdamsD. SilvaA. LozeronP. HawkinsP.N. MantT. PerezJ. ChiesaJ. WarringtonS. TranterE. MunisamyM. FalzoneR. HarropJ. CehelskyJ. BettencourtB.R. GeisslerM. ButlerJ.S. SehgalA. MeyersR.E. ChenQ. BorlandT. HutabaratR.M. ClausenV.A. AlvarezR. FitzgeraldK. Gamba-VitaloC. NochurS.V. VaishnawA.K. SahD.W.Y. GollobJ.A. SuhrO.B. Safety and efficacy of RNAi therapy for transthyretin amyloidosis.N. Engl. J. Med.2013369981982910.1056/NEJMoa120876023984729
    [Google Scholar]
  64. WollMG NaryshkinNA KarpGMJRT Drugging Pre-mRNA licing.Seman. Scholar2017
    [Google Scholar]
  65. RamirezA. Peptide-conjugated Morpholino Oligomers for treatment of Spinal Muscular Atrophy.University Of Milan Doctorate In Molecular Medicine and Translational Cycle2018
    [Google Scholar]
  66. WuB. LuP. CloerC. ShabanM. GrewalS. MilaziS. ShahS.N. MoultonH.M. LuQ.L. Long-term rescue of dystrophin expression and improvement in muscle pathology and function in dystrophic mdx mice by peptide-conjugated morpholino.Am. J. Pathol.2012181239240010.1016/j.ajpath.2012.04.00622683468
    [Google Scholar]
  67. KriegerC.C. BhasinN. TewariM. BrownA.E.X. SaferD. SweeneyH.L. DischerD.E. Exon-skipped dystrophins for treatment of Duchenne muscular dystrophy: Mass spectrometry mapping of most exons and cooperative domain designs based on single molecule mechanics.Cytoskeleton (Hoboken)2010671279680710.1002/cm.2048920886611
    [Google Scholar]
  68. FinkelR.S. MercuriE. DarrasB.T. ConnollyA.M. KuntzN.L. KirschnerJ. ChiribogaC.A. SaitoK. ServaisL. TizzanoE. TopalogluH. TuliniusM. MontesJ. GlanzmanA.M. BishopK. ZhongZ.J. GheuensS. BennettC.F. SchneiderE. FarwellW. De VivoD.C. Nusinersen versus sham control in infantile-onset spinal muscular atrophy.N. Engl. J. Med.2017377181723173210.1056/NEJMoa170275229091570
    [Google Scholar]
  69. MercuriE. DarrasB.T. ChiribogaC.A. DayJ.W. CampbellC. ConnollyA.M. IannacconeS.T. KirschnerJ. KuntzN.L. SaitoK. ShiehP.B. TuliniusM. MazzoneE.S. MontesJ. BishopK.M. YangQ. FosterR. GheuensS. BennettC.F. FarwellW. SchneiderE. De VivoD.C. FinkelR.S. Nusinersen versus sham control in later-onset spinal muscular atrophy.N. Engl. J. Med.2018378762563510.1056/NEJMoa171050429443664
    [Google Scholar]
  70. SaarbachJ. SabaleP.M. WinssingerN. Peptide nucleic acid (PNA) and its applications in chemical biology, diagnostics, and therapeutics.Curr. Opin. Chem. Biol.20195211212410.1016/j.cbpa.2019.06.00631541865
    [Google Scholar]
  71. BarluengaS. WinssingerN. PNA as a biosupramolecular tag for programmable assemblies and reactions.Acc. Chem. Res.20154851319133110.1021/acs.accounts.5b0010925947113
    [Google Scholar]
  72. WuJ. MengQ. RenH. WangH. WuJ. WangQ. Recent advances in peptide nucleic acid for cancer bionanotechnology.Acta Pharmacol. Sin.201738679880510.1038/aps.2017.3328414202
    [Google Scholar]
  73. D’AgataR. GiuffridaM. SpotoG. Peptide nucleic acid-based biosensors for cancer diagnosis.Molecules20172211195110.3390/molecules2211195129137122
    [Google Scholar]
  74. TsylentsU. SiekierskaI. TrylskaJ. Peptide nucleic acid conjugates and their antimicrobial applications—a mini-review.Eur. Biophys. J.2023526-753354410.1007/s00249‑023‑01673‑w37610696
    [Google Scholar]
  75. GhosalA. Peptide nucleic acid antisense oligomers open an avenue for developing novel antibacterial molecules.J. Infect. Dev. Ctries.201711221221410.3855/jidc.915928248687
    [Google Scholar]
  76. GhosalA. NielsenP.E. Potent antibacterial antisense peptide-peptide nucleic acid conjugates against Pseudomonas aeruginosa.Nucleic Acid Ther.201222532333410.1089/nat.2012.037023030590
    [Google Scholar]
  77. DiasN. SteinC.A. Antisense oligonucleotides: Basic concepts and mechanisms.Mol. Cancer Ther.20021534735512489851
    [Google Scholar]
  78. RobertsT.C. LangerR. WoodM.J.A. Advances in oligonucleotide drug delivery.Nat. Rev. Drug Discov.2020191067369410.1038/s41573‑020‑0075‑732782413
    [Google Scholar]
  79. AcquahC. AgyeiD. ObengE.M. PanS. TanK.X. DanquahM.K. Aptamers: An emerging class of bioaffinity ligands in bioactive peptide applications.Crit. Rev. Food Sci. Nutr.20206071195120610.1080/10408398.2018.156423430714390
    [Google Scholar]
  80. ScharnerJ. MaW.K. ZhangQ. LinK.T. RigoF. BennettC.F. KrainerA.R. Hybridization-mediated off-target effects of splice-switching antisense oligonucleotides.Nucleic Acids Res.202048280281610.1093/nar/gkz113231802121
    [Google Scholar]
  81. ChiX. GattiP. PapoianT. Safety of antisense oligonucleotide and siRNA-based therapeutics.Drug Discov. Today201722582383310.1016/j.drudis.2017.01.01328159625
    [Google Scholar]
  82. Gheibi-HayatS.M. JamialahmadiK. Antisense Oligonucleotide (AS‐ODN) Technology: Principle, mechanism and challenges.Biotechnol. Appl. Biochem.20216851086109410.1002/bab.202832964539
    [Google Scholar]
  83. RobertsT.C. The microRNA machinery.Adv. Exp. Med. Biol.2015887153010.1007/978‑3‑319‑22380‑3_226662984
    [Google Scholar]
  84. SchürmannN. TrabucoL.G. BenderC. RussellR.B. GrimmD. Molecular dissection of human Argonaute proteins by DNA shuffling.Nat. Struct. Mol. Biol.201320781882610.1038/nsmb.260723748378
    [Google Scholar]
  85. AltermanJ.F. GodinhoB.M.D.C. HasslerM.R. FergusonC.M. EcheverriaD. SappE. HarasztiR.A. ColesA.H. ConroyF. MillerR. RouxL. YanP. KnoxE.G. TuranovA.A. KingR.M. GernouxG. MuellerC. Gray-EdwardsH.L. MoserR.P. BishopN.C. JaberS.M. GounisM.J. Sena-EstevesM. PaiA.A. DiFigliaM. AroninN. KhvorovaA. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system.Nat. Biotechnol.201937888489410.1038/s41587‑019‑0205‑031375812
    [Google Scholar]
  86. SrijyothiL PonneS PrathamaT AshokC BaluchamySJT Roles of non-coding RNAs in transcriptional regulation.Transcriptional and Post-transcriptional RegulationLondonInTechOpen2018
    [Google Scholar]
  87. BailusB.J. PylesB. McAlisterM.M. O’GeenH. LockwoodS.H. AdamsA.N. NguyenJ.T.T. YuA. BermanR.F. SegalD.J. Protein delivery of an artificial transcription factor restores widespread Ube3a expression in an Angelman syndrome mouse brain.Mol. Ther.201624354855510.1038/mt.2015.23626727042
    [Google Scholar]
  88. WangZ. The principles of MiRNA-masking antisense oligonucleotides technology.Methods Mol. Biol.2011676434910.1007/978‑1‑60761‑863‑8_320931388
    [Google Scholar]
  89. RobertsT.C. MorrisK.V. WoodM.J.A. The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease.Philos. Trans. R. Soc. Lond. B Biol. Sci.201436916522013050710.1098/rstb.2013.050725135968
    [Google Scholar]
  90. WahlestedtC. Targeting long non-coding RNA to therapeutically upregulate gene expression.Nat. Rev. Drug Discov.201312643344610.1038/nrd401823722346
    [Google Scholar]
  91. YoonS. RossiJ.J. Therapeutic potential of Small Activating RNAs (saRNAs) in human cancers.Curr. Pharm. Biotechnol.201819860461010.2174/138920101966618052808405929804529
    [Google Scholar]
  92. FaghihiM.A. ModarresiF. KhalilA.M. WoodD.E. SahaganB.G. MorganT.E. FinchC.E. St LaurentG.III KennyP.J. WahlestedtC. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase.Nat. Med.200814772373010.1038/nm178418587408
    [Google Scholar]
  93. SettenR.L. LightfootH.L. HabibN.A. RossiJ.J. Development of MTL-CEBPA: Small activating RNA drug for hepatocellular carcinoma.Curr. Pharm. Biotechnol.201819861162110.2174/138920101966618061109342829886828
    [Google Scholar]
  94. TanC.P. SinigagliaL. GomezV. NichollsJ. HabibN.A. RNA activation—a novel approach to therapeutically upregulate gene transcription.Molecules20212621653010.3390/molecules2621653034770939
    [Google Scholar]
  95. BöttgerR. PauliG. ChaoP.H. AL FayezN. HohenwarterL. LiS.D. Lipid-based nanoparticle technologies for liver targeting.Adv. Drug Deliv. Rev.2020154-1557910110.1016/j.addr.2020.06.01732574575
    [Google Scholar]
  96. WengertE.R. WagleyP.K. StrohmS.M. RezaN. WenkerI.C. GaykemaR.P. ChristiansenA. LiauG. PatelM.K. Targeted Augmentation of Nuclear Gene Output (TANGO) of Scn1a rescues parvalbumin interneuron excitability and reduces seizures in a mouse model of Dravet Syndrome.Brain Res.2022177514774310.1016/j.brainres.2021.14774334843701
    [Google Scholar]
  97. KhorkovaO. StahlJ. JojiA. VolmarC.H. WahlestedtC. Amplifying gene expression with RNA-targeted therapeutics.Nat. Rev. Drug Discov.202322753956110.1038/s41573‑023‑00704‑737253858
    [Google Scholar]
  98. OkadaN. LinC.P. RibeiroM.C. BitonA. LaiG. HeX. BuP. VogelH. JablonsD.M. KellerA.C. WilkinsonJ.E. HeB. SpeedT.P. HeL. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression.Genes Dev.201428543845010.1101/gad.233585.11324532687
    [Google Scholar]
  99. BuenoM.J. MalumbresM. MicroRNAs and the cell cycle.Biochim. Biophys. Acta Mol. Basis Dis.20111812559260110.1016/j.bbadis.2011.02.00221315819
    [Google Scholar]
  100. ShimakamiT. YamaneD. JangraR.K. KempfB.J. SpanielC. BartonD.J. LemonS.M. Stabilization of hepatitis C virus RNA by an Ago2–miR-122 complex.Proc. Natl. Acad. Sci. USA2012109394194610.1073/pnas.111226310922215596
    [Google Scholar]
  101. BalasubramaniamM. PandhareJ. DashC. Are microRNAs important players in HIV-1 infection? An update.Viruses201810311010.3390/v1003011029510515
    [Google Scholar]
  102. SvoronosA.A. EngelmanD.M. SlackF.J. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer.Cancer Res.201676133666367010.1158/0008‑5472.CAN‑16‑035927325641
    [Google Scholar]
  103. XuS.J. HuH.T. LiH.L. ChangS. The role of miRNAs in immune cell development, immune cell activation, and tumor immunity: With a focus on macrophages and natural killer cells.Cells2019810114010.3390/cells810114031554344
    [Google Scholar]
  104. QuemenerA.M. BachelotL. ForestierA. Donnou-FournetE. GilotD. GalibertM.D. The powerful world of antisense oligonucleotides: From bench to bedside.Wiley Interdiscip. Rev. RNA2020115e159410.1002/wrna.159432233021
    [Google Scholar]
  105. van der ReeM.H. van der MeerA.J. de BruijneJ. MaanR. van VlietA. WelzelT.M. ZeuzemS. LawitzE.J. Rodriguez-TorresM. KupcovaV. Wiercinska-DrapaloA. HodgesM.R. JanssenH.L.A. ReesinkH.W. Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients.Antiviral Res.2014111535910.1016/j.antiviral.2014.08.01525218783
    [Google Scholar]
  106. HeatonS.M. Harnessing host–virus evolution in antiviral therapy and immunotherapy.Clin. Transl. Immunology201987e106710.1002/cti2.106731312450
    [Google Scholar]
  107. ChakrabortyC. SharmaA.R. SharmaG. DossC.G.P. LeeS.S. Therapeutic miRNA and siRNA: Moving from bench to clinic as next generation medicine.Mol. Ther. Nucleic Acids2017813214310.1016/j.omtn.2017.06.00528918016
    [Google Scholar]
  108. RamalingamH. YheskelM. PatelV. Modulation of polycystic kidney disease by non-coding RNAs.Cell. Signal.20207110954810.1016/j.cellsig.2020.10954831982550
    [Google Scholar]
  109. RobertsT.C. WoodM.J.A. Therapeutic targeting of non-coding RNAs.Essays Biochem.20135412714510.1042/bse054012723829532
    [Google Scholar]
  110. FilipowiczW. BhattacharyyaS.N. SonenbergN. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight?Nat. Rev. Genet.20089210211410.1038/nrg229018197166
    [Google Scholar]
  111. AfzalO. AltamimiA.S.A. NadeemM.S. AlzareaS.I. AlmalkiW.H. TariqA. MubeenB. MurtazaB.N. IftikharS. RiazN. KazmiI. Nanoparticles in drug delivery: From history to therapeutic applications.Nanomaterials (Basel)20221224449410.3390/nano1224449436558344
    [Google Scholar]
  112. EmerichD.F. ThanosC.G. Targeted nanoparticle-based drug delivery and diagnosis.J. Drug Target.200715316318310.1080/1061186070123181017454354
    [Google Scholar]
  113. ShahbaziR. OzpolatB. UlubayramK. Oligonucleotide-based theranostic nanoparticles in cancer therapy.Nanomedicine (Lond.)201611101287130810.2217/nnm‑2016‑003527102380
    [Google Scholar]
  114. EbrahimiN. ManaviM.S. NazariA. MomayeziA. FaghihkhorasaniF. Rasool Riyadh AbdulwahidA.H. Rezaei-TazangiF. KaveiM. RezaeiR. MobarakH. ArefA.R. FangW. Nano-scale delivery systems for siRNA delivery in cancer therapy: New era of gene therapy empowered by nanotechnology.Environ. Res.2023239Pt 211726310.1016/j.envres.2023.11726337797672
    [Google Scholar]
  115. BozzerS. BoM.D. ToffoliG. MacorP. CapollaS. Nanoparticles-based oligonucleotides delivery in cancer: Role of zebrafish as animal model.Pharmaceutics2021138110610.3390/pharmaceutics1308110634452067
    [Google Scholar]
  116. NarayanaS. AhmedM.G. GowdaB.H.J. ShettyP.K. NasrineA. ThriveniM. NoushidaN. SanjanaA. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review.Future J. Pharmaceut. Sci.20217118610.1186/s43094‑021‑00331‑2
    [Google Scholar]
  117. WangY. MiaoL. SatterleeA. HuangL. Delivery of oligonucleotides with lipid nanoparticles.Adv. Drug Deliv. Rev.201587688010.1016/j.addr.2015.02.00725733311
    [Google Scholar]
  118. MossK.H. PopovaP. HadrupS.R. AstakhovaK. TaskovaM. Lipid nanoparticles for delivery of therapeutic RNA oligonucleotides.Mol. Pharm.20191662265227710.1021/acs.molpharmaceut.8b0129031063396
    [Google Scholar]
  119. de la FuenteI.F. SawantS.S. TolentinoM.Q. CorriganP.M. RougeJ.L. Viral mimicry as a design template for nucleic acid nanocarriers.Front. Chem.2021961320910.3389/fchem.2021.61320933777893
    [Google Scholar]
  120. ThiT.T.H. SuysE.J.A. LeeJ.S. NguyenD.H. ParkK.D. TruongN.P. Lipid-based nanoparticles in the clinic and clinical trials: From cancer nanomedicine to COVID-19 vaccines.Vaccines (Basel)20219435910.3390/vaccines904035933918072
    [Google Scholar]
  121. RajizadehM.A. MotamedyS. MirY. AkhgarandouzF. NematollahiM.H. NezhadiA. A comprehensive and updated review on the applications of vesicular drug delivery systems in treatment of brain disorders: A shelter against storms. Journal of Drug Delivery Science and Technology.Pharmaceutics202389105011
    [Google Scholar]
  122. TamY. ChenS. CullisP. Advances in lipid nanoparticles for siRNA delivery.Pharmaceutics20135449850710.3390/pharmaceutics503049824300520
    [Google Scholar]
  123. PilkingtonE.H. SuysE.J.A. TrevaskisN.L. WheatleyA.K. ZukancicD. AlgarniA. Al-WassitiH. DavisT.P. PoutonC.W. KentS.J. TruongN.P. From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases.Acta Biomater.2021131164010.1016/j.actbio.2021.06.02334153512
    [Google Scholar]
  124. JyotsanaN. SharmaA. ChaturvediA. BudidaR. ScherrM. KuchenbauerF. LindnerR. NoyanF. SühsK.W. StangelM. Grote-KoskaD. BrandK. VornlocherH.P. EderM. TholF. GanserA. HumphriesR.K. RamsayE. CullisP. HeuserM. Lipid nanoparticle-mediated siRNA delivery for safe targeting of human CML in vivo.Ann. Hematol.20199881905191810.1007/s00277‑019‑03713‑y31104089
    [Google Scholar]
  125. HsuS. YuB. WangX. LuY. SchmidtC.R. LeeR.J. LeeL.J. JacobS.T. GhoshalK. Cationic lipid nanoparticles for therapeutic delivery of siRNA and miRNA to murine liver tumor.Nanomedicine2013981169118010.1016/j.nano.2013.05.00723727126
    [Google Scholar]
  126. XuF. LiaoJ.Z. XiangG.Y. ZhaoP.X. YeF. ZhaoQ. HeX.X. MiR‐101 and doxorubicin codelivered by liposomes suppressing malignant properties of hepatocellular carcinoma.Cancer Med.20176365166110.1002/cam4.101628135055
    [Google Scholar]
  127. ZhangC. PeiJ. KumarD. SakabeI. BoudreauH.E. GokhaleP.C. KasidU.N. Antisense oligonucleotides: Target validation and development of systemically delivered therapeutic nanoparticles.Methods Mol. Biol.200736116318510.1007/978‑1‑59745‑304‑2_1117172711
    [Google Scholar]
  128. LingH. FabbriM. CalinG.A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development.Nat. Rev. Drug Discov.2013121184786510.1038/nrd414024172333
    [Google Scholar]
  129. BegM.S. BrennerA.J. SachdevJ. BoradM. KangY.K. StoudemireJ. SmithS. BaderA.G. KimS. HongD.S. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors.Invest. New Drugs201735218018810.1007/s10637‑016‑0407‑y27917453
    [Google Scholar]
  130. HongD.S. KangY.K. BoradM. SachdevJ. EjadiS. LimH.Y. BrennerA.J. ParkK. LeeJ.L. KimT.Y. ShinS. BecerraC.R. FalchookG. StoudemireJ. MartinD. KelnarK. PeltierH. BonatoV. BaderA.G. SmithS. KimS. O’NeillV. BegM.S. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours.Br. J. Cancer2020122111630163710.1038/s41416‑020‑0802‑132238921
    [Google Scholar]
  131. SchnitzlerT. HerrmannA. DNA block copolymers: Functional materials for nanoscience and biomedicine.Acc. Chem. Res.20124591419143010.1021/ar200211a22726237
    [Google Scholar]
  132. AsadikaramG. PoustforooshA. PardakhtyA. Torkzadeh-MahaniM. NematollahiM.H. Niosomal virosome derived by vesicular stomatitis virus glycoprotein as a new gene carrier.Biochem. Biophys. Res. Commun.202153498098710.1016/j.bbrc.2020.10.05433131770
    [Google Scholar]
  133. ThomasT.J. Tajmir-RiahiH.A. PillaiC.K.S. Biodegradable polymers for gene delivery.Molecules20192420374410.3390/molecules2420374431627389
    [Google Scholar]
  134. Gómez-AguadoI. Rodríguez-CastejónJ. Vicente-PascualM. Rodríguez-GascónA. SolinísM.Á. del Pozo-RodríguezA. Nanomedicines to deliver mRNA: State of the art and future perspectives.Nanomaterials (Basel)202010236410.3390/nano1002036432093140
    [Google Scholar]
  135. ConteR. ValentinoA. Di CristoF. PelusoG. CerrutiP. Di SalleA. CalarcoA. Cationic polymer nanoparticles-mediated delivery of miR-124 impairs tumorigenicity of prostate cancer cells.Int. J. Mol. Sci.202021386910.3390/ijms2103086932013257
    [Google Scholar]
  136. LiangG. ZhuY. JingA. WangJ. HuF. FengW. XiaoZ. ChenB. Cationic microRNA-delivering nanocarriers for efficient treatment of colon carcinoma in xenograft model.Gene Ther.2016231282983810.1038/gt.2016.6027482839
    [Google Scholar]
  137. TruongN.P. JiaZ. BurgessM. PayneL. McMillanN.A.J. MonteiroM.J. Self-catalyzed degradable cationic polymer for release of DNA.Biomacromolecules201112103540354810.1021/bm200742321838265
    [Google Scholar]
  138. TruongN.P. GuW. PrasadamI. JiaZ. CrawfordR. XiaoY. MonteiroM.J. An influenza virus-inspired polymer system for the timed release of siRNA.Nat. Commun.201341190210.1038/ncomms290523695696
    [Google Scholar]
  139. TarachP. JanaszewskaA. Recent advances in preclinical research using PAMAM dendrimers for cancer gene therapy.Int. J. Mol. Sci.2021226291210.3390/ijms2206291233805602
    [Google Scholar]
  140. Palmerston MendesL. PanJ. TorchilinV. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy.Molecules2017229140110.3390/molecules2209140128832535
    [Google Scholar]
  141. RenY. KangC.S. YuanX.B. ZhouX. XuP. HanL. WangG.X. JiaZ. ZhongY. YuS. ShengJ. PuP.Y. Co-delivery of as-miR-21 and 5-FU by poly(amidoamine) dendrimer attenuates human glioma cell growth in vitro.J. Biomater. Sci. Polym. Ed.201021330331410.1163/156856209X41582820178687
    [Google Scholar]
  142. RajasekaranD. SrivastavaJ. EbeidK. GredlerR. AkielM. JariwalaN. RobertsonC.L. ShenX.N. SiddiqA. FisherP.B. SalemA.K. SarkarD. Combination of nanoparticle-delivered siRNA for astrocyte elevated Gene-1 (AEG-1) and All- trans Retinoic Acid (ATRA): An effective therapeutic strategy for Hepatocellular Carcinoma (HCC).Bioconjug. Chem.20152681651166110.1021/acs.bioconjchem.5b0025426079152
    [Google Scholar]
  143. LutherD.C. HuangR. JeonT. ZhangX. LeeY.W. NagarajH. RotelloV.M. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles.Adv. Drug Deliv. Rev.202015618821310.1016/j.addr.2020.06.02032610061
    [Google Scholar]
  144. DingY JiangZ SahaK KimCS KimST LandisRF Gold nanoparticles for nucleic acid delivery.Mol. Ther.20142261075108310.1038/mt.2014.30
    [Google Scholar]
  145. ZhangS. GuptaS. FitzgeraldT.J. BogdanovA.A.Jr Dual radiosensitization and anti-STAT3 anti-proliferative strategy based on delivery of gold nanoparticle - oligonucleotide nanoconstructs to head and neck cancer cells.Nanotheranostics20182111110.7150/ntno.2233529291159
    [Google Scholar]
  146. CrewE. RahmanS. Razzak-JaffarA. MottD. KamundiM. YuG. TchahN. LeeJ. BellaviaM. ZhongC-J. ZhongC.J. MicroRNA conjugated gold nanoparticles and cell transfection.Anal. Chem.2012841262910.1021/ac202749p22148593
    [Google Scholar]
  147. WiklanderO.P.B. BrennanM.Á. LötvallJ. BreakefieldX.O. EL AndaloussiS. Advances in therapeutic applications of extracellular vesicles.Sci. Transl. Med.201911492eaav852110.1126/scitranslmed.aav852131092696
    [Google Scholar]
  148. KalluriR. LeBleuV.S. The biology, function, and biomedical applications of exosomes.Science20203676478eaau697710.1126/science.aau697732029601
    [Google Scholar]
  149. ValadiH. EkströmK. BossiosA. SjöstrandM. LeeJ.J. LötvallJ.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.Nat. Cell Biol.20079665465910.1038/ncb159617486113
    [Google Scholar]
  150. Alvarez-ErvitiL. SeowY. YinH. BettsC. LakhalS. WoodM.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes.Nat. Biotechnol.201129434134510.1038/nbt.180721423189
    [Google Scholar]
  151. KamerkarS. LeBleuV.S. SugimotoH. YangS. RuivoC.F. MeloS.A. LeeJ.J. KalluriR. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.Nature2017546765949850310.1038/nature2234128607485
    [Google Scholar]
  152. ZhouW. ZhouY. ChenX. NingT. ChenH. GuoQ. ZhangY. LiuP. ZhangY. LiC. ChuY. SunT. JiangC. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment.Biomaterials202126812054610.1016/j.biomaterials.2020.12054633253966
    [Google Scholar]
  153. KaseY. UzawaK. WagaiS. YoshimuraS. YamamotoJ.I. ToedaY. OkuboM. EizukaK. AndoT. NobuchiT. KawasakiK. SaitoT. IyodaM. NakashimaD. KasamatsuA. TanzawaH. Engineered exosomes delivering specific tumor-suppressive RNAi attenuate oral cancer progression.Sci. Rep.2021111589710.1038/s41598‑021‑85242‑133723306
    [Google Scholar]
  154. TaoH. XuH. ZuoL. LiC. QiaoG. GuoM. ZhengL. LeitgebM. LinX. Exosomes-coated bcl-2 siRNA inhibits the growth of digestive system tumors both in vitro and in vivo.Int. J. Biol. Macromol.202016147048010.1016/j.ijbiomac.2020.06.05232531356
    [Google Scholar]
  155. NagS. MitraO. TripathiG. AdurI. MohantoS. NamaM. SamantaS. GowdaB.H.J. SubramaniyanV. SundararajanV. KumarasamyV. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives.Photodiagn. Photodyn. Ther.20244510395910.1016/j.pdpdt.2023.10395938228257
    [Google Scholar]
  156. ZhaoL. GuC. GanY. ShaoL. ChenH. ZhuH. Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis.J. Control. Release202031811510.1016/j.jconrel.2019.12.00531830541
    [Google Scholar]
  157. BaiJ. DuanJ. LiuR. DuY. LuoQ. CuiY. SuZ. XuJ. XieY. LuW. Engineered targeting tLyp-1 exosomes as gene therapy vectors for efficient delivery of siRNA into lung cancer cells.Asian J. Pharmaceut. Sci.202015446147110.1016/j.ajps.2019.04.00232952669
    [Google Scholar]
  158. OhnoS TakanashiM SudoK UedaS IshikawaA MatsuyamaN Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells.Mol Ther20132111859110.1038/mt.2012.180
    [Google Scholar]
  159. NaseriZ OskueeRK JaafariMR Forouzandeh MoghadamM Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo.Int. J. Nanomed.2018137727774710.2147/IJN.S182384
    [Google Scholar]
  160. LiangG. ZhuY. AliD.J. TianT. XuH. SiK. SunB. ChenB. XiaoZ. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer.J. Nanobiotechnol.20201811010.1186/s12951‑019‑0563‑231918721
    [Google Scholar]
  161. Gomez-RomeroP. PokhriyalA. Rueda-GarcíaD. BengoaL.N. González-GilR.M. Hybrid materials: A metareview.Chem. Mater.202436182710.1021/acs.chemmater.3c0187838222940
    [Google Scholar]
  162. JulianoR.L. The delivery of therapeutic oligonucleotides.Nucleic Acids Res.201644146518654810.1093/nar/gkw23627084936
    [Google Scholar]
  163. AnwarS. MirF. YokotaT. Enhancing the effectiveness of oligonucleotide therapeutics using cell-penetrating peptide conjugation, chemical modification, and carrier-based delivery strategies.Pharmaceutics2023154113010.3390/pharmaceutics1504113037111616
    [Google Scholar]
  164. ParveenS. GuptaP. KumarS. BanerjeeM. Lipid polymer hybrid nanoparticles as potent vehicles for drug delivery in cancer therapeutics.Med. Drug Discov.20232010016510.1016/j.medidd.2023.100165
    [Google Scholar]
  165. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. AlcudiaA. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials (Basel)2020107140310.3390/nano1007140332707641
    [Google Scholar]
  166. HammondS.M. Aartsma-RusA. AlvesS. BorgosS.E. BuijsenR.A.M. CollinR.W.J. CovelloG. DentiM.A. DesviatL.R. EchevarríaL. FogedC. GainaG. GarantoA. GoyenvalleA.T. GuzowskaM. HolodnukaI. JonesD.R. KrauseS. LehtoT. MontolioM. Van Roon-MomW. Arechavala-GomezaV. Delivery of oligonucleotide-based therapeutics: Challenges and opportunities.EMBO Mol. Med.2021134e1324310.15252/emmm.20201324333821570
    [Google Scholar]
  167. ShaabaniE. SharifiaghdamM. De KeersmaeckerH. De RyckeR. De SmedtS. Faridi-MajidiR. BraeckmansK. FraireJ.C. Layer by layer assembled chitosan-coated gold nanoparticles for enhanced sirna delivery and silencing.Int. J. Mol. Sci.202122283110.3390/ijms2202083133467656
    [Google Scholar]
  168. HossenM.N. WangL. ChinthalapallyH.R. RobertsonJ.D. FungK.M. WilhelmS. BieniaszM. BhattacharyaR. MukherjeeP. Switching the intracellular pathway and enhancing the therapeutic efficacy of small interfering RNA by auroliposome.Sci. Adv.2020630eaba537910.1126/sciadv.aba537932743073
    [Google Scholar]
  169. ZhangZ. YaoS. HuY. ZhaoX. LeeR.J. Application of lipid-based nanoparticles in cancer immunotherapy.Front. Immunol.20221396750510.3389/fimmu.2022.96750536003395
    [Google Scholar]
  170. MaininiF. EcclesM.R. Lipid and polymer-based nanoparticle siRNA delivery systems for cancer therapy.Molecules20202511269210.3390/molecules2511269232532030
    [Google Scholar]
  171. BaiJ. DuanJ. LiuR. DuY. LuoQ. CuiY. SuZ. XuJ. XieY. LuW. Engineered targeting tLyp-1 exosomes as gene therapy vectors for efficient delivery of siRNA into lung cancer cells.Asian J. Pharmaceut. Sci.202015446147110.1016/j.ajps.2019.04.00232952669
    [Google Scholar]
  172. VarshosazJ. FarzanM. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma.World J. Gastroenterol.20152142120221204110.3748/wjg.v21.i42.1202226576089
    [Google Scholar]
  173. MossJ.A. HIV/AIDS review.Radiol. Technol.201384324726723322863
    [Google Scholar]
  174. BartlettJG MooreRD Improving HIV therapy.Sci Am19982791848910.1038/scientificamerican0798‑84
    [Google Scholar]
  175. MamoT. MosemanE.A. KolishettiN. Salvador-MoralesC. ShiJ. KuritzkesD.R. LangerR. AndrianU. FarokhzadO.C. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention.Nanomedicine (Lond.)20105226928510.2217/nnm.10.120148638
    [Google Scholar]
  176. Sameer KhanM. Jaswanth GowdaB.H. HasanN. GuptaG. SinghT. MdS. KesharwaniP. Carbon nanotube-mediated platinum-based drug delivery for the treatment of cancer: Advancements and future perspectives.Eur. Polym. J.202420611280010.1016/j.eurpolymj.2024.112800
    [Google Scholar]
  177. BhojaniM.S. Van DortM. RehemtullaA. RossB.D. Targeted imaging and therapy of brain cancer using theranostic nanoparticles.Mol. Pharm.2010761921192910.1021/mp100298r20964352
    [Google Scholar]
  178. FamS.Y. CheeC.F. YongC.Y. HoK.L. MariatulqabtiahA.R. TanW.S. Stealth coating of nanoparticles in drug-delivery systems.Nanomaterials (Basel)202010478710.3390/nano1004078732325941
    [Google Scholar]
  179. BehzadiS. SerpooshanV. TaoW. HamalyM.A. AlkawareekM.Y. DreadenE.C. BrownD. AlkilanyA.M. FarokhzadO.C. MahmoudiM. Cellular uptake of nanoparticles: Journey inside the cell.Chem. Soc. Rev.201746144218424410.1039/C6CS00636A28585944
    [Google Scholar]
  180. LiX. WangL. FanY. FengQ. CuiF. Biocompatibility and toxicity of nanoparticles and nanotubes.J. Nanomater.2012201211910.1155/2012/548389
    [Google Scholar]
  181. YetisginA.A. CetinelS. ZuvinM. KosarA. KutluO. Therapeutic nanoparticles and their targeted delivery applications.Molecules2020259219310.3390/molecules2509219332397080
    [Google Scholar]
  182. PoustforooshA. NematollahiM.H. HashemipourH. PardakhtyA. Recent advances in Bio-conjugated nanocarriers for crossing the Blood-Brain Barrier in (pre-)clinical studies with an emphasis on vesicles.J. Control. Release202234377779710.1016/j.jconrel.2022.02.01535183653
    [Google Scholar]
  183. HoshyarN. GrayS. HanH. BaoG. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction.Nanomedicine (Lond.)201611667369210.2217/nnm.16.527003448
    [Google Scholar]
  184. SanitàG. CarreseB. LambertiA. Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization.Front. Mol. Biosci.2020758701210.3389/fmolb.2020.58701233324678
    [Google Scholar]
  185. KostivU PatsulaV ŠloufM PongracIM ŠkokićS RadmilovićMD Physico-chemical characteristics, biocompatibility, and MRI applicability of novel monodisperse PEG-modified magnetic Fe 3 O 4 & SiO 2 core–shell nanoparticles.RSC Adv.201771587868797
    [Google Scholar]
  186. TerraccianoM. ShahbaziM.A. CorreiaA. ReaI. LambertiA. De StefanoL. SantosH.A. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery.Nanoscale2015747200632007410.1039/C5NR05173H26568517
    [Google Scholar]
  187. JiangY. LiY. RichardC. SchermanD. LiuY. Hemocompatibility investigation and improvement of near-infrared persistent luminescent nanoparticle ZnGa 2 O 4 :Cr 3+ by surface PEGylation.J. Mater. Chem. B Mater. Biol. Med.20197243796380310.1039/C9TB00378A
    [Google Scholar]
  188. de OliveiraG.M.T. de OliveiraE.M.N. PereiraT.C.B. PapaléoR.M. BogoM.R. Implications of exposure to dextran-coated and uncoated iron oxide nanoparticles to developmental toxicity in zebrafish.J. Nanopart. Res.2017191238910.1007/s11051‑017‑4074‑5
    [Google Scholar]
  189. BalasM. CiobanuC. BurteaC. StanM. BezirtzoglouE. PredoiD. DinischiotuA. Synthesis, characterization, and toxicity evaluation of dextran-coated iron oxide nanoparticles.Metals (Basel)2017726310.3390/met7020063
    [Google Scholar]
  190. WuQ. MiaoT. FengT. YangC. GuoY. LiH. Dextran‑coated superparamagnetic iron oxide nanoparticles activate the MAPK pathway in human primary monocyte cells.Mol. Med. Rep.201818156457010.3892/mmr.2018.897229749448
    [Google Scholar]
  191. HanN. WangY. BaiJ. LiuJ. WangY. GaoY. JiangT. KangW. WangS. Facile synthesis of the lipid bilayer coated mesoporous silica nanocomposites and their application in drug delivery.Microporous Mesoporous Mater.201621920921810.1016/j.micromeso.2015.08.006
    [Google Scholar]
  192. QieY. YuanH. von RoemelingC.A. ChenY. LiuX. ShihK.D. KnightJ.A. TunH.W. WharenR.E. JiangW. KimB.Y.S. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes.Sci. Rep.2016612626910.1038/srep2626927197045
    [Google Scholar]
  193. BoraschiD. ItalianiP. PalombaR. DecuzziP. DuschlA. FadeelB. MoghimiS.M. Nanoparticles and innate immunity: New perspectives on host defence.Semin. Immunol.201734335110.1016/j.smim.2017.08.01328869063
    [Google Scholar]
  194. BarberoF. RussoL. VitaliM. PiellaJ. SalvoI. BorrajoM.L. Busquets-FitéM. GrandoriR. BastúsN.G. CasalsE. PuntesV. Formation of the protein corona: The interface between nanoparticles and the immune system.Semin. Immunol.201734526010.1016/j.smim.2017.10.00129066063
    [Google Scholar]
  195. BanazadehM. BehnamB. GanjooeiN.A. GowdaB.H.J. KesharwaniP. SahebkarA. Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy.J. Drug Deliv. Sci. Technol.20238910504010.1016/j.jddst.2023.105040
    [Google Scholar]
  196. AhmadS. BhattacharyaD. KarS. RanganathanA. Van KaerL. DasG. Curcumin nanoparticles enhance mycobacterium bovis BCG Vaccine efficacy by modulating host immune responses.Infect. Immun.20198711e00291-1910.1128/IAI.00291‑1931481412
    [Google Scholar]
  197. PinzaruI CoricovacD DeheleanC MoacăEA MiocM BadercaF Stable PEG-coated silver nanoparticles - A comprehensive toxicological profile.Food Chem. Toxicol.2018111546556
    [Google Scholar]
  198. AbdollahM.R.A. CarterT.J. JonesC. KalberT.L. RajkumarV. TolnerB. GruettnerC. Zaw-ThinM. Baguña TorresJ. EllisM. RobsonM. PedleyR.B. MulhollandP. T M de RosalesR. ChesterK.A. Fucoidan prolongs the circulation time of dextran-coated iron oxide nanoparticles.ACS Nano20181221156116910.1021/acsnano.7b0673429341587
    [Google Scholar]
  199. ChenD. WangJ. WangY. ZhangF. DongX. JiangL. TangY. ZhangH. LiW. Promoting inter-/intra- cellular process of nanomedicine through its physicochemical properties optimization.Curr. Drug Metab.2018191758210.2174/138920021966617122112211929268683
    [Google Scholar]
  200. SukJS XuQ KimN HanesJ EnsignLM PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Adv. Drug Deliv. Rev.201699Pt A285110.1016/j.addr.2015.09.012
    [Google Scholar]
  201. BannunahA.M. VllasaliuD. LordJ. StolnikS. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: Effect of size and surface charge.Mol. Pharm.201411124363437310.1021/mp500439c25327847
    [Google Scholar]
  202. MuroE. PonsT. LequeuxN. FragolaA. SansonN. LenkeiZ. DubertretB. Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging.J. Am. Chem. Soc.2010132134556455710.1021/ja100549320235547
    [Google Scholar]
  203. ZhangL. XueH. CaoZ. KeefeA. WangJ. JiangS. Multifunctional and degradable zwitterionic nanogels for targeted delivery, enhanced MR imaging, reduction-sensitive drug release, and renal clearance.Biomaterials201132204604460810.1016/j.biomaterials.2011.02.06421453965
    [Google Scholar]
  204. MosqueraJ. Henriksen-LaceyM. GarcíaI. Martínez-CalvoM. RodríguezJ. MascareñasJ.L. Liz-MarzánL.M. Cellular uptake of gold nanoparticles triggered by host–guest interactions.J. Am. Chem. Soc.2018140134469447210.1021/jacs.7b1250529562135
    [Google Scholar]
  205. YangY. MengY. ZhangE. DingJ. A facile way to increase the cellular uptake efficiency of hybrid nanoparticles.J. Nanosci. Nanotechnol.20181874559456410.1166/jnn.2018.1535929442632
    [Google Scholar]
  206. Salahpour AnarjanF. Active targeting drug delivery nanocarriers: Ligands.Nano-Struct Nano-Obj20191910037010.1016/j.nanoso.2019.100370
    [Google Scholar]
  207. Fathian kolahkajF. DerakhshandehK. KhalesehF. AzandaryaniA.H. MansouriK. KhazaeiM. Active targeting carrier for breast cancer treatment: Monoclonal antibody conjugated epirubicin loaded nanoparticle.J. Drug Deliv. Sci. Technol.20195310113610.1016/j.jddst.2019.101136
    [Google Scholar]
  208. WuC.Y. LinJ.J. ChangW.Y. HsiehC.Y. WuC.C. ChenH.S. HsuH.J. YangA.S. HsuM.H. KuoW.Y. Development of theranostic active-targeting boron-containing gold nanoparticles for boron neutron capture therapy (BNCT).Colloids Surf. B Biointerfaces201918311038710.1016/j.colsurfb.2019.11038731394419
    [Google Scholar]
  209. LiC. CaiG. SongD. GaoR. TengP. ZhouL. JiQ. SuiH. CaiJ. LiQ. WangY. Development of EGFR-targeted evodiamine nanoparticles for the treatment of colorectal cancer.Biomater. Sci.2019793627363910.1039/C9BM00613C31328737
    [Google Scholar]
  210. ScheerenL.E. Nogueira-LibrelottoD.R. MacedoL.B. de VargasJ.M. MitjansM. VinardellM.P. RolimC.M.B. Transferrin-conjugated doxorubicin-loaded PLGA nanoparticles with pH-responsive behavior: A synergistic approach for cancer therapy.J. Nanopart. Res.20202237210.1007/s11051‑020‑04798‑7
    [Google Scholar]
  211. BalasM. CiobanuC.S. BurteaC. StanM.S. BezirtzoglouE. PredoiD. Synthesis, characterization, and toxicity evaluation of dextran-coated iron oxide nanoparticles.20177263
    [Google Scholar]
  212. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑037814270
    [Google Scholar]
  213. SenT. ThummerR.P. CRISPR and iPSCs: Recent developments and future perspectives in neurodegenerative disease modelling, research, and therapeutics.Neurotox. Res.20224051597162310.1007/s12640‑022‑00564‑w36044181
    [Google Scholar]
  214. Abbaszadeh-GoudarziK. NematollahiM.H. KhanbabaeiH. NaveH.H. MirzaeiH.R. PourghadamyariH. SahebkarA. Targeted Delivery of CRISPR/Cas13 as a promising therapeutic approach to treat SARS-CoV-2.Curr. Pharm. Biotechnol.20212291149115510.2174/18734316MTEwtNTgrw33038909
    [Google Scholar]
  215. BennettC.F. KrainerA.R. ClevelandD.W. Antisense oligonucleotide therapies for neurodegenerative diseases.Annu. Rev. Neurosci.201942138540610.1146/annurev‑neuro‑070918‑05050131283897
    [Google Scholar]
  216. DeleaveyG.F. DamhaM.J. Designing chemically modified oligonucleotides for targeted gene silencing.Chem. Biol.201219893795410.1016/j.chembiol.2012.07.01122921062
    [Google Scholar]
  217. KrzyszczykP. AcevedoA. DavidoffE.J. TimminsL.M. Marrero-BerriosI. PatelM. WhiteC. LoweC. SherbaJ.J. HartmanshennC. O’NeillK.M. BalterM.L. FritzZ.R. AndroulakisI.P. SchlossR.S. YarmushM.L. The growing role of precision and personalized medicine for cancer treatment.Technology (Singap.)2018603n047910010.1142/S233954781830002030713991
    [Google Scholar]
  218. XiongH. VeeduR.N. DiermeierS.D. Recent advances in oligonucleotide therapeutics in oncology.Int. J. Mol. Sci.2021227329510.3390/ijms2207329533804856
    [Google Scholar]
  219. ten HamR.M.T. NievaartJ.C. HoekmanJ. CooperR.S. FrederixG.W.J. LeufkensH.G.M. KlungelO.H. OvelgönneH. HoefnagelM.H.N. TurnerM.L. MountfordJ.C. Estimation of manufacturing development costs of cell-based therapies: A feasibility study.Cytotherapy202123873073910.1016/j.jcyt.2020.12.01433593688
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018306882240618093152
Loading
/content/journals/cdd/10.2174/0115672018306882240618093152
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): delivery systems; gapmers; miRNA; nanoparticles; nanotechnology; Oligonucleotides; siRNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test