Skip to content
2000
Volume 22, Issue 7
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background

Cancer treatment often involves the use of potent antineoplastic drugs like Capecitabine (CAP), which can lead to serious toxicities. There is a need for dosage forms to manage these toxicities that can deliver the medication effectively to the target site while maintaining therapeutic efficacy at lower doses. To achieve the aforesaid objective, NLC containing capecitabine (NANOBIN) was prepared and evaluated. Different formulations of NANOBIN, denoted as CaTS, CaT1S, CaT2S, CaTS1, and CaTS2, were designed and evaluated to improve drug delivery and therapeutic outcomes.

Methods

The NANOBIN formulations were prepared using the hot homogenization method. The characterization of these formulations was conducted based on various parameters such as particle size, Polydispersity Index (PDI), Zeta Potential (ZP), Transmission Electron Microscopy (TEM) imaging, and Encapsulation Efficiency (EE). evaluations included stability testing, release studies to assess drug release kinetics, and a cytotoxicity assay (MTT assay) to evaluate the efficacy of these formulations against human breast cancer cells (MCF-7).

Results

The characterization results revealed that all NANOBIN formulations exhibited particle sizes ranging from 65 to 193 nm, PDI values within the range of 0.26-0.37, ZP values between 46.47 to 61.87 mV (-ve), and high EE percentages ranging from 94.121% to 96.64%. Furthermore, all NANOBIN formulations demonstrated sustained and slow-release profiles of CAP. The MTT assay showed that the NANOBINs exhibited significantly enhanced cytotoxic efficacy, approximately 10 times greater than free CAP when tested on MCF-7 cells. These findings indicate the potential of NANOBINs to deliver CAP effectively to the target site, enabling prolonged drug availability and enhanced therapeutic effects at lower doses.

Conclusion

The study demonstrates that NANOBINs can effectively deliver CAP to target sites, prolonging drug exposure and enhancing therapeutic efficacy while reducing the required dose. Further studies are necessary to validate these findings and establish NANOBINs as a preferred treatment option for cancer therapy.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018309370240708113038
2024-07-29
2025-09-17
Loading full text...

Full text loading...

/deliver/fulltext/cdd/22/7/CDD-22-7-08.html?itemId=/content/journals/cdd/10.2174/0115672018309370240708113038&mimeType=html&fmt=ahah

References

  1. AnwanwanD. SinghS.K. SinghS. SaikamV. SinghR. Challenges in liver cancer and possible treatment approaches. Biochimica et Biophysica Acta (BBA) -.Rev. Can.202018731188314
    [Google Scholar]
  2. SmithD.A. BeaumontK. MaurerT.S. DiL. Relevance of Half-Life in Drug Design.J. Med. Chem.201861104273428210.1021/acs.jmedchem.7b00969 29112446
    [Google Scholar]
  3. MakeenH.A. MohanS. Al-KasimM.A. SultanM.H. AlbarraqA.A. AhmedR.A. AlhazmiH.A. AlamM.I. Preparation, Characterization, and Anti-Cancer Activity of Nanostructured Lipid Carriers Containing Imatinib.Pharmaceutics2021137108610.3390/pharmaceutics13071086 34371776
    [Google Scholar]
  4. AhmadJ. KohliK. MirS.R. AminS. Lipid based Nanocarriers for Oral Delivery of Cancer Chemotherapeutics: An Insight in the Intestinal Lymphatic Transport.Drug Deliv. Lett.201331384610.2174/2210304x11303010006
    [Google Scholar]
  5. ElnadyR.E. AminM.M. ZakariaM.Y. A review on lipid-based nanocarriers mimicking chylomicron and their potential in drug delivery and targeting infectious and cancerous diseases.AAPS Open2023911310.1186/s41120‑023‑00080‑x
    [Google Scholar]
  6. ChinsriwongkulA. ChareanputtakhunP. NgawhirunpatT. RojanarataT. Sila-onW. RuktanonchaiU. OpanasopitP. Nanostructured lipid carriers (NLC) for parenteral delivery of an anticancer drug.AAPS PharmSciTech201213115015810.1208/s12249‑011‑9733‑8 22167418
    [Google Scholar]
  7. HajipourH. HamishehkarH. Nazari Soltan AhmadS. BarghiS. MaroufiN.F. Taheri, RA Improved anticancer effects of epigallocatechin gallate using RGD-containing nanostructured lipid carriers.Artif. Cells Nanomed. Biotechnol.201846S1283292
    [Google Scholar]
  8. NordinN. YeapS.K. RahmanH.S. ZamberiN.R. AbuN. MohamadN.E. HowC.W. MasarudinM.J. AbdullahR. AlitheenN.B. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells.Sci. Rep.201991161410.1038/s41598‑018‑38214‑x 30733560
    [Google Scholar]
  9. MakeenH.A. MohanS. Al-KasimM.A. AttafiI.M. AhmedR.A. SyedN.K. SultanM.H. Al-BrattyM. AlhazmiH.A. SafhiM.M. AliR. Intakhab AlamM. Gefitinib loaded nanostructured lipid carriers: Characterization, evaluation and anti-human colon cancer activity in vitro.Drug Deliv.202027162263110.1080/10717544.2020.1754526 32329374
    [Google Scholar]
  10. D’SouzaA. ShegokarR. Nanostructured Lipid Carriers (NLCs) for Drug Delivery: Role of Liquid Lipid (Oil).Curr. Drug Deliv.202118324927010.2174/1567201817666200423083807 32324512
    [Google Scholar]
  11. BakhaidarR.B. HosnyK.M. MahierI.M. RizqW.Y. SafhiA.Y. BukharyD.M. SultanM.H. BukharyH.A. MadkhaliO.A. SabeiF.Y. Development and optimization of a tamsulosin nanostructured lipid carrier loaded with saw palmetto oil and pumpkin seed oil for treatment of benign prostatic hyperplasia.Drug Deliv.20222912579259110.1080/10717544.2022.2105448 35915055
    [Google Scholar]
  12. AndonovaV. PenevaP. Characterization Methods for Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC).Curr. Pharm. Des.201823436630664210.2174/1381612823666171115105721
    [Google Scholar]
  13. ViegasC. PatrícioA.B. PrataJ.M. NadhmanA. ChintamaneniP.K. FonteP. Solid Lipid Nanoparticles vs. Nanostructured Lipid Carriers: A Comparative Review.Pharmaceutics2023156159310.3390/pharmaceutics15061593 37376042
    [Google Scholar]
  14. SaekiT. TakashimaS. (Mechanism and possible biochemical modulation of capecitabine (Xeloda), a newly generated oral fluoropyrimidine).Gan To Kagaku Ryoho1999264447455 10097741
    [Google Scholar]
  15. SummerhayesM. Capecitabine: a novel, orally administered, tumour-activated treatment for colorectal cancer.J. Oncol. Pharm. Pract.20017410712510.1191/1078155201jp085oa
    [Google Scholar]
  16. CaudleK.E. ThornC.F. KleinT.E. SwenJ.J. McLeodH.L. DiasioR.B. SchwabM. Clinical Pharmacogenetics Implementation Consortium guidelines for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing.Clin. Pharmacol. Ther.201394664064510.1038/clpt.2013.172 23988873
    [Google Scholar]
  17. WangY. GongC. YangL. WuQ. ShiS. ShiH. QianZ. WeiY. 5-FU-hydrogel inhibits colorectal peritoneal carcinomatosis and tumor growth in mice.BMC Cancer201010140210.1186/1471‑2407‑10‑402 20678220
    [Google Scholar]
  18. Dias WickramanayakeP. KleinH.O. Enhanced incorporation of 5-fluorouracil (5-FU) into DNA of a human colon carcinoma after pretreatment with methotrexate (MTX).J. Cancer Res. Clin. Oncol.1986111S1S93S9310.1007/BF02580143
    [Google Scholar]
  19. LyR.C. SchmidtR.E. KielP.J. PrattV.M. SchneiderB.P. RadovichM. OfferS.M. DiasioR.B. SkaarT.C. Severe Capecitabine Toxicity Associated With a Rare DPYD Variant Identified Through Whole-Genome Sequencing.JCO Precis. Oncol.20204463263810.1200/PO.20.00067 32923881
    [Google Scholar]
  20. Nasser AlAmeriM. Abi AadS. Capecitabine: An In-vitro Comparison between the Branded Xeloda? 500 Mg and its Intended Copy Capeda 500 Mg.Med. Chem. (Los Angeles)20122510.4172/2161‑0444.1000125
    [Google Scholar]
  21. WalkoC.M. LindleyC. Capecitabine: A review.Clin. Ther.2005271234410.1016/j.clinthera.2005.01.005 15763604
    [Google Scholar]
  22. DudhipalaN. PuchchakayalaG. Capecitabine lipid nanoparticles for anti-colon cancer activity in 1,2-dimethylhydrazine-induced colon cancer: preparation, cytotoxic, pharmacokinetic, and pathological evaluation.Drug Dev. Ind. Pharm.201844101572158210.1080/03639045.2018.1445264 29493289
    [Google Scholar]
  23. MeulenaarJ. KeizerR.J. BeijnenJ.H. SchellensJ.H.M. HuitemaA.D.R. NuijenB. Development of an extended-release formulation of capecitabine making use of in vitro-in vivo correlation modelling.J. Pharm. Sci.2014103247848410.1002/jps.23779 24311366
    [Google Scholar]
  24. HernandoJ. Garcia-AlvarezA. CastanedaD.H.M. EyzaguirreD.A.A. GarciaM.D. GonzalezN.S. CasterasA. SimoM. BurilloA.G. MerinoX. BlancoL. SanchezJ.L. RocaM. CapdevilaJ. 1186P Impact of temozolomide (TEM) and capecitabine (CAP) dose reductions in toxicity and efficacy in patients (pts) with neuroendocrine neoplasms (NENs) treated with CAPTEM chemotherapy.Ann. Oncol.202031S78210.1016/j.annonc.2020.08.1399
    [Google Scholar]
  25. SchaubM.P. How to achieve greater comparability-suggested ways to improve the determination of treatment gap and treatment lag.Drugs Alcohol Today2021211455310.1108/DAT‑07‑2020‑0049
    [Google Scholar]
  26. SunS.B. LiuP. ShaoF.M. MiaoQ.L. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer.Int. J. Clin. Exp. Med.20158101967019681 26770631
    [Google Scholar]
  27. AmeliH. AlizadehN. Targeted delivery of capecitabine to colon cancer cells using nano polymeric micelles based on beta cyclodextrin.RSC Advances20221284681469110.1039/D1RA07791K 35425510
    [Google Scholar]
  28. GönüllüÜ. ÜnerM. YenerG. KaramanE.F. AydoğmuşZ. Formulation and characterization of solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsion of lornoxicam for transdermal delivery.Acta Pharm.201565111310.1515/acph‑2015‑0009 25781700
    [Google Scholar]
  29. SyamS. AbdelwahabS.I. Al-MamaryM.A. MohanS. Synthesis of chalcones with anticancer activities.Molecules20121766179619510.3390/molecules17066179 22634834
    [Google Scholar]
  30. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Methods1983651-2556310.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
  31. ChauhanI. YasirM. VermaM. SinghA.P. Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery.Adv. Pharm. Bull.202010215016510.34172/apb.2020.021 32373485
    [Google Scholar]
  32. SanadR.A. AbdelMalakN.S. elBayoomyT.S. BadawiA.A. Formulation of a novel oxybenzone-loaded nanostructured lipid carriers (NLCs).AAPS PharmSciTech20101141684169410.1208/s12249‑010‑9553‑2 21107771
    [Google Scholar]
  33. Gonzalez-MiraE. EgeaM.A. SoutoE.B. CalpenaA.C. GarcíaM.L. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery.Nanotechnology201122404510110.1088/0957‑4484/22/4/045101 21169662
    [Google Scholar]
  34. DanaeiM. DehghankholdM. AtaeiS. Hasanzadeh DavaraniF. JavanmardR. DokhaniA. KhorasaniS. MozafariM.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems.Pharmaceutics20181025710.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  35. García-CervillaR. SantosA. RomeroA. LorenzoD. Compatibility of nonionic and anionic surfactants with persulfate activated by alkali in the abatement of chlorinated organic compounds in aqueous phase.Sci. Total Environ.202175114178210.1016/j.scitotenv.2020.141782 32882562
    [Google Scholar]
  36. SarheedO. DibiM. RameshK.V.R.N.S. Studies on the effect of oil and surfactant on the formation of alginate-based O/W lidocaine nanocarriers using nanoemulsion template.Pharmaceutics20201212122310.3390/pharmaceutics12121223 33348692
    [Google Scholar]
  37. EftekhariM. SchwarzenbergerK. JavadiA. EckertK. The influence of negatively charged silica nanoparticles on the surface properties of anionic surfactants: Electrostatic repulsion or the effect of ionic strength?Phys. Chem. Chem. Phys.20202242238224810.1039/C9CP05475H 31915756
    [Google Scholar]
  38. CortésH. Hernández-ParraH. Bernal-ChávezS.A. Prado-AudeloM.L.D. Caballero-FloránI.H. Borbolla-JiménezF.V. González-TorresM. MagañaJ.J. Leyva-GómezG. Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses.Materials (Basel)20211412319710.3390/ma14123197 34200640
    [Google Scholar]
  39. ShobhaU. AditiB. VaishaliK. Effect of various stabilizers on the stability of lansoprazole nanosuspension prepared using high shear homogenization: Preliminary investigation.J. Appl. Pharm. Sci.20211198592
    [Google Scholar]
  40. QiaoW. WangB. WangY. YangL. ZhangY. ShaoP. Cancer Therapy Based on Nanomaterials and Nanocarrier Systems.J. Nanomater.201020101910.1155/2010/796303
    [Google Scholar]
  41. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  42. YuW. LiuR. ZhouY. GaoH. Size-Tunable Strategies for a Tumor Targeted Drug Delivery System.ACS Cent. Sci.20206210011610.1021/acscentsci.9b01139 32123729
    [Google Scholar]
  43. AlbaneseA. ChanW.C.W. Effect of gold nanoparticle aggregation on cell uptake and toxicity.ACS Nano2011575478548910.1021/nn2007496 21692495
    [Google Scholar]
  44. RubasinghegeG. LentzR.W. ParkH. SchererM.M. GrassianV.H. Nanorod dissolution quenched in the aggregated state.Langmuir20102631524152710.1021/la903950e 19950935
    [Google Scholar]
  45. OrtizA.C. YañezO. Salas-HuenuleoE. MoralesJ.O. Development of a Nanostructured Lipid Carrier (NLC) by a Low-Energy Method, Comparison of Release Kinetics and Molecular Dynamics Simulation.Pharmaceutics202113453110.3390/pharmaceutics13040531 33920242
    [Google Scholar]
  46. HouD. XieC. HuangK. ZhuC. The production and characteristics of solid lipid nanoparticles (SLNs).Biomaterials200324101781178510.1016/S0142‑9612(02)00578‑1 12593960
    [Google Scholar]
  47. LiuK. SunJ. WangY. HeY. GaoK. HeZ. Preparation and characterization of 10-hydroxycamptothecin loaded nanostructured lipid carriers.Drug Dev. Ind. Pharm.200834546547110.1080/03639040701662230 18473227
    [Google Scholar]
  48. LiuC.H. WuC.T. Optimization of nanostructured lipid carriers for lutein delivery.Colloids Surf. A Physicochem. Eng. Asp.20103532-314915610.1016/j.colsurfa.2009.11.006
    [Google Scholar]
  49. KalvakuntlaS. Deshpande, M.; Attari, Z.; Kunnatur B, K. Preparation and Characterization of Nanosuspension of Aprepitant by H96 Process.Adv. Pharm. Bull.201661839010.15171/apb.2016.013 27123422
    [Google Scholar]
  50. WuL. ZhangJ. WatanabeW. Physical and chemical stability of drug nanoparticles.Adv. Drug Deliv. Rev.201163645646910.1016/j.addr.2011.02.001 21315781
    [Google Scholar]
  51. AverinaE.S. MüllerR.H. PopovD.V. RadnaevaL.D. Physical and chemical stability of nanostructured lipid drug carriers (NLC) based on natural lipids from Baikal region (Siberia, Russia).Pharmazie2011665348356 21699068
    [Google Scholar]
  52. SaediA. RostamizadehK. ParsaM. DalaliN. AhmadiN. Preparation and characterization of nanostructured lipid carriers as drug delivery system: Influence of liquid lipid types on loading and cytotoxicity.Chem. Phys. Lipids2018216657210.1016/j.chemphyslip.2018.09.007 30219661
    [Google Scholar]
  53. PornputtapitakW. ThiangjitY. TantirungrotechaiY. Effect of Functional Groups in Lipid Molecules on the Stability of Nanostructured Lipid Carriers: Experimental and Computational Investigations.ACS Omega202499110121102410.1021/acsomega.4c00685 38463339
    [Google Scholar]
  54. LankalapalliS. RouthuK.C. OjhaS. TennetiV.S.V.K. Nanoparticulate Drug Delivery Systems: Promising Approaches For Drug Delivery.J. Drug Deliv. Ther.201443728510.22270/jddt.v0i0.883
    [Google Scholar]
  55. KawashimaY. Nanoparticulate systems for improved drug delivery.Adv. Drug Deliv. Rev.20014711210.1016/S0169‑409X(00)00117‑4 11251241
    [Google Scholar]
  56. TanS.W. BillaN. RobertsC.R. BurleyJ.C. Surfactant effects on the physical characteristics of Amphotericin B-containing nanostructured lipid carriers.Colloids Surf. A Physicochem. Eng. Asp.20103721-3737910.1016/j.colsurfa.2010.09.030
    [Google Scholar]
  57. ShazwaniS.S. MarlinaA. MisranM. Development of nanostructured lipid carrier-loaded flavonoid-enriched Zingiber officinale.ACS Omega.202420244c00091
    [Google Scholar]
  58. KirshR. HoodS. ParryJ. LososJ. MerrillC. MeekT. Understanding the behavior of nanoparticulate drug delivery systems in vivo: particle disposition patterns, toxicologic implications and effective drug development.Toxicol. Lett.2013221S4210.1016/j.toxlet.2013.06.152
    [Google Scholar]
  59. ShuklaP. SharmaS. RaoP. Nanoparticulate drug delivery systems: A revolution in design and development of drugs.J. Drug Deliv. Ther.2021115-S18819310.22270/jddt.v11i5‑S.5023
    [Google Scholar]
  60. SenthilrajaP. KathiresanK. In vitro cytotoxicity MTT assay in Vero, HepG2 and MCF -7 cell lines study of Marine Yeast.J App Pharm Sci20158084
    [Google Scholar]
  61. SupinoR. MTT Assays.In vitro Toxicity Testing Protocols. O’HareS. AtterwillC.K. Totowa, NJHumana Press199513714910.1385/0‑89603‑282‑5:137
    [Google Scholar]
  62. Nazari-VananiR. KarimianK. AzarpiraN. HeliH. Capecitabine-loaded nanoniosomes and evaluation of anticancer efficacy.Artif. Cells Nanomed. Biotechnol.201947142042610.1080/21691401.2018.1559179 30672343
    [Google Scholar]
  63. HepokurC. Kariperİ.A. MısırS. AyE. TunoğluS. ErsezM.S. ZeybekÜ. KurucaS.E. Yaylımİ. Silver nanoparticle/capecitabine for breast cancer cell treatment.Toxicol. In Vitro20196110460010.1016/j.tiv.2019.104600 31302208
    [Google Scholar]
  64. ShahzadiI. JalilA. AsimM.H. HupfaufA. GustR. NellesP.A. KnablL. Bernkop-SchnürchA. Lipophilic Arginine Esters: The Gateway to Preservatives without Side Effects.Mol. Pharm.20201783129313910.1021/acs.molpharmaceut.0c00610 32598849
    [Google Scholar]
  65. KaurH. GhoshS. KumarP. BasuB. NagpalK. Ellagic acid-loaded, tween 80-coated, chitosan nanoparticles as a promising therapeutic approach against breast cancer: In-vitro and in-vivo study.Life Sci.202128411992710.1016/j.lfs.2021.119927 34492262
    [Google Scholar]
  66. NiuZ. Conejos-SánchezI. GriffinB.T. O’DriscollC.M. AlonsoM.J. Lipid-based nanocarriers for oral peptide delivery.Adv. Drug Deliv. Rev.2016106Pt B33735410.1016/j.addr.2016.04.001 27080735
    [Google Scholar]
  67. PandeyS. Vijayendra SwamyS.M. BhandarA. KoliA. GuptaA. YadavJ.S. Design Development and Statistical Optimization of Capecitabine Loaded pH Sensitive Nanoparticle for Colon Targeted Delivery: Cell line study.Internat. J. Pharmaceut. Res.2015747179
    [Google Scholar]
  68. SinghM.K. PindiproluS.K.S.S. Reddy SanapalliB.K. YeleV. GaneshG.N.K. Tumor homing peptide modified liposomes of capecitabine for improved apoptotic activity and HER2 targeted therapy in breast cancer: In vitro studies.RSC Advances2019943249872499410.1039/C9RA04814F 35528678
    [Google Scholar]
  69. JenaG.K. PatraC.N. DixitP.K. Cytotoxicity and Pharmacokinetic Studies of PLGA Based Capecitabine Loaded Nanoparticles.Indian J. Pharmaceut. Educat. Res.202054234935610.5530/ijper.54.2.40
    [Google Scholar]
  70. SaniA. PourmadadiM. ShaghaghiM. Mahdi EshaghiM. ShahmollaghamsaryS. ArshadR. Fathi-karkanS. RahdarA. MedinaD.I. PandeyS. Revolutionizing anticancer drug delivery: Exploring the potential of tamoxifen-loaded nanoformulations.J. Drug Deliv. Sci. Technol.20238610464210.1016/j.jddst.2023.104642
    [Google Scholar]
  71. AugustineR. HasanA. PrimaveraR. WilsonR.J. ThakorA.S. KevadiyaB.D. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components.Mater. Today Commun.20202510169210.1016/j.mtcomm.2020.101692
    [Google Scholar]
  72. ElmowafyM. Al-SaneaM.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies.Saudi Pharm. J.2021299999101210.1016/j.jsps.2021.07.015 34588846
    [Google Scholar]
  73. GundogduE. DemirE.S. EkinciM. OzgencE. Ilem-OzdemirD. SenyigitZ. Gonzalez-AlvarezI. BermejoM. An Innovative Formulation Based on Nanostructured Lipid Carriers for Imatinib Delivery: Pre-Formulation, Cellular Uptake and Cytotoxicity Studies.Nanomaterials (Basel)202212225010.3390/nano12020250 35055267
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018309370240708113038
Loading
/content/journals/cdd/10.2174/0115672018309370240708113038
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): 5-fluorouracil; Capecitabine; NLC; sodium dodecyl sulphate; stability studies; tween 80
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test