Skip to content
2000
Volume 22, Issue 7
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background

Plant-derived extracellular vesicles (PDEVs) are vital for intercellular material exchange and information transfer. They significantly regulate cellular functions, tissue repair, and self-defense mechanisms.

Objective

This review summarizes the formation pathways, composition, and potential applications of PDEVs in anti-tumor research and drug delivery systems.

Methods

We conducted a literature search using keywords such as “plant-derived extracellular vesicles,” “exosomes,” “drug delivery,” “isolation and purification,” “stability,” “anti-tumor,” and “tumor therapy” in databases including PubMed, Web of Science, and Scopus. We examined studies on the formation pathways of PDEVs, including fusion of multivesicular bodies with the plasma membrane, exosome-positive organelles, and vacuole release. We also reviewed isolation and purification techniques critical for studying their biological functions. Furthermore, we analyzed research on the application of PDEVs in cancer therapy, focusing on their inhibitory effects in various cancer models and their role as carriers in drug delivery systems.

Results

PDEVs have demonstrated potential in anti-tumor research, particularly with vesicles from plants like tea, garlic, and Artemisia annua showing inhibitory effects in breast, lung, and gastric cancer models. Additionally, PDEVs serve as effective carriers in drug delivery systems, offering possibilities for developing ideal therapeutic solutions.

Conclusion

While PDEVs show promise in cancer treatment and drug delivery, challenges such as standardization, storage stability, and elucidation of action mechanisms remain. Further research is needed to overcome these challenges and advance the clinical translation of PDEVs.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018367056250227074828
2025-03-07
2025-10-24
Loading full text...

Full text loading...

References

  1. HalperinW. JensenW.A. Ultrastructural changes during growth and embryogenesis in carrot cell cultures.J. Ultrastruct. Res.1967183-442844310.1016/S0022‑5320(67)80128‑X 6025110
    [Google Scholar]
  2. HarmatiM. BukvaM. BöröczkyT. BuzásK. Gyukity-SebestyénE. The role of the metabolite cargo of extracellular vesicles in tumor progression.Cancer Meta. Rev.20214041203122110.1007/s10555‑021‑10014‑2 34957539
    [Google Scholar]
  3. WangY. WangJ. MaJ. ZhouY. LuR. Focusing on future applications and current challenges of plant derived extracellular vesicles.Pharmaceuticals202215670810.3390/ph15060708 35745626
    [Google Scholar]
  4. NematiM. SinghB. MirR.A. NematiM. BabaeiA. AhmadiM. RasmiY. GolezaniA.G. RezaieJ. Plant-derived extracellular vesicles: A novel nanomedicine approach with advantages and challenges.Cell Commun. Signal.20222016910.1186/s12964‑022‑00889‑1 35606749
    [Google Scholar]
  5. WoithE. GuerrieroG. HausmanJ.F. RenautJ. LeclercqC.C. WeiseC. LegayS. WengA. MelzigM.F. Plant extracellular vesicles and nanovesicles: Focus on secondary metabolites, proteins and lipids with perspectives on their potential and sources.Int. J. Mol. Sci.2021227371910.3390/ijms22073719 33918442
    [Google Scholar]
  6. AmbrosoneA. BarbulovaA. CappettaE. CilloF. PalmaD.M. RuoccoM. PocsfalviG. Plant extracellular vesicles: Current landscape and future directions.Plants20231224414110.3390/plants12244141 38140468
    [Google Scholar]
  7. AlzahraniF.A. KhanM.I. KameliN. AlsahafiE. RizaY.M. Plant-derived extracellular vesicles and their exciting potential as the future of next-generation drug delivery.Biomolecules202313583910.3390/biom13050839 37238708
    [Google Scholar]
  8. XuZ. XuY. ZhangK. LiuY. LiangQ. ThakurA. LiuW. YanY. Plant-derived extracellular vesicles (PDEVs) in nanomedicine for human disease and therapeutic modalities.J. Nanobiotech.202321111410.1186/s12951‑023‑01858‑7 36978093
    [Google Scholar]
  9. KameliN. Dragojlovic-KerkacheA. SavelkoulP. StassenF.R. Plant-derived extracellular vesicles: Current findings, challenges, and future applications.Membranes202111641110.3390/membranes11060411 34072600
    [Google Scholar]
  10. AhmadiM. AbbasiR. RezaieJ. Tumor immune escape: Extracellular vesicles roles and therapeutics application.Cell Commun. Signal.2024221910.1186/s12964‑023‑01370‑3 38167133
    [Google Scholar]
  11. YueM. HuS. SunH. TuoB. JiaB. ChenC. WangW. LiuJ. LiuY. SunZ. HuJ. Extracellular vesicles remodel tumor environment for cancer immunotherapy.Mol. Cancer202322120310.1186/s12943‑023‑01898‑5 38087360
    [Google Scholar]
  12. YiC. LuL. LiZ. GuoQ. OuL. WangR. TianX. Plant-derived exosome-like nanoparticles for microRNA delivery in cancer treatment.Drug Deliv. Transl. Res.20241518410110.1007/s13346‑024‑01621‑x 38758499
    [Google Scholar]
  13. WeiX. LiX. ZhangY. WangJ. ShenS. Advances in the therapeutic applications of plant-derived exosomes in the treatment of inflammatory diseases.Biomedicines2023116155410.3390/biomedicines11061554 37371649
    [Google Scholar]
  14. LangeH. GagliardiD. Catalytic activities, molecular connections, and biological functions of plant RNA exosome complexes.Plant Cell202234396798810.1093/plcell/koab310 34954803
    [Google Scholar]
  15. ZhouQ. MaK. HuH. XingX. HuangX. GaoH. Extracellular vesicles: Their functions in plant–pathogen interactions.Mol. Plant Pathol.202223676077110.1111/mpp.13170 34873812
    [Google Scholar]
  16. WangJ. DingY. WangJ. HillmerS. MiaoY. LoS.W. WangX. RobinsonD.G. JiangL. EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells.Plant Cell201122124009403010.1105/tpc.110.080697 21193573
    [Google Scholar]
  17. RegenteM. PinedoM. ElizaldeM. Canall.d.L. Apoplastic exosome-like vesicles: A new way of protein secretion in plants?Plant Signal. Behav.20127554454610.4161/psb.19675 22516827
    [Google Scholar]
  18. CuiY. GaoJ. HeY. JiangL. Plant extracellular vesicles.Protoplasma2020257131210.1007/s00709‑019‑01435‑6 31468195
    [Google Scholar]
  19. CongM. TanS. LiS. GaoL. HuangL. ZhangH.G. QiaoH. Technology insight: Plant-derived vesicles—How far from the clinical biotherapeutics and therapeutic drug carriers?Adv. Drug Deliv. Rev.202218211410810.1016/j.addr.2021.114108 34990792
    [Google Scholar]
  20. HansonP.I. CashikarA. Multivesicular body morphogenesis.Annu. Rev. Cell Dev. Biol.201228133736210.1146/annurev‑cellbio‑092910‑154152 22831642
    [Google Scholar]
  21. DingY. WangJ. LaiC.J.H. ChanL.V.H. WangX. CaiY. TanX. BaoY. XiaJ. RobinsonD.G. JiangL. Exo70E2 is essential for exocyst subunit recruitment and EXPO formation in both plants and animals.Mol. Biol. Cell201425341242610.1091/mbc.e13‑10‑0586 24307681
    [Google Scholar]
  22. CaroliD.M. MannoE. PiroG. LenucciM.S. Ride to cell wall: Arabidopsis XTH11, XTH29 and XTH33 exhibit different secretion pathways and responses to heat and drought stress.Plant J.2021107244846610.1111/tpj.15301 33932060
    [Google Scholar]
  23. CuiY. CaoW. HeY. ZhaoQ. WakazakiM. ZhuangX. GaoJ. ZengY. GaoC. DingY. WongH.Y. WongW.S. LamH.K. WangP. UedaT. Rojas-PierceM. ToyookaK. KangB.H. JiangL. A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells.Nat. Plants2018519510510.1038/s41477‑018‑0328‑1 30559414
    [Google Scholar]
  24. YouJ.Y. KangS.J. RheeW.J. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells.Bioact. Mater.20216124321433210.1016/j.bioactmat.2021.04.023 33997509
    [Google Scholar]
  25. MovahedN. CabanillasD.G. WanJ. ValiH. LalibertéJ.F. ZhengH. Turnip mosaic virus components are released into the extracellular space by vesicles in infected leaves.Plant Physiol.201918031375138810.1104/pp.19.00381 31019004
    [Google Scholar]
  26. PalmaD.M. AmbrosoneA. LeoneA. GaudioD.P. RuoccoM. TuriákL. BokkaR. FiumeI. TucciM. PocsfalviG. Plant roots release small extracellular vesicles with antifungal activity.Plants2020912177710.3390/plants9121777 33333782
    [Google Scholar]
  27. KocholataM. PrusovaM. MalinskaA.H. MalyJ. JanouskovaO. Comparison of two isolation methods of tobacco-derived extracellular vesicles, their characterization and uptake by plant and rat cells.Sci. Rep.20221211989610.1038/s41598‑022‑23961‑9 36400817
    [Google Scholar]
  28. LiuY. WuS. KooY. YangA. DaiY. KhantH. OsmanS.R. ChowdhuryM. WeiH. LiY. CourtK. HwangE. WenY. DasariS.K. NguyenM. TangE.C.C. ChehabE.W. Vald.N. BraamJ. SoodA.K. Characterization of and isolation methods for plant leaf nanovesicles and small extracellular vesicles.Nanomedicine20202910227110.1016/j.nano.2020.102271 32702466
    [Google Scholar]
  29. LiuN.J. WangN. BaoJ.J. ZhuH.X. WangL.J. ChenX.Y. Lipidomic analysis reveals the importance of gipcs in arabidopsis leaf extracellular vesicles.Mol. Plant202013101523153210.1016/j.molp.2020.07.016 32717349
    [Google Scholar]
  30. RegenteM. Corti-MonzónG. MaldonadoA.M. PinedoM. JorrínJ. Canall.d.L. Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins.FEBS Lett.2009583203363336610.1016/j.febslet.2009.09.041 19796642
    [Google Scholar]
  31. KimW.S. HaJ.H. JeongS.H. LeeJ.I. LeeB.W. JeongY.J. KimC.Y. ParkJ.Y. RyuY.B. KwonH.J. LeeI.C. Immunological effects of Aster yomena callus-derived extracellular vesicles as potential therapeutic agents against allergic asthma.Cells20221118280510.3390/cells11182805 36139376
    [Google Scholar]
  32. ChoE.G. ChoiS.Y. KimH. ChoiE.J. LeeE.J. ParkP.J. KoJ. KimK.P. BaekH.S. Panax ginseng-derived extracellular vesicles facilitate anti-senescence effects in human skin cells: An eco-friendly and sustainable way to use ginseng substances.Cells202110348610.3390/cells10030486 33668388
    [Google Scholar]
  33. YugayY. TsydeneshievaZ. RusapetovaT. GrischenkoO. MironovaA. BulgakovD. Silant’evV. TchernodedG. BulgakovV. ShkrylY. Isolation and characterization of extracellular vesicles from Arabidopsis thaliana cell culture and investigation of the specificities of their biogenesis.Plants20231220360410.3390/plants12203604 37896067
    [Google Scholar]
  34. PradoN. AlchéD.d.J. Casado-VelaJ. MasS. VillalbaM. RodríguezR. BataneroE. Nanovesicles are secreted during pollen germination and pollen tube growth: A possible role in fertilization.Mol. Plant20147357357710.1093/mp/sst153 24177685
    [Google Scholar]
  35. PradoN. LinaresD.C. SanzM.L. GamboaP. VillalbaM. RodríguezR. BataneroE. Pollensomes as natural vehicles for pollen allergens.J. Immunol.2015195244544910.4049/jimmunol.1500452 26041541
    [Google Scholar]
  36. ShaoH. ImH. CastroC.M. BreakefieldX. WeisslederR. LeeH. New technologies for analysis of extracellular vesicles.Chem. Rev.201811841917195010.1021/acs.chemrev.7b00534 29384376
    [Google Scholar]
  37. MararC. StarichB. WirtzD. Extracellular vesicles in immunomodulation and tumor progression.Nat. Immunol.202122556057010.1038/s41590‑021‑00899‑0 33753940
    [Google Scholar]
  38. DongL. ZierenR.C. HorieK. KimC.J. MallickE. JingY. FengM. KuczlerM.D. GreenJ. AmendS.R. WitwerK.W. Reijked.T.M. ChoY.K. PientaK.J. XueW. Comprehensive evaluation of methods for small extracellular vesicles separation from human plasma, urine and cell culture medium.J. Extracell. Vesicles2020102e1204410.1002/jev2.12044 33489012
    [Google Scholar]
  39. DoyleL. WangM. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis.Cells20198772710.3390/cells8070727 31311206
    [Google Scholar]
  40. ZhangZ. YuK. YouY. JiangP. WuZ. DeTureM.A. DicksonD.W. IkezuS. PengJ. IkezuT. Comprehensive characterization of human brain‐derived extracellular vesicles using multiple isolation methods: Implications for diagnostic and therapeutic applications.J. Extracell. Vesicles20231281235810.1002/jev2.12358 37563857
    [Google Scholar]
  41. WangH. YangZ. AiS. XiaoJ. Updated methods of extracellular vesicles isolation.Adv. Exp. Med. Biol.2023141831410.1007/978‑981‑99‑1443‑2_1 37603269
    [Google Scholar]
  42. WatsonD.C. YungB.C. BergamaschiC. ChowdhuryB. BearJ. StellasD. Morales-KastresanaA. JonesJ.C. FelberB.K. ChenX. PavlakisG.N. Scalable, cGMP‐compatible purification of extracellular vesicles carrying bioactive human heterodimeric IL‐15/lactadherin complexes.J. Extracell. Vesicles201871144208810.1080/20013078.2018.1442088 29535850
    [Google Scholar]
  43. FortunatoD. GiannoukakosS. Giménez-CapitánA. HackenbergM. Molina-VilaM.A. ZarovniN. Selective isolation of extracellular vesicles from minimally processed human plasma as a translational strategy for liquid biopsies.Biomark. Res.20221015710.1186/s40364‑022‑00404‑1 35933395
    [Google Scholar]
  44. StröhleG. GanJ. LiH. Affinity-based isolation of extracellular vesicles and the effects on downstream molecular analysis.Anal. Bioanal. Chem.2022414247051706710.1007/s00216‑022‑04178‑1 35732746
    [Google Scholar]
  45. OmraniM. Beyrampour-BasmenjH. Jahanban-EsfahlanR. TalebiM. RaeisiM. SerejZ.A. Akbar-GharalariN. KhodakarimiS. WuJ. Ebrahimi-kalanA. Global trend in exosome isolation and application: An update concept in management of diseases.Mol. Cell. Biochem.2024479367969110.1007/s11010‑023‑04756‑6 37166542
    [Google Scholar]
  46. KarttunenJ. HeiskanenM. Navarro-FerrandisV. GuptaD.S. LipponenA. PuhakkaN. RillaK. KoistinenA. PitkänenA. Precipitation-based extracellular vesicle isolation from rat plasma co-precipitate vesicle-free microRNAs.J. Extracell. Vesicles201981155541010.1080/20013078.2018.1555410 30574280
    [Google Scholar]
  47. ZhangH. LydenD. Asymmetric-flow field-flow fractionation technology for exomere and small extracellular vesicle separation and characterization.Nat. Protoc.20191441027105310.1038/s41596‑019‑0126‑x 30833697
    [Google Scholar]
  48. WuB. ChenX. WangJ. QingX. WangZ. DingX. XieZ. NiuL. GuoX. CaiT. GuoX. YangF. Separation and characterization of extracellular vesicles from human plasma by asymmetrical flow field-flow fractionation.Anal. Chim. Acta2020112723424510.1016/j.aca.2020.06.071 32800129
    [Google Scholar]
  49. BusattoS. VilanilamG. TicerT. LinW.L. DicksonD.W. ShapiroS. BergeseP. WolframJ. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid.Cells201871227310.3390/cells7120273 30558352
    [Google Scholar]
  50. KochL.F. BestT. WüstenhagenE. AdrianK. RammoO. SaulM.J. Novel insights into the isolation of extracellular vesicles by anion exchange chromatography.Front. Bioeng. Biotechnol.202411129889210.3389/fbioe.2023.1298892 38312509
    [Google Scholar]
  51. ChenY. ZhuQ. ChengL. WangY. LiM. YangQ. HuL. LouD. LiJ. DongX. LeeL.P. LiuF. Exosome detection via the ultrafast-isolation system: EXODUS.Nat. Methods202118221221810.1038/s41592‑020‑01034‑x 33432243
    [Google Scholar]
  52. RegenteM. PinedoM. ClementeS.H. BalliauT. JametE. Canall.d.L. Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth.J. Exp. Bot.201768205485549510.1093/jxb/erx355 29145622
    [Google Scholar]
  53. Canall.d.L. PinedoM. Extracellular vesicles: A missing component in plant cell wall remodeling.J. Exp. Bot.201869204655465810.1093/jxb/ery255 30007361
    [Google Scholar]
  54. Haq, u.S.; Khan, A.; Ali, M.; Khattak, A.M.; Gai, W.X.; Zhang, H.X.; Wei, A.M.; Gong, Z.H. Heat shock proteins: Dynamic biomolecules to counter plant biotic and abiotic stresses.Int. J. Mol. Sci.20192021532110.3390/ijms20215321 31731530
    [Google Scholar]
  55. TianF. HuX.L. YaoT. YangX. ChenJ.G. LuM.Z. ZhangJ. Recent advances in the roles of hsfs and hsps in heat stress response in woody plants.Front. Plant Sci.20211270490510.3389/fpls.2021.704905 34305991
    [Google Scholar]
  56. YangM. LuoQ. ChenX. ChenF. Bitter melon derived extracellular vesicles enhance the therapeutic effects and reduce the drug resistance of 5-fluorouracil on oral squamous cell carcinoma.J. Nanobiotechnology202119125910.1186/s12951‑021‑00995‑1 34454534
    [Google Scholar]
  57. Pérez-BermúdezP. BlesaJ. SorianoJ.M. MarcillaA. Extracellular vesicles in food: Experimental evidence of their secretion in grape fruits.Eur. J. Pharm. Sci.201798405010.1016/j.ejps.2016.09.022 27664331
    [Google Scholar]
  58. BokkaR. RamosA.P. FiumeI. MannoM. RaccostaS. TuriákL. SugárS. AdamoG. CsizmadiaT. PocsfalviG. Biomanufacturing of tomato-derived nanovesicles.Foods2020912185210.3390/foods9121852 33322632
    [Google Scholar]
  59. RutterB.D. InnesR.W. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins.Plant Physiol.2017173172874110.1104/pp.16.01253 27837092
    [Google Scholar]
  60. PotestàM. RogliaV. FanelliM. PietrobonoE. GismondiA. VumbacaS. TsangueuN.R.G. CaniniA. ColizziV. GrelliS. MinutoloA. MontesanoC. Effect of microvesicles from Moringa oleifera containing miRNA on proliferation and apoptosis in tumor cell lines.Cell Death Discov.2020614310.1038/s41420‑020‑0271‑6 32550010
    [Google Scholar]
  61. XuX.H. YuanT.J. DadH.A. ShiM.Y. HuangY.Y. JiangZ.H. PengL.H. Plant exosomes as novel nanoplatforms for microrna transfer stimulate neural differentiation of stem cells in vitro and in vivo.Nano Lett.202121198151815910.1021/acs.nanolett.1c02530 34586821
    [Google Scholar]
  62. UrzìO. RaimondoS. AlessandroR. Extracellular vesicles from plants: Current knowledge and open questions.Int. J. Mol. Sci.20212210536610.3390/ijms22105366 34065193
    [Google Scholar]
  63. HirschiK.D. PrussG.J. VanceV. Dietary delivery: A new avenue for microRNA therapeutics?Trends Biotechnol.201533843143210.1016/j.tibtech.2015.06.003 26113189
    [Google Scholar]
  64. ZhaoY. CongL. LukiwW.J. Plant and animal microRNAs (miRNAs) and their potential for inter-kingdom communication.Cell. Mol. Neurobiol.201838113314010.1007/s10571‑017‑0547‑4 28879580
    [Google Scholar]
  65. FyfeJ. CasariI. ManfrediM. FalascaM. Role of lipid signalling in extracellular vesicles-mediated cell-to-cell communication.Cytokine Growth Factor Rev.202373202610.1016/j.cytogfr.2023.08.006 37648617
    [Google Scholar]
  66. JuS. MuJ. DoklandT. ZhuangX. WangQ. JiangH. XiangX. DengZ.B. WangB. ZhangL. RothM. WeltiR. MobleyJ. JunY. MillerD. ZhangH.G. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis.Mol. Ther.20132171345135710.1038/mt.2013.64 23752315
    [Google Scholar]
  67. ZhuangX. DengZ.B. MuJ. ZhangL. YanJ. MillerD. FengW. McClainC.J. ZhangH.G. Ginger-derived nanoparticles protect against alcohol-induced liver damage.J. Extracell. Vesicl.2015412871310.3402/jev.v4.28713 26610593
    [Google Scholar]
  68. SasakiD. KusamoriK. TakayamaY. ItakuraS. TodoH. NishikawaM. Development of nanoparticles derived from corn as mass producible bionanoparticles with anticancer activity.Sci. Rep.20211112281810.1038/s41598‑021‑02241‑y 34819568
    [Google Scholar]
  69. GaoQ. ChenN. LiB. ZuM. MaY. XuH. ZhuZ. ReisR.L. KunduS.C. XiaoB. Natural lipid nanoparticles extracted from Morus nigra L. leaves for targeted treatment of hepatocellular carcinoma via the oral route.J. Nanobiotechnology2024221410.1186/s12951‑023‑02286‑3 38169394
    [Google Scholar]
  70. ChenQ. ZuM. GongH. MaY. SunJ. RanS. ShiX. ZhangJ. XiaoB. Tea leaf-derived exosome-like nanotherapeutics retard breast tumor growth by pro-apoptosis and microbiota modulation.J. Nanobiotechnology2023211610.1186/s12951‑022‑01755‑5 36600299
    [Google Scholar]
  71. CaoM. YanH. HanX. WengL. WeiQ. SunX. LuW. WeiQ. YeJ. CaiX. HuC. YinX. CaoP. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth.J. Immunother. Cancer20197132610.1186/s40425‑019‑0817‑4 31775862
    [Google Scholar]
  72. LiuB. LiX. YuH. ShiX. ZhouY. AlvarezS. NaldrettM.J. KachmanS.D. RoS.H. SunX. ChungS. JingL. YuJ. Therapeutic potential of garlic chive-derived vesicle-like nanoparticles in NLRP3 inflammasome-mediated inflammatory diseases.Theranostics202111199311933010.7150/thno.60265 34646372
    [Google Scholar]
  73. ZhangM. ViennoisE. PrasadM. ZhangY. WangL. ZhangZ. HanM.K. XiaoB. XuC. SrinivasanS. MerlinD. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer.Biomaterials201610132134010.1016/j.biomaterials.2016.06.018 27318094
    [Google Scholar]
  74. AnushaR. AshinM. PriyaS. Ginger exosome-like nanoparticles (GELNs) induced apoptosis, cell cycle arrest, and anti-metastatic effects in triple-negative breast cancer MDA-MB-231 cells.Food Chem. Toxicol.202318211410210.1016/j.fct.2023.114102 37865333
    [Google Scholar]
  75. BocciaE. AlfieriM. BelvedereR. SantoroV. ColellaM. GaudioD.P. MorosM. PiazD.F. PetrellaA. LeoneA. AmbrosoneA. Plant hairy roots for the production of extracellular vesicles with antitumor bioactivity.Commun. Biol.20225184810.1038/s42003‑022‑03781‑3 35987960
    [Google Scholar]
  76. Özkanİ. KoçakP. YıldırımM. ÜnsalN. YılmazH. TelciD. ŞahinF. Garlic (Allium sativum)-derived SEVs inhibit cancer cell proliferation and induce caspase mediated apoptosis.Sci. Rep.20211111477310.1038/s41598‑021‑93876‑4 34285262
    [Google Scholar]
  77. LiuJ. XiangJ. JinC. YeL. WangL. GaoY. LvN. ZhangJ. YouF. QiaoH. ShiL. Medicinal plant-derived mtDNA via nanovesicles induces the cGAS-STING pathway to remold tumor-associated macrophages for tumor regression.J. Nanobiotech.20232117810.1186/s12951‑023‑01835‑0 36879291
    [Google Scholar]
  78. YangM. LiuX. LuoQ. XuL. ChenF. An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy.J. Nanobiotech.202018110010.1186/s12951‑020‑00656‑9 32690102
    [Google Scholar]
  79. ZhangL. HeF. GaoL. CongM. SunJ. XuJ. WangY. HuY. AsgharS. HuL. QiaoH. Engineering Exosome-Like Nanovesicles Derived from Asparagus cochinchinensis Can Inhibit the Proliferation of Hepatocellular Carcinoma Cells with Better Safety Profile.Int. J. Nanomed.2021161575158610.2147/IJN.S293067 33664572
    [Google Scholar]
  80. TakakuraH. NakaoT. NaritaT. HorinakaM. Nakao-IseY. YamamotoT. IizumiY. WatanabeM. SowaY. OdaK. MoriN. SakaiT. MutohM. Citrus limon l.-derived nanovesicles show an inhibitory effect on cell growth in p53-inactivated colorectal cancer cells via the macropinocytosis pathway.Biomedicines2022106135210.3390/biomedicines10061352 35740377
    [Google Scholar]
  81. WongkaewkhiawS. WongrakpanichA. KrobthongS. SaengsawangW. ChairoungduaA. BoonmuenN. Induction of apoptosis in human colorectal cancer cells by nanovesicles from fingerroot (Boesenbergia rotunda (L.) Mansf.).PLoS One2022174e026604410.1371/journal.pone.0266044 35377896
    [Google Scholar]
  82. ZuM. XieD. CanupB.S.B. ChenN. WangY. SunR. ZhangZ. FuY. DaiF. XiaoB. ‘Green’ nanotherapeutics from tea leaves for orally targeted prevention and alleviation of colon diseases.Biomaterials202127912117810.1016/j.biomaterials.2021.121178 34656857
    [Google Scholar]
  83. StanlyC. AlfieriM. AmbrosoneA. LeoneA. FiumeI. PocsfalviG. Grapefruit-derived micro and nanovesicles show distinct metabolome profiles and anticancer activities in the A375 human melanoma cell line.Cells2020912272210.3390/cells9122722 33371199
    [Google Scholar]
  84. WangB. GuoX.J. CaiH. ZhuY.H. HuangL.Y. WangW. LuoL. QiS.H. Momordica charantia-derived extracellular vesicles-like nanovesicles inhibited glioma proliferation, migration, and invasion by regulating the PI3K/AKT signaling pathway.J. Funct. Foods20229010496810.1016/j.jff.2022.104968
    [Google Scholar]
  85. RobertisD.M. SarraA. D’OriaV. MuraF. BordiF. PostorinoP. FratantonioD. Blueberry-derived exosome-like nanoparticles counter the response to TNF-α-induced change on gene expression in EA.hy926 cells.Biomolecules202010574210.3390/biom10050742 32397678
    [Google Scholar]
  86. ReinerA.T. SomozaV. Extracellular vesicles as vehicles for the delivery of food bioactives.J. Agric. Food Chem.20196782113211910.1021/acs.jafc.8b06369 30688074
    [Google Scholar]
  87. KimM.S. HaneyM.J. ZhaoY. MahajanV. DeygenI. KlyachkoN.L. InskoeE. PiroyanA. SokolskyM. OkolieO. HingtgenS.D. KabanovA.V. BatrakovaE.V. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells.Nanomedicine201612365566410.1016/j.nano.2015.10.012 26586551
    [Google Scholar]
  88. HaneyM.J. KlyachkoN.L. HarrisonE.B. ZhaoY. KabanovA.V. BatrakovaE.V. TPP1 delivery to lysosomes with extracellular vesicles and their enhanced brain distribution in the animal model of batten disease.Adv. Healthc. Mater.2019811180127110.1002/adhm.201801271 30997751
    [Google Scholar]
  89. SauxL.S. AarrassH. Lai-Kee-HimJ. BronP. ArmengaudJ. MiotelloG. Bertrand-MichelJ. DuboisE. GeorgeS. FaklarisO. DevoisselleJ.M. LegrandP. ChopineauJ. MorilleM. Post-production modifications of murine mesenchymal stem cell (mMSC) derived extracellular vesicles (EVs) and impact on their cellular interaction.Biomaterials202023111967510.1016/j.biomaterials.2019.119675 31838346
    [Google Scholar]
  90. KamerkarS. LeBleuV.S. SugimotoH. YangS. RuivoC.F. MeloS.A. LeeJ.J. KalluriR. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.Nature2017546765949850310.1038/nature22341 28607485
    [Google Scholar]
  91. LiQ. SongY. WangQ. ChenJ. GaoJ. TanH. LiS. WuY. YangH. HuangH. YuY. LiY. ZhangN. HuangZ. PangZ. QianJ. GeJ. Engineering extracellular vesicles with platelet membranes fusion enhanced targeted therapeutic angiogenesis in a mouse model of myocardial ischemia reperfusion.Theranostics20211183916393110.7150/thno.52496 33664870
    [Google Scholar]
  92. ChengL. HillA.F. Therapeutically harnessing extracellular vesicles.Nat. Rev. Drug Discov.202221537939910.1038/s41573‑022‑00410‑w 35236964
    [Google Scholar]
  93. LiD. ZhangC. GaoZ. XiaN. WuC. LiuC. TianH. MeiX. Curcumin-loaded macrophage-derived exosomes effectively improve wound healing.Mol. Pharm.20232094453446710.1021/acs.molpharmaceut.3c00062 37525890
    [Google Scholar]
  94. GardinerC. FerreiraY.J. DragovicR.A. RedmanC.W.G. SargentI.L. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis.J. Extracell. Vesicles2013211967110.3402/jev.v2i0.19671 24009893
    [Google Scholar]
  95. KimK. ParkJ. SohnY. OhC.E. ParkJ.H. YukJ.M. YeonJ.H. Stability of plant leaf-derived extracellular vesicles according to preservative and storage temperature.Pharmaceutics202214245710.3390/pharmaceutics14020457 35214189
    [Google Scholar]
  96. SokolovaV. LudwigA.K. HornungS. RotanO. HornP.A. EppleM. GiebelB. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf.B Bioint.201187114615010.1016/j.colsurfb.2011.05.013 21640565
    [Google Scholar]
  97. ChengY. ZengQ. HanQ. XiaW. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes.Prot. Cell201910429529910.1007/s13238‑018‑0529‑4 29616487
    [Google Scholar]
  98. LőrinczÁ.M. TimárC.I. MarosváriK.A. VeresD.S. OtrokocsiL. KittelÁ. LigetiE. Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes.J. Extracell. Vesicles2014312546510.3402/jev.v3.25465 25536933
    [Google Scholar]
  99. StanlyC. MoubarakM. FiumeI. TuriákL. PocsfalviG. Membrane transporters in citrus clementina fruit juice-derived nanovesicles.Int. J. Mol. Sci.20192024620510.3390/ijms20246205 31835328
    [Google Scholar]
  100. QuesenberryP.J. AliottaJ. CamussiG. Abdel-MageedA.B. WenS. GoldbergL. ZhangH.G. TettaC. FranklinJ. CoffeyR.J. DanielsonK. SubramanyaV. GhiranI. DasS. ChenC.C. PusicK.M. PusicA.D. ChatterjeeD. KraigR.P. BalajL. DoonerM. Potential functional applications of extracellular vesicles: A report by the NIH Common Fund Extracellular RNA Communication Consortium.J. Extracell. Vesicles2015412757510.3402/jev.v4.27575 26320942
    [Google Scholar]
  101. MammadovaR. FiumeI. BokkaR. Kralj-IgličV. BožičD. KisovecM. PodobnikM. ZavecA.B. HočevarM. GellénG. SchlosserG. PocsfalviG. Identification of tomato infecting viruses that co-isolate with nanovesicles using a combined proteomics and electron-microscopic approach.Nanomaterials2021118192210.3390/nano11081922 34443753
    [Google Scholar]
  102. FangZ. LiuK. Plant-derived extracellular vesicles as oral drug delivery carriers.J. Control. Rel.202235038940010.1016/j.jconrel.2022.08.046 36037973
    [Google Scholar]
  103. DadH.A. GuT.W. ZhuA.Q. HuangL.Q. PengL.H. Plant exosome-like nanovesicles: Emerging therapeutics and drug delivery nanoplatforms.Mol. Ther.2021291133110.1016/j.ymthe.2020.11.030 33278566
    [Google Scholar]
  104. LiuX. LouK. ZhangY. LiC. WeiS. FengS. Unlocking the medicinal potential of plant-derived extracellular vesicles: Current progress and future perspectives.Int. J. Nanomed.2024194877489210.2147/IJN.S463145 38828203
    [Google Scholar]
  105. LiA. LiD. GuY. LiuR. TangX. ZhaoY. QiF. WeiJ. LiuJ. Plant-derived nanovesicles: Further exploration of biomedical function and application potential.Acta Pharm. Sin. B20231383300332010.1016/j.apsb.2022.12.022 37655320
    [Google Scholar]
  106. LyN.P. HanH.S. KimM. ParkJ.H. ChoiK.Y. Plant-derived nanovesicles: Current understanding and applications for cancer therapy.Bioact. Mater.20232236538310.1016/j.bioactmat.2022.10.005 36311046
    [Google Scholar]
  107. HaoS. YangH. HuJ. LuoL. YuanY. LiuL. Bioactive compounds and biological functions of medicinal plant-derived extracellular vesicles.Pharmacol. Res.202420010706210.1016/j.phrs.2024.107062 38211637
    [Google Scholar]
  108. LiuH. LuoG.F. ShangZ. Plant-derived nanovesicles as an emerging platform for cancer therapy.Acta Pharm. Sin. B202414113315410.1016/j.apsb.2023.08.033 38239235
    [Google Scholar]
  109. JinZ. NaJ. LinX. JiaoR. LiuX. HuangY. Plant-derived exosome-like nanovesicles: A novel nanotool for disease therapy.Heliyon2024109e3063010.1016/j.heliyon.2024.e30630 38765146
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018367056250227074828
Loading
/content/journals/cdd/10.2174/0115672018367056250227074828
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test