Skip to content
2000
Volume 22, Issue 7
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Transdermal Drug Delivery Systems (TDDS) have gained attention as a viable substitute for traditional drug administration methods because of their controlled release capabilities and non-invasive design. Microneedles are a new and effective technology that has attracted a lot of attention recently to enhance the capabilities of TDDS further. The study on microneedles and their potential to improve transdermal medication delivery is thoroughly reviewed in this review article. The study initiates by clarifying the difficulties linked to traditional medication delivery techniques and the benefits provided by transdermal channels. The article then explores the development of microneedle technology, outlining the several kinds of microneedles-solid, hollow, and dissolving-as well as their uses. Because of their special capacity to penetrate the skin's protective layer painlessly and their ability to distribute drugs precisely and accurately, microneedles are a highly useful instrument in pharmaceutical research. The materials, geometry, and manufacturing processes that affect the design and creation of microneedles are critically analyzed and presented. The manuscript delves into the latest developments in microneedle technology, encompassing the utilization of biodegradable polymers, smart materials, and sensing components for in-the-moment monitoring. This analysis concludes by highlighting the noteworthy advancements in the field of microneedles and their potential to transform transdermal drug delivery systems. This thorough knowledge seeks to further the current discussion in pharmaceutical research, encouraging creativity and opening the door for the creation of safer, more effective drug delivery systems.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018301931240624072453
2024-07-18
2025-09-17
Loading full text...

Full text loading...

References

  1. ShaikhR. O’BrienD.P. CrokerD.M. WalkerG.M. The development of a pharmaceutical oral solid dosage forms.Computer Aided Chemical EngineeringElsevier2018Vol. 41276510.1016/B978‑0‑444‑63963‑9.00002‑6
    [Google Scholar]
  2. GunasekaranT. HaileT. NigusseT. DhanarajuM.D. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine.Asian Pac. J. Trop. Biomed.20144Suppl. 1S1S710.12980/APJTB.4.2014C98025183064
    [Google Scholar]
  3. PatelV. LalaniR. BardoliwalaD. GhoshS. MisraA. Lipid-based oral formulation strategies for lipophilic drugs.AAPS PharmSciTech20181983609363010.1208/s12249‑018‑1188‑830255474
    [Google Scholar]
  4. ThankiK. GangwalR.P. SangamwarA.T. JainS. Oral delivery of anticancer drugs: Challenges and opportunities.J. Control. Release20131701154010.1016/j.jconrel.2013.04.02023648832
    [Google Scholar]
  5. ZhaoJ. YangJ. XieY. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview.Int. J. Pharm.201957011864210.1016/j.ijpharm.2019.11864231446024
    [Google Scholar]
  6. BainesM. Nausea and vomiting in the patient with advanced cancer.J. Pain Symptom Manage.198832818510.1016/0885‑3924(88)90165‑03356918
    [Google Scholar]
  7. DeshpandeA.A. RhodesC.T. ShahN.H. MalickA.W. Controlled-release drug delivery systems for prolonged gastric residence: An overview.Drug Dev. Ind. Pharm.199622653153910.3109/03639049609108355
    [Google Scholar]
  8. GuptaS. JainA. ChakrabortyM. SahniJ.K. AliJ. DangS. Oral delivery of therapeutic proteins and peptides: a review on recent developments.Drug Deliv.201320623724610.3109/10717544.2013.81961123869787
    [Google Scholar]
  9. HejaziR. AmijiM. Chitosan-based gastrointestinal delivery systems.J. Control. Release200389215116510.1016/S0168‑3659(03)00126‑312711440
    [Google Scholar]
  10. TyagiP. PechenovS. Anand SubramonyJ. Oral peptide delivery: Translational challenges due to physiological effects.J. Control. Release201828716717610.1016/j.jconrel.2018.08.03230145135
    [Google Scholar]
  11. LarrañetaE. LuttonR.E.M. WoolfsonA.D. DonnellyR.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development.Mater. Sci. Eng. Rep.201610413210.1016/j.mser.2016.03.001
    [Google Scholar]
  12. VoraL.K. MoffattK. TekkoI.A. ParedesA.J. Volpe-ZanuttoF. MishraD. PengK. Raj Singh ThakurR. DonnellyR.F. Microneedle array systems for long-acting drug delivery.Eur. J. Pharm. Biopharm.2021159447610.1016/j.ejpb.2020.12.00633359666
    [Google Scholar]
  13. HuttonA.R.J. KirkbyM. Van BogaertT. CasteelsP. NonneC. De BrabandereV. de VyverO.V. VoraL.K. TekkoI.A. McCarthyH.O. DonnellyR.F. Transdermal Administration of Nanobody Molecules using Hydrogel‐Forming Microarray Patch Technology: A Unique Delivery Approach.Macromol. Mater. Eng.20242400029240002910.1002/mame.202400029
    [Google Scholar]
  14. BariyaS.H. GohelM.C. MehtaT.A. SharmaO.P. Microneedles: an emerging transdermal drug delivery system.J. Pharm. Pharmacol.2011641112910.1111/j.2042‑7158.2011.01369.x22150668
    [Google Scholar]
  15. CheungK. DasD.B. Microneedles for drug delivery: trends and progress.Drug Deliv.20162372338235410.3109/10717544.2014.98630925533874
    [Google Scholar]
  16. MohiteP. PatelM. PuriA. PawarA. SinghS. PrajapatiB. Revisiting the advancement with painless microneedles for the diagnosis and treatment of dermal infections: A review.Nanofabrication2023810.37819/nanofab.8.332
    [Google Scholar]
  17. AroraA. PrausnitzM.R. MitragotriS. Micro-scale devices for transdermal drug delivery.Int. J. Pharm.2008364222723610.1016/j.ijpharm.2008.08.03218805472
    [Google Scholar]
  18. BajracharyaR. SongJ.G. BackS.Y. HanH.K. Recent Advancements in Non-Invasive Formulations for Protein Drug Delivery.Comput. Struct. Biotechnol. J.2019171290130810.1016/j.csbj.2019.09.00431921395
    [Google Scholar]
  19. ParhiR. Recent advances in microneedle designs and their applications in drug and cosmeceutical delivery.J. Drug Deliv. Sci. Technol.20227510363910.1016/j.jddst.2022.103639
    [Google Scholar]
  20. SartawiZ. BlackshieldsC. FaisalW. Dissolving microneedles: Applications and growing therapeutic potential.J. Control. Release202234818620510.1016/j.jconrel.2022.05.04535662577
    [Google Scholar]
  21. AzmanaM. MahmoodS. HillesA.R. MandalU.K. Saeed Al-JapairaiK.A. RamanS. Transdermal drug delivery system through polymeric microneedle: A recent update.J. Drug Deliv. Sci. Technol.20206010187710.1016/j.jddst.2020.101877
    [Google Scholar]
  22. AliM. NamjoshiS. BensonH.A.E. MohammedY. KumeriaT. Dissolvable polymer microneedles for drug delivery and diagnostics.J. Control. Release202234756158910.1016/j.jconrel.2022.04.04335525331
    [Google Scholar]
  23. SinghP. CarrierA. ChenY. LinS. WangJ. CuiS. ZhangX. Polymeric microneedles for controlled transdermal drug delivery.J. Control. Release20193159711310.1016/j.jconrel.2019.10.02231644938
    [Google Scholar]
  24. AryaJ. PrausnitzM.R. Microneedle patches for vaccination in developing countries.J. Control Release201624013514110.1016/j.jconrel.2015.11.01926603347
    [Google Scholar]
  25. MoffattK. WangY. Raj SinghT.R. DonnellyR.F. Microneedles for enhanced transdermal and intraocular drug delivery.Curr. Opin. Pharmacol.201736142110.1016/j.coph.2017.07.00728780407
    [Google Scholar]
  26. McConvilleA. HegartyC. DavisJ. Mini-Review: Assessing the Potential Impact of Microneedle Technologies on Home Healthcare Applications.Medicines (Basel)2018525010.3390/medicines502005029890643
    [Google Scholar]
  27. LiD. HuD. XuH. PatraH.K. LiuX. ZhouZ. TangJ. SlaterN. ShenY. Progress and perspective of microneedle system for anti-cancer drug delivery.Biomaterials202126412041010.1016/j.biomaterials.2020.12041032979655
    [Google Scholar]
  28. McAlisterE. KirkbyM. Domínguez-RoblesJ. ParedesA.J. AnjaniQ.K. MoffattK. VoraL.K. HuttonA.R.J. McKennaP.E. LarrañetaE. DonnellyR.F. The role of microneedle arrays in drug delivery and patient monitoring to prevent diabetes induced fibrosis.Adv. Drug Deliv. Rev.202117511382510.1016/j.addr.2021.06.00234111467
    [Google Scholar]
  29. QuinnH.L. KearneyM.C. CourtenayA.J. McCruddenM.T.C. DonnellyR.F. The role of microneedles for drug and vaccine delivery.Expert Opin. Drug Deliv.201411111769178010.1517/17425247.2014.93863525020088
    [Google Scholar]
  30. HossainM.K. AhmedT. BhusalP. SubediR.K. SalahshooriI. SoltaniM. HassanzadeganroudsariM. Microneedle Systems for Vaccine Delivery: the story so far.Expert Rev. Vaccines202019121153116610.1080/14760584.2020.187492833427523
    [Google Scholar]
  31. KimY.C. ParkJ.H. PrausnitzM.R. Microneedles for drug and vaccine delivery.Adv. Drug Deliv. Rev.201264141547156810.1016/j.addr.2012.04.00522575858
    [Google Scholar]
  32. NormanJ.J. AryaJ.M. McClainM.A. FrewP.M. MeltzerM.I. PrausnitzM.R. Microneedle patches: Usability and acceptability for self-vaccination against influenza.Vaccine201432161856186210.1016/j.vaccine.2014.01.07624530146
    [Google Scholar]
  33. RajputA. KulkarniM. DeshmukhP. PingaleP. GarkalA. GandhiS. ButaniS. A key role by polymers in microneedle technology: A new era.Drug Dev. Ind. Pharm.202147111713173210.1080/03639045.2022.205853135332822
    [Google Scholar]
  34. ShravanthS.H. OsmaniR.A.M. LJ.S. AnupamaV.P. RahamathullaM. GangadharappaH.V. Microneedles-based drug delivery for the treatment of psoriasis.J. Drug Deliv. Sci. Technol.20216410266810.1016/j.jddst.2021.102668
    [Google Scholar]
  35. YeY. YuJ. WenD. KahkoskaA.R. GuZ. Polymeric microneedles for transdermal protein delivery.Adv. Drug Deliv. Rev.201812710611810.1016/j.addr.2018.01.01529408182
    [Google Scholar]
  36. CourtenayA.J. McAlisterE. McCruddenM.T.C. VoraL. SteinerL. LevinG. Levy-NissenbaumE. ShtermanN. KearneyM.C. McCarthyH.O. DonnellyR.F. Hydrogel-forming microneedle arrays as a therapeutic option for transdermal esketamine delivery.J. Control Release202032217718610.1016/j.jconrel.2020.03.02632200001
    [Google Scholar]
  37. LeeM.S. PanC.X. NambudiriV.E. Transdermal approaches to vaccinations in the COVID-19 pandemic era.Ther. Adv. Vaccines Immunother.2021910.1177/2515135521103907334447901
    [Google Scholar]
  38. AldawoodF.K. AndarA. DesaiS. A Comprehensive review of microneedles: Types, materials, processes, characterizations and applications.Polymers20211316281510.3390/polym1316281534451353
    [Google Scholar]
  39. PengT. ChenY. HuW. HuangY. ZhangM. LuC. PanX. WuC. Microneedles for enhanced topical treatment of skin disorders: Applications, challenges, and prospects.Engineering20233017018910.1016/j.eng.2023.05.009
    [Google Scholar]
  40. Escobar-ChávezJ.J. Bonilla-MartínezD. AngélicaM. Villegas-González Molina-TrinidadE. Casas-AlancasterN. Revilla-VázquezA.L. Microneedles: A valuable physical enhancer to increase transdermal drug delivery.J. Clin. Pharmacol.201151796497710.1177/009127001037885921148047
    [Google Scholar]
  41. IndermunS. LuttgeR. ChoonaraY.E. KumarP. du ToitL.C. ModiG. PillayV. Current advances in the fabrication of microneedles for transdermal delivery.J. Control. Release201418513013810.1016/j.jconrel.2014.04.05224806483
    [Google Scholar]
  42. JungJ.H. JinS.G. Microneedle for transdermal drug delivery: Current trends and fabrication.J. Pharm. Investig.202151550351710.1007/s40005‑021‑00512‑433686358
    [Google Scholar]
  43. NguyenT.T. NguyenT.T.D. TranN.M.A. VoG.V. Advances of microneedles in hormone delivery.Biomed. Pharmacother.202214511239310.1016/j.biopha.2021.11239334773762
    [Google Scholar]
  44. SabriA.H. OgilvieJ. AbdulhamidK. ShpadarukV. McKennaJ. SegalJ. ScurrD.J. MarlowM. Expanding the applications of microneedles in dermatology.Eur. J. Pharm. Biopharm.201914012114010.1016/j.ejpb.2019.05.00131059780
    [Google Scholar]
  45. EltayibE.M. HimawanA. DetamornratU. MuhtadiW.K. LiH. LiL. VoraL. DonnellyR.F. Porous microneedle arrays as promising tools for the quantification of drugs in the skin: a proof of concept study.Pharm. Dev. Technol.202429316417510.1080/10837450.2024.231973438363720
    [Google Scholar]
  46. HenryS. McAllisterD.V. AllenM.G. PrausnitzM.R. Microfabricated microneedles: a novel approach to transdermal drug delivery.J. Pharm. Sci.199887892292510.1021/js980042+9687334
    [Google Scholar]
  47. PrausnitzM.R. Microneedles for transdermal drug delivery.Adv. Drug Deliv. Rev.200456558158710.1016/j.addr.2003.10.02315019747
    [Google Scholar]
  48. Pradeep NarayananS. RaghavanS. Solid silicon microneedles for drug delivery applications.Int. J. Adv. Manuf. Technol.2017931-440742210.1007/s00170‑016‑9698‑6
    [Google Scholar]
  49. LiuJ. HuA. YangY. HuangS. MaoJ. LiuY. ChenC. ChengZ. LiuW. Recent advances and perspectives of microneedles as transdermal delivery vehicles for analgesic medications.J. Drug Deliv. Sci. Technol.20238410451810.1016/j.jddst.2023.104518
    [Google Scholar]
  50. SharmaS. HatwareK. BhadaneP. SindhikarS. MishraD.K. Recent advances in microneedle composites for biomedical applications: Advanced drug delivery technologies.Mater. Sci. Eng. C201910310971710.1016/j.msec.2019.05.00231349403
    [Google Scholar]
  51. LeeJ.W. ParkJ.H. PrausnitzM.R. Dissolving microneedles for transdermal drug delivery.Biomaterials200829132113212410.1016/j.biomaterials.2007.12.04818261792
    [Google Scholar]
  52. GillH.S. PrausnitzM.R. Coated microneedles for transdermal delivery.J. Control Release2007117222723710.1016/j.jconrel.2006.10.01717169459
    [Google Scholar]
  53. DonnellyR.F. SinghT.R.R. WoolfsonA.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety.Drug Deliv.201017418720710.3109/1071754100366779820297904
    [Google Scholar]
  54. LyuS. DongZ. XuX. BeiH.P. YuenH.Y. James CheungC.W. WongM.S. HeY. ZhaoX. Going below and beyond the surface: Microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration.Bioact. Mater.20232730332610.1016/j.bioactmat.2023.04.00337122902
    [Google Scholar]
  55. AdepuS. RamakrishnaS. Controlled drug delivery systems: Current status and future directions.Molecules20212619590510.3390/molecules2619590534641447
    [Google Scholar]
  56. Fathi-KarkanS. HeidarzadehM. NarmiM.T. MardiN. AminiH. SaghatiS. AbrbekohF.N. SaghebaslS. RahbarghaziR. KhoshfetratA.B. Exosome-loaded microneedle patches: Promising factor delivery route.Int. J. Biol. Macromol.202324312523210.1016/j.ijbiomac.2023.12523237302628
    [Google Scholar]
  57. GillH.S. PrausnitzM.R. Coating formulations for microneedles.Pharm. Res.20072471369138010.1007/s11095‑007‑9286‑417385011
    [Google Scholar]
  58. ItaK. Transdermal delivery of drugs with microneedles: Strategies and outcomes.J. Drug Deliv. Sci. Technol.201529162310.1016/j.jddst.2015.05.001
    [Google Scholar]
  59. BurtonS.A. NgC.Y. SimmersR. MoecklyC. BrandweinD. GilbertT. JohnsonN. BrownK. AlstonT. ProchnowG. SiebenalerK. HansenK. Rapid intradermal delivery of liquid formulations using a hollow microstructured array.Pharm. Res.2011281314010.1007/s11095‑010‑0177‑820582455
    [Google Scholar]
  60. SivamaniR.K. LiepmannD. MaibachH.I. Microneedles and transdermal applications.Expert Opin. Drug Deliv.200741192510.1517/17425247.4.1.1917184159
    [Google Scholar]
  61. WaghuleT. SinghviG. DubeyS.K. PandeyM.M. GuptaG. SinghM. DuaK. Microneedles: A smart approach and increasing potential for transdermal drug delivery system.Biomed. Pharmacother.20191091249125810.1016/j.biopha.2018.10.07830551375
    [Google Scholar]
  62. MartantoW. DavisS.P. HolidayN.R. WangJ. GillH.S. PrausnitzM.R. Transdermal delivery of insulin using microneedles in vivo.Pharm. Res.200421694795210.1023/B:PHAM.0000029282.44140.2e15212158
    [Google Scholar]
  63. ChenX. WangL. YuH. LiC. FengJ. HaqF. KhanA. KhanR.U. Preparation, properties and challenges of the microneedles-based insulin delivery system.J. Control. Release201828817318810.1016/j.jconrel.2018.08.04230189223
    [Google Scholar]
  64. YinZ. KuangD. WangS. ZhengZ. YadavalliV.K. LuS. Swellable silk fibroin microneedles for transdermal drug delivery.Int. J. Biol. Macromol.2018106485610.1016/j.ijbiomac.2017.07.17828778522
    [Google Scholar]
  65. MdandaS. UbanakoP. KondiahP.P.D. KumarP. ChoonaraY.E. Recent advances in microneedle platforms for transdermal drug delivery technologies.Polymers20211315240510.3390/polym1315240534372008
    [Google Scholar]
  66. DonnellyR.F. GarlandM.J. MorrowD.I.J. MigalskaK. SinghT.R.R. MajithiyaR. WoolfsonA.D. Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution.J. Control. Release2010147333334110.1016/j.jconrel.2010.08.00820727929
    [Google Scholar]
  67. KalluriH. BangaA.K. Formation and closure of microchannels in skin following microporation.Pharm. Res.2011281829410.1007/s11095‑010‑0122‑x20354766
    [Google Scholar]
  68. YangG. HeM. ZhangS. WuM. GaoY. An acryl resin-based swellable microneedles for controlled release intradermal delivery of granisetron.Drug Dev. Ind. Pharm.201844580881610.1080/03639045.2017.141423029216752
    [Google Scholar]
  69. PriyaS. SinghviG. Microneedles-based drug delivery strategies: A breakthrough approach for the management of pain.Biomed. Pharmacother.202215511371710.1016/j.biopha.2022.11371736174381
    [Google Scholar]
  70. PengK. VoraL.K. Domínguez-RoblesJ. NaserY.A. LiM. LarrañetaE. DonnellyR.F. Hydrogel-forming microneedles for rapid and efficient skin deposition of controlled release tip-implants.Mater. Sci. Eng. C202112711222610.1016/j.msec.2021.11222634225871
    [Google Scholar]
  71. Faraji RadZ. PrewettP.D. DaviesG.J. An overview of microneedle applications, materials, and fabrication methods.Beilstein J. Nanotechnol.2021121034104610.3762/bjnano.12.7734621614
    [Google Scholar]
  72. RodgersA.M. CordeiroA.S. DonnellyR.F. Technology update: dissolvable microneedle patches for vaccine delivery.Med. Devices20191237939810.2147/MDER.S19822031572025
    [Google Scholar]
  73. UmeyorC.E. ShelkeV. PolA. KolekarP. JadhavS. TiwariN. AnureA. NayakA. BairagiG. AgaleA. RautV. BahadureS. ChaudhariA. PatravaleV.B. Biomimetic microneedles: exploring the recent advances on a microfabricated system for precision delivery of drugs, peptides, and proteins.Fut. J. Pharm. Sci.20239110310.1186/s43094‑023‑00553‑6
    [Google Scholar]
  74. BhatnagarS. GadeelaP.R. ThathireddyP. VenugantiV.V.K. Microneedle-based drug delivery: Materials of construction.J. Chem. Sci.201913199010.1007/s12039‑019‑1666‑x
    [Google Scholar]
  75. ItaK. Ceramic microneedles and hollow microneedles for transdermal drug delivery: Two decades of research.J. Drug Deliv. Sci. Technol.20184431432210.1016/j.jddst.2018.01.004
    [Google Scholar]
  76. ParkJ.H. AllenM.G. PrausnitzM.R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery.J. Control. Release20051041516610.1016/j.jconrel.2005.02.00215866334
    [Google Scholar]
  77. ZhangL. DuW. LiX. LingG. ZhangP. Dissolving microneedles based on polysaccharide for dermatological diseases therapy.J. Drug Deliv. Sci. Technol.20227810391310.1016/j.jddst.2022.103913
    [Google Scholar]
  78. KimH. TheogarajanL.S. PennathurS. A repeatable and scalable fabrication method for sharp, hollow silicon microneedles.J. Micromech. Microeng.201828303500710.1088/1361‑6439/aaa6a8
    [Google Scholar]
  79. SargiotiN. LevingstoneT.J. O’CearbhaillE.D. McCarthyH.O. DunneN.J. Metallic microneedles for transdermal drug delivery: applications, fabrication techniques and the effect of geometrical characteristics.Bioengineering20221012410.3390/bioengineering1001002436671595
    [Google Scholar]
  80. ZhangL. GuoR. WangS. YangX. LingG. ZhangP. Fabrication, evaluation and applications of dissolving microneedles.Int. J. Pharm.202160412074910.1016/j.ijpharm.2021.12074934051319
    [Google Scholar]
  81. BorandehS. van BochoveB. TeotiaA. SeppäläJ. Polymeric drug delivery systems by additive manufacturing.Adv. Drug Deliv. Rev.202117334937310.1016/j.addr.2021.03.02233831477
    [Google Scholar]
  82. BashyalS. ShinC.Y. HyunS.M. JangS.W. LeeS. Preparation, characterization, and in vivo pharmacokinetic evaluation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogels for transdermal delivery of donepezil HCl.Pharmaceutics202012327010.3390/pharmaceutics1203027032188083
    [Google Scholar]
  83. RamadonD. MuliawardaniF. NisrinaN.A. Tri HamdaO. IswandanaR. WahyuniT. KurniawanA. HartriantiP. Transdermal delivery of captopril using poly(vinyl pyrrolidone)/poly(vinyl alcohol)-based dissolving and hydrogel-forming microneedles: A proof of concept.Eur. Polym. J.202420811286010.1016/j.eurpolymj.2024.112860
    [Google Scholar]
  84. KangS. SongJ.E. JunS.H. ParkS.G. KangN.G. Sugar-triggered burst drug releasing poly-lactic acid (pla) microneedles and its fabrication based on solvent-casting approach.Pharmaceutics2022149175810.3390/pharmaceutics1409175836145506
    [Google Scholar]
  85. KoP.T. LeeI.C. ChenM.C. TsaiS.W. Polymer microneedles fabricated from PCL and PCL/PEG blends for transdermal delivery of hydrophilic compounds.J. Taiwan Inst. Chem. Eng.2015511810.1016/j.jtice.2015.01.003
    [Google Scholar]
  86. ChiuY.H. ChenM.C. WanS.W. Sodium hyaluronate/chitosan composite microneedles as a single-dose intradermal immunization system.Biomacromolecules20181962278228510.1021/acs.biomac.8b0044129722966
    [Google Scholar]
  87. DuW. LiX. ZhangM. LingG. ZhangP. Investigation of the antibacterial properties of hyaluronic acid microneedles based on chitosan and MoS 2.J. Mater. Chem. B Mater. Biol. Med.202311307169718110.1039/D3TB00755C37403938
    [Google Scholar]
  88. GopanG. JoseJ. KhotK.B. BandiwadekarA. The use of cellulose, chitosan and hyaluronic acid in transdermal therapeutic management of obesity: A review.Int. J. Biol. Macromol.202324412537410.1016/j.ijbiomac.2023.12537437330096
    [Google Scholar]
  89. PahalS. BadnikarK. GhateV. BhutaniU. NayakM.M. SubramanyamD.N. VemulaP.K. Microneedles for extended transdermal therapeutics: a route to advanced healthcare.Eur. J. Pharm. Biopharm.202115915116910.1016/j.ejpb.2020.12.02033388372
    [Google Scholar]
  90. Ahmed Saeed AL-JapairaiK. MahmoodS. Hamed AlmurisiS. Reddy VenugopalJ. Rebhi HillesA. AzmanaM. RamanS. Current trends in polymer microneedle for transdermal drug delivery.Int. J. Pharm.202058711967310.1016/j.ijpharm.2020.119673
    [Google Scholar]
  91. DabholkarN. GorantlaS. WaghuleT. RapalliV.K. KothuruA. GoelS. SinghviG. Biodegradable microneedles fabricated with carbohydrates and proteins: Revolutionary approach for transdermal drug delivery.Int. J. Biol. Macromol.202117060262110.1016/j.ijbiomac.2020.12.17733387545
    [Google Scholar]
  92. OlatunjiO. Al-QallafB. Bhusan DasD. Transdermal Drug Delivery Using Microneedles.Current Technologies To Increase The Transdermal Delivery Of Drugs. Juan Escobar-ChávezJ. MerinoV. BENTHAM SCIENCE PUBLISHERS20109611910.2174/978160805191511001010096
    [Google Scholar]
  93. LiuT. ChenM. FuJ. SunY. LuC. QuanG. PanX. WuC. Recent advances in microneedles-mediated transdermal delivery of protein and peptide drugs.Acta Pharm. Sin. B20211182326234310.1016/j.apsb.2021.03.00334522590
    [Google Scholar]
  94. van der MaadenK. LuttgeR. VosP.J. BouwstraJ. KerstenG. PloemenI. Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays.Drug Deliv. Transl. Res.20155439740610.1007/s13346‑015‑0238‑y26044672
    [Google Scholar]
  95. van der MaadenK. JiskootW. BouwstraJ. Microneedle technologies for (trans)dermal drug and vaccine delivery.J. Control. Release2012161264565510.1016/j.jconrel.2012.01.04222342643
    [Google Scholar]
  96. HaoY. LiW. ZhouX. YangF. QianZ. Microneedles-based transdermal drug delivery systems: A Review.j biomed nanotechnol.201713121581159710.1166/jbn.2017.2474
    [Google Scholar]
  97. AvcilM. AkmanG. KlokkersJ. JeongD. ÇelikA. Efficacy of bioactive peptides loaded on hyaluronic acid microneedle patches: A monocentric clinical study.J. Cosmet. Dermatol.202019232833710.1111/jocd.1300931134751
    [Google Scholar]
  98. YadavS. SinghA. Microneedling: Advances and widening horizons.Indian Dermatol. Online J.20167424425410.4103/2229‑5178.18546827559496
    [Google Scholar]
  99. McCruddenM.T.C. McAlisterE. CourtenayA.J. González-VázquezP. Raj SinghT.R. DonnellyR.F. Microneedle applications in improving skin appearance.Exp. Dermatol.201524856156610.1111/exd.1272325865925
    [Google Scholar]
  100. ZhangY. XuY. KongH. ZhangJ. ChanH.F. WangJ. ShaoD. TaoY. LiM. Microneedle system for tissue engineering and regenerative medicine.Exploration2023312021017010.1002/EXP.2021017037323624
    [Google Scholar]
  101. LiuG.S. KongY. WangY. LuoY. FanX. XieX. YangB.R. WuM.X. Microneedles for transdermal diagnostics: Recent advances and new horizons.Biomaterials202023211974010.1016/j.biomaterials.2019.11974031918227
    [Google Scholar]
  102. YangJ. LuoR. YangL. WangX. HuangY. Microneedle-integrated sensors for extraction of skin interstitial fluid and metabolic analysis.Int. J. Mol. Sci.20232412988210.3390/ijms2412988237373027
    [Google Scholar]
  103. ZhangX. ZhangW. WuW. ChenJ. Recent advances in the preparation of microneedle patches for interstitial fluid extraction and analysis.Microchem. J.202319510947710.1016/j.microc.2023.109477
    [Google Scholar]
  104. RousselS. UdabeJ. Bin SabriA. CalderónM. DonnellyR. Leveraging novel innovative thermoresponsive polymers in microneedles for targeted intradermal deposition.Int. J. Pharm.202465212384710.1016/j.ijpharm.2024.12384738266945
    [Google Scholar]
  105. AmarnaniR. ShendeP. Microneedles in diagnostic, treatment and theranostics: An advancement in minimally-invasive delivery system.Biomed. Microdevices2022241410.1007/s10544‑021‑00604‑w34878589
    [Google Scholar]
  106. BabaieS. TaghvimiA. HongJ.H. HamishehkarH. AnS. KimK.H. Recent advances in pain management based on nanoparticle technologies.J. Nanobiotechnology202220129010.1186/s12951‑022‑01473‑y35717383
    [Google Scholar]
  107. StamenkovicD.M. BezmarevicM. BojicS. Unic-StojanovicD. StojkovicD. SlavkovicD.Z. BancevicV. MaricN. KaranikolasM. Updates on wound infiltration use for postoperative pain management: A narrative review.J. Clin. Med.20211020465910.3390/jcm1020465934682777
    [Google Scholar]
  108. YangJ. LiuX. FuY. SongY. Recent advances of microneedles for biomedical applications: Drug delivery and beyond.Acta Pharm. Sin. B20199346948310.1016/j.apsb.2019.03.00731193810
    [Google Scholar]
  109. Microneedle Drug Delivery Systems Market.Available from: https://www.persistencemarketresearch.com/market-research/microneedle-drug-delivery-systems-market.asp(Accessed on 20-5-2024)
  110. DoddaballapurS. Microneedling with dermaroller.J. Cutan. Aesthet. Surg.20092211011110.4103/0974‑2077.5852920808602
    [Google Scholar]
  111. HalderJ. GuptaS. KumariR. GuptaG.D. RaiV.K. Microneedle array: Applications, recent advances, and clinical pertinence in transdermal drug delivery.J. Pharm. Innov.202116355856510.1007/s12247‑020‑09460‑232837607
    [Google Scholar]
  112. LimD.J. KimH.J. Microneedles in action: Microneedling and microneedles-assisted transdermal delivery.Polymers2022148160810.3390/polym1408160835458358
    [Google Scholar]
  113. KaurB. ThakurN. GoswamiM. Microneedles a possible successor technology for tdds: A patent analysis.Int J App Pharm.20232023102210.22159/ijap.2023v15i2.47076
    [Google Scholar]
  114. GanesonK. AliasA.H. MurugaiyahV. AmirulA.A.A. RamakrishnaS. VigneswariS. Microneedles for efficient and precise drug delivery in cancer therapy.Pharmaceutics202315374410.3390/pharmaceutics1503074436986606
    [Google Scholar]
  115. GloverK. MishraD. GadeS. VoraL.K. WuY. ParedesA.J. DonnellyR.F. SinghT.R.R. Microneedles for advanced ocular drug delivery.Adv. Drug Deliv. Rev.202320111508210.1016/j.addr.2023.11508237678648
    [Google Scholar]
  116. LuoX. YangL. CuiY. Microneedles: materials, fabrication, and biomedical applications.Biomed. Microdevices20232532010.1007/s10544‑023‑00658‑y37278852
    [Google Scholar]
  117. AvcilM. ÇelikA. Microneedles in drug delivery: Progress and challenges.Micromachines20211211132110.3390/mi1211132134832733
    [Google Scholar]
  118. ChegeM. McConvilleA. DavisJ. Microneedle drug delivery systems: Appraising opportunities for improving safety and assessing areas of concern.J. Chem. Health Saf.201724261410.1016/j.jchas.2016.04.008
    [Google Scholar]
  119. Tuan-MahmoodT.M. McCruddenM.T.C. TorrisiB.M. McAlisterE. GarlandM.J. SinghT.R.R. DonnellyR.F. Microneedles for intradermal and transdermal drug delivery.Eur. J. Pharm. Sci.201350562363710.1016/j.ejps.2013.05.00523680534
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018301931240624072453
Loading
/content/journals/cdd/10.2174/0115672018301931240624072453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test