Skip to content
2000
Volume 22, Issue 7
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Introduction/Objectives

The purpose of the study was to evaluate the suitability of mixed micelles prepared with D-α-tocopheryl polyethylene glycol succinate (TPGS) and 1,2-distearoyl-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-PEG) to encapsulate the poorly soluble anticancer drug fenretinide (4-HPR).

Methods

After assaying the solubilization ability of the surfactants by the equilibrium method, the micelles were prepared using the solvent casting technique starting from different 4-HPR:TPGS: DSPE-PEG w/w ratios. The resulting formulations were investigated for their stability under storage conditions and upon dilution, modelling the reaching of physiological concentrations after intravenous administration. The characterization of micelles included the determination of DL%, EE %, particle size distribution, Z-potential, and thermal analysis by DSC. The cytotoxicity studies were performed on HTLA-230 and SK-N-BE-2C neuroblastoma cells by the MTT essay.

Results

The colloidal dispersions showed a mean diameter of 12 nm, negative Zeta potential, and a narrow dimensional distribution. 4-HPR was formulated in the mixed micelles with an encapsulation efficiency of 88% and with an increment of the apparent solubility of 363-fold. The 4-HPR entrapment remained stable up to the surfactants’ concentration of 2.97E-05 M. The loaded micelles exhibited a slow-release behaviour, with about 28% of the drug released after 24 h. On the most resistant SK-N-BE-2C cells, the encapsulated 4-HPR was significantly more active than free 4-HPR in reducing cell viability.

Conclusion

Loaded micelles demonstrated their suitability as a new adjuvant tool potentially useful for the treatment of neuroblastoma.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018333862240830072536
2024-09-03
2025-09-17
Loading full text...

Full text loading...

/deliver/fulltext/cdd/22/7/CDD-22-7-11.html?itemId=/content/journals/cdd/10.2174/0115672018333862240830072536&mimeType=html&fmt=ahah

References

  1. MattiuzziC. LippiG. Current cancer epidemiology.J. Epidemiol. Glob. Health20199421722210.2991/jegh.k.191008.001 31854162
    [Google Scholar]
  2. Brianna; Lee, S.H. Chemotherapy: How to reduce its adverse effects while maintaining the potency?Med. Oncol.20234038810.1007/s12032‑023‑01954‑6 36735206
    [Google Scholar]
  3. PeiZ. ChenS. DingL. LiuJ. CuiX. LiF. QiuF. Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis.J. Control. Release202235221124110.1016/j.jconrel.2022.10.023 36270513
    [Google Scholar]
  4. Ta-ChungC. ZytingC. Ling-MingT. Tzeon-JyeC. Ruey-KuenH. Wei-ShuW. Chueh-ChuanY. Muh-HwaY. Liang-TsaiH. Jin-HwangL. Po-MinC. Paclitaxel in a novel formulation containing less Cremophor EL as first-line therapy for advanced breast cancer: A phase II trial.Invest. New Drugs200523217117710.1007/s10637‑005‑5863‑8 15744594
    [Google Scholar]
  5. DuX. KhanA.R. FuM. JiJ. YuA. ZhaiG. Current development in the formulations of non-injection administration of paclitaxel.Int. J. Pharm.20185421-224225210.1016/j.ijpharm.2018.03.030 29555439
    [Google Scholar]
  6. RostamiN. GomariM.M. AbdoussM. MoeinzadehA. ChoupaniE. DavarnejadR. HeidariR. BencherifS.A. Synthesis and characterization of folic acid-functionalized DPLA-co-PEG nanomicelles for the targeted delivery of letrozole.ACS Appl. Bio Mater.2023651806181510.1021/acsabm.3c00041 37093754
    [Google Scholar]
  7. LuY. ZhangE. YangJ. CaoZ. Strategies to improve micelle stability for drug delivery.Nano Res.201811104985499810.1007/s12274‑018‑2152‑3 30370014
    [Google Scholar]
  8. TangL. YangX. YinQ. CaiK. WangH. ChaudhuryI. YaoC. ZhouQ. KwonM. HartmanJ.A. DobruckiI.T. DobruckiL.W. BorstL.B. LezmiS. HelferichW.G. FergusonA.L. FanT.M. ChengJ. Investigating the optimal size of anticancer nanomedicine.Proc. Natl. Acad. Sci. USA201411143153441534910.1073/pnas.1411499111 25316794
    [Google Scholar]
  9. JiangW. KimB.Y.S. RutkaJ.T. ChanW.C.W. Nanoparticle-mediated cellular response is size-dependent.Nat. Nanotechnol.20083314515010.1038/nnano.2008.30 18654486
    [Google Scholar]
  10. RostamiN. FaridghiasiF. GheblehA. NoeiH. SamadzadehM. GomariM.M. TajikiA. AbdoussM. AminoroayaA. KumariM. HeidariR. UverskyV.N. SmithB.R. Design, synthesis, and comparison of PLA-PEG-PLA and PEG-PLA-PEG copolymers for curcumin delivery to cancer cells.Polymers (Basel)20231514313310.3390/polym15143133 37514522
    [Google Scholar]
  11. KeskinD. TezcanerA. Micelles as delivery system for cancer treatment.Curr. Pharm. Des.2017233552305241 28552065
    [Google Scholar]
  12. WangY. GraingerD.W. Regulatory considerations specific to liposome drug development as complex drug products.Front. Drug Deliv.2022290128110.3389/fddev.2022.901281
    [Google Scholar]
  13. ZuccariG. VillaC. IurilliV. BarabinoP. ZorzoliA. MarimpietriD. CavigliaD. RussoE. AmBisome® formulations for pediatrics: Stability, cytotoxicity, and cost-effectiveness studies.Pharmaceutics202416446610.3390/pharmaceutics16040466 38675127
    [Google Scholar]
  14. YidingC. ZhongyiH. Differences between the quality aspects of various generic and branded docetaxel formulations.Curr. Med. Res. Opin.20213781421143310.1080/03007995.2021.1929895 33998944
    [Google Scholar]
  15. ZhangH. DouJ. ZhaiY. LiuA. ZhaiG. Advances in the formulations of non-injection administration of docetaxel.J. Drug Target.2014222879410.3109/1061186X.2013.839686 24098909
    [Google Scholar]
  16. ZuccariG. AlfeiS. MarimpietriD. IurilliV. BarabinoP. MarchittoL. Mini-tablets: A valid strategy to combine efficacy and safety in pediatrics.Pharmaceuticals (Basel)202215110810.3390/ph15010108 35056165
    [Google Scholar]
  17. LiN. FuT. FeiW. HanT. GuX. HouY. LiuY. YangJ. Vitamin E D-alpha-tocopheryl polyethylene glycol 1000 succinate-conjugated liposomal docetaxel reverses multidrug resistance in breast cancer cells.J. Pharm. Pharmacol.20197181243125410.1111/jphp.13126 31215039
    [Google Scholar]
  18. TangL. HuangK. JiangW. FuL. ZhangR. ShenL. OuZ. HuangY. ZhangZ. Exploration of the inhibition action of TPGS on tumor cells and its combined use with chemotherapy drugs.Drug Deliv.2023301218383010.1080/10717544.2023.2183830 36852689
    [Google Scholar]
  19. Ruiz-MorenoC. Velez-PardoC. Jimenez-Del-RioM. Vitamin E d-α-tocopheryl polyethylene glycol succinate (TPGS) provokes cell death in human neuroblastoma SK-N-SH cells via a pro-oxidant signaling mechanism.Chem. Res. Toxicol.201831994595310.1021/acs.chemrestox.8b00138 30092128
    [Google Scholar]
  20. MehataA.K. SetiaA. VikasV. MalikA.K. HassaniR. DailahH.G. AlhazmiH.A. AlbarraqA.A. MohanS. MuthuM.S. Vitamin E TPGS-based nanomedicine, nanotheranostics, and targeted drug delivery: Past, present, and future.Pharmaceutics202315372210.3390/pharmaceutics15030722 36986583
    [Google Scholar]
  21. ZuccariG. AlfeiS. ZorzoliA. MarimpietriD. TurriniF. BaldassariS. MarchittoL. CaviglioliG. Increased water-solubility and maintained antioxidant power of resveratrol by its encapsulation in vitamin E TPGS micelles: A potential nutritional supplement for chronic liver disease.Pharmaceutics2021138112810.3390/pharmaceutics13081128 34452090
    [Google Scholar]
  22. ZuccariG. BaldassariS. AlfeiS. MarengoB. ValentiG.E. DomenicottiC. AilunoG. VillaC. MarchittoL. CaviglioliG. D-α-tocopherol-based micelles for successful encapsulation of retinoic acid.Pharmaceuticals (Basel)202114321210.3390/ph14030212 33806321
    [Google Scholar]
  23. LiH. YanL. TangE.K.Y. ZhangZ. ChenW. LiuG. MoJ. Synthesis of TPGS/curcumin nanoparticles by thin-film hydration and evaluation of their anti-colon cancer efficacy in vitro and in vivo.Front. Pharmacol.20191076910.3389/fphar.2019.00769 31354485
    [Google Scholar]
  24. Fine-ShamirN. BeigA. DahanA. Adequate formulation approach for oral chemotherapy: Etoposide solubility, permeability, and overall bioavailability from cosolvent- vs. vitamin E TPGS-based delivery systems.Int. J. Pharm.202159712029510.1016/j.ijpharm.2021.120295 33497706
    [Google Scholar]
  25. VarmaM.V.S. PanchagnulaR. Enhanced oral paclitaxel absorption with vitamin E-TPGS: Effect on solubility and permeability in vitro, in situ and in vivo.Eur. J. Pharm. Sci.2005254-544545310.1016/j.ejps.2005.04.003 15890503
    [Google Scholar]
  26. AlfeiS. ZuccariG. Attempts to improve lipophilic drugs’ solubility and bioavailability: A focus on fenretinide.Pharmaceutics202416557910.3390/pharmaceutics16050579 38794242
    [Google Scholar]
  27. GillK.K. KaddoumiA. NazzalS. PEG–lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication.J. Drug Target.201523322223110.3109/1061186X.2014.997735 25547369
    [Google Scholar]
  28. NielsenP.B. MüllertzA. NorlingT. KristensenH.G. The effect of α-tocopherol on the in vitro solubilisation of lipophilic drugs.Int. J. Pharm.2001222221722410.1016/S0378‑5173(01)00701‑3 11427352
    [Google Scholar]
  29. OrientiI. SalvatiV. SetteG. ZucchettiM. Bongiorno-BorboneL. PeschiaroliA. ZollaL. FrancescangeliF. FerrariM. MatteoC. BelloE. Di VirgilioA. FalchiM. De AngelisM.L. BaiocchiM. MelinoG. De MariaR. ZeunerA. EramoA. A novel oral micellar fenretinide formulation with enhanced bioavailability and antitumour activity against multiple tumours from cancer stem cells.J. Exp. Clin. Cancer Res.201938137310.1186/s13046‑019‑1383‑9 31439019
    [Google Scholar]
  30. PhillipsD.J. PygallS.R. CooperV.B. MannJ.C. Overcoming sink limitations in dissolution testing: A review of traditional methods and the potential utility of biphasic systems.J. Pharm. Pharmacol.201264111549155910.1111/j.2042‑7158.2012.01523.x 23058042
    [Google Scholar]
  31. Mathematical models of drug release.Strategies to Modify the Drug Release from Pharmaceutical SystemsWoodhead Publishing201510.1016/B978‑0‑08‑100092‑2.00005‑9
    [Google Scholar]
  32. GillK.K. NazzalS. KaddoumiA. Paclitaxel loaded PEG5000–DSPE micelles as pulmonary delivery platform: Formulation characterization, tissue distribution, plasma pharmacokinetics, and toxicological evaluation.Eur. J. Pharm. Biopharm.201179227628410.1016/j.ejpb.2011.04.017 21575719
    [Google Scholar]
  33. DabholkarR.D. SawantR.M. MongaytD.A. DevarajanP.V. TorchilinV.P. Polyethylene glycol–phosphatidylethanolamine conjugate (PEG–PE)-based mixed micelles: Some properties, loading with paclitaxel, and modulation of P-glycoprotein-mediated efflux.Int. J. Pharm.20063151-214815710.1016/j.ijpharm.2006.02.018 16616818
    [Google Scholar]
  34. ElbayoumiT. ShenR. KimJ. YaoM. Development and evaluation of vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate-mixed polymeric phospholipid micelles of berberine as an anticancer nanopharmaceutical.Int. J. Nanomed.201611168770010.2147/IJN.S103332
    [Google Scholar]
  35. RathodS. BahadurP. TiwariS. Nanocarriers based on vitamin E-TPGS: Design principle and molecular insights into improving the efficacy of anticancer drugs.Int. J. Pharm.202159212004510.1016/j.ijpharm.2020.120045 33212172
    [Google Scholar]
  36. SheuM.T. ChenS.Y. ChenL.C. HoH.O. Influence of micelle solubilization by tocopheryl polyethylene glycol succinate (TPGS) on solubility enhancement and percutaneous penetration of estradiol.J. Control. Release200388335536810.1016/S0168‑3659(02)00492‑3 12644362
    [Google Scholar]
  37. TawfikS.M. AzizovS. ElmasryM.R. SharipovM. LeeY.I. Recent advances in nanomicelles delivery systems.Nanomaterials (Basel)20201117010.3390/nano11010070 33396938
    [Google Scholar]
  38. DuhemN. DanhierF. PréatV. Vitamin E-based nanomedicines for anti-cancer drug delivery.J. Control. Release2014182334410.1016/j.jconrel.2014.03.009 24631865
    [Google Scholar]
  39. RenT. LiR. ZhaoL. FawcettJ.P. SunD. GuJ. Biological fate and interaction with cytochromes P450 of the nanocarrier material, d-α-tocopheryl polyethylene glycol 1000 succinate.Acta Pharm. Sin. B20221273156316610.1016/j.apsb.2022.01.014 35865103
    [Google Scholar]
  40. OrientiI. ZuccariG. CarosioR. MontaldoP.G. Improvement of aqueous solubility of fenretinide and other hydrophobic anti-tumor drugs by complexation with amphiphilic dextrins.Drug Deliv.200916738939810.1080/10717540903101655 19624248
    [Google Scholar]
  41. OrientiI. ZuccariG. FalconiM. TetiG. IllingworthN.A. VealG.J. Novel micelles based on amphiphilic branched PEG as carriers for fenretinide.Nanomedicine20128688089010.1016/j.nano.2011.10.008 22094120
    [Google Scholar]
  42. YokoyamaM. SatohA. SakuraiY. OkanoT. MatsumuraY. KakizoeT. KataokaK. Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size.J. Control. Release1998552-321922910.1016/S0168‑3659(98)00054‑6 9795065
    [Google Scholar]
  43. KronbergB. The hydrophobic effect.Curr. Opin. Colloid Interface Sci.201622142210.1016/j.cocis.2016.02.001
    [Google Scholar]
  44. NegutI. BitaB. Polymeric micellar systems—A special emphasis on “smart” drug delivery.Pharmaceutics202315397610.3390/pharmaceutics15030976 36986837
    [Google Scholar]
  45. ZhangY. RenT. GouJ. ZhangL. TaoX. TianB. TianP. YuD. SongJ. LiuX. ChaoY. XiaoW. TangX. Strategies for improving the payload of small molecular drugs in polymeric micelles.J. Control. Release201726135236610.1016/j.jconrel.2017.01.047 28163211
    [Google Scholar]
  46. GillK.K. KaddoumiA. NazzalS. Mixed micelles of PEG2000-DSPE and vitamin-E TPGS for concurrent delivery of paclitaxel and parthenolide: Enhanced chemosenstization and antitumor efficacy against non-small cell lung cancer (NSCLC) cell lines.Eur. J. Pharm. Sci.2012461-2647110.1016/j.ejps.2012.02.010 22369858
    [Google Scholar]
  47. SadoqiM. Lau-CamC.A. WuS.H. Investigation of the micellar properties of the tocopheryl polyethylene glycol succinate surfactants TPGS 400 and TPGS 1000 by steady state fluorometry.J. Colloid Interface Sci.2009333258558910.1016/j.jcis.2009.01.048 19232633
    [Google Scholar]
  48. ElmasA. AkyüzG. BergalA. AndaçM. AndaçÖ. Mathematical modelling of drug release.Res. Eng. Struct. Mater202010.17515/resm2020.178na0122
    [Google Scholar]
  49. WuI.Y. BalaS. Škalko-BasnetN. di CagnoM.P. Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes.Eur. J. Pharm. Sci.201913810502610.1016/j.ejps.2019.105026 31374254
    [Google Scholar]
  50. BernabeuE. GonzalezL. CagelM. GergicE.P. MorettonM.A. ChiappettaD.A. Novel Soluplus ® —TPGS mixed micelles for encapsulation of paclitaxel with enhanced in vitro cytotoxicity on breast and ovarian cancer cell lines.Colloids Surf. B Biointerfaces201614040341110.1016/j.colsurfb.2016.01.003 26780253
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018333862240830072536
Loading
/content/journals/cdd/10.2174/0115672018333862240830072536
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher's website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test