Skip to content
2000
Volume 22, Issue 7
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background

Breast cancer remains a significant global health challenge, with thymoquinone showing promise as a therapeutic agent, but hindered by poor solubility.

Objective

This study aimed to enhance TQ delivery to MCF-7 breast cancer cells using mesitylene-mesoporous silica nanoparticles coated with liposomes, designed for controlled drug release.

Methods

Nanoparticles were synthesized using the sol-gel method and coated with phosphatidylserine-cholesterol liposomes. Different nanocharacterization techniques and assays were employed to assess the drug release kinetics, cellular uptake, cytotoxicity, and apoptosis.

Results

The nanoparticles exhibited favorable properties, including a large pore size of 3.6 nm, a surface area of 248.96 m2/g, and a hydrodynamic size of 171.571 ± 8.342 nm with a polydispersity index of 0.182 ± 0.017, indicating uniformity and stability. The successful lipid bilayer coating was confirmed by a zeta potential shift from +6.25 mV to -5.65 mV. The coated nanoparticles demonstrated a slow and sustained drug release profile, with cellular uptake of FITC-formulated nanoparticles being approximately 5-fold higher than free FITC ( 0.0001). Cytotoxicity assays revealed a significant reduction in cell viability ( 0.0001), reaching an IC50 value of 25 µM at 48 hours. Apoptosis rates were significantly higher in cells treated with the formulated TQ compared to the free drug and control at both 24 and 48 hours ( 0.0001).

Conclusion

This nanoformulation significantly enhanced TQ delivery, offering a promising strategy for targeted breast cancer therapy. Further preclinical studies are recommended to advance this approach in cancer treatment.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018317245241007044455
2024-10-16
2025-09-17
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. AhmadI. MuneerK.M. TamimiI.A. ChangM.E. AtaM.O. YusufN. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome.Toxicol. Appl. Pharmacol.20132701707610.1016/j.taap.2013.03.02723583630
    [Google Scholar]
  4. RajputS. KumarB.N.P. SarkarS. DasS. AzabB. SanthekadurP.K. DasS.K. EmdadL. SarkarD. FisherP.B. MandalM. Targeted apoptotic effects of thymoquinone and tamoxifen on XIAP mediated Akt regulation in breast cancer.PLoS One201384e6134210.1371/journal.pone.006134223613836
    [Google Scholar]
  5. RajputS. KumarB.N.P. BanikP. ParidaS. MandalM. Thymoquinone restores radiation-induced TGF-β expression and abrogates EMT in chemoradiotherapy of breast cancer cells.J. Cell. Physiol.2015230362062910.1002/jcp.2478025164250
    [Google Scholar]
  6. HomayoonfalM. AsemiZ. YousefiB. Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis.Cell. Mol. Biol. Lett.20222712110.1186/s11658‑022‑00320‑035236304
    [Google Scholar]
  7. JadhavV. RoyA. KaurK. RoyA. SharmaK. VermaR. RustagiS. MalikS. Current advancements in functional nanomaterials for drug delivery systems.Nano-Structures & Nano-Objects20243810117710.1016/j.nanoso.2024.101177
    [Google Scholar]
  8. MohananS. SathishC.I. AdamsT.J. KanS. LiangM. VinuA. A dual protective drug delivery system based on lipid coated core-shell mesoporous silica for efficient delivery of cabazitaxel to prostate cancer cells.Bull. Chem. Soc. Jpn.202396101188119510.1246/bcsj.20230167
    [Google Scholar]
  9. NgW.K. Saiful YazanL. YapL.H. Wan Nor HafizaW.A.G. HowC.W. AbdullahR. Thymoquinone-loaded nanostructured lipid carrier exhibited cytotoxicity towards breast cancer cell lines (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa).BioMed Res. Int.2015201511010.1155/2015/26313125632388
    [Google Scholar]
  10. RaniR. DahiyaS. DhingraD. DilbaghiN. KimK.H. KumarS. Improvement of antihyperglycemic activity of nano-thymoquinone in rat model of type-2 diabetes.Chem. Biol. Interact.201829511913210.1016/j.cbi.2018.02.00629421519
    [Google Scholar]
  11. RathnayakeK. PatelU. HuntE.C. SinghN. Fabrication of a dual-targeted liposome-coated mesoporous silica core–shell nanoassembly for targeted cancer therapy.ACS Omega2023838344813449810.1021/acsomega.3c0290137779923
    [Google Scholar]
  12. FahmyH.M. AhmedM.M. MohamedA.S. Shams-EldinE. Abd El-DaimT.M. El-FekyA.S. MustafaA.B. Abd AlrahmanM.W. MohammedF.F. FathyM.M. Novel lipid-coated mesoporous silica nanoparticles loaded with thymoquinone formulation to increase its bioavailability in the brain and organs of Wistar rats.BMC Pharmacol. Toxicol.20222317110.1186/s40360‑022‑00616‑z36163187
    [Google Scholar]
  13. LiZ. BarnesJ.C. BosoyA. StoddartJ.F. ZinkJ.I. Mesoporous silica nanoparticles in biomedical applications.Chem. Soc. Rev.20124172590260510.1039/c1cs15246g22216418
    [Google Scholar]
  14. ShaheinS.A. Aboul-EneinA.M. HigazyI.M. Abou-ElellaF. LojkowskiW. AhmedE.R. MousaS.A. AbouAitahK. Targeted anticancer potential against glioma cells of thymoquinone delivered by mesoporous silica core-shell nanoformulations with pH-dependent release.Int. J. Nanomed.2019145503552610.2147/IJN.S206899
    [Google Scholar]
  15. DasS. RanjanO.P. RaoV. RavichandiranV. KumarN. Nanocarriers for Drug-Targeting Brain Tumors. KumarL. PathakY.Y. Elsevier202264967710.1016/B978‑0‑323‑90773‑6.00020‑8
    [Google Scholar]
  16. JadhavV. RoyA. KaurK. RaiA.K. RustagiS. Recent advances in nanomaterial-based drug delivery systems.Nano-Structures & Nano-Objects20243710110310.1016/j.nanoso.2024.101103
    [Google Scholar]
  17. GoelS. MishraP. Thymoquinone loaded mesoporous silica nanoparticles retard cell invasion and enhance in vitro cytotoxicity due to ROS mediated apoptosis in HeLa and MCF-7 cell lines.Mater. Sci. Eng. C201910410988110.1016/j.msec.2019.10988131499940
    [Google Scholar]
  18. TangF. LiL. ChenD. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery.Adv. Mater.201224121504153410.1002/adma.20110476322378538
    [Google Scholar]
  19. ZhaoQ. WangC. LiuY. WangJ. GaoY. ZhangX. JiangT. WangS. PEGylated mesoporous silica as a redox-responsive drug delivery system for loading thiol-containing drugs.Int. J. Pharm.20144771-261362210.1016/j.ijpharm.2014.10.05625445534
    [Google Scholar]
  20. Candela-NogueraV. AlfonsoM. AmorósP. AznarE. MarcosM.D. Martínez-MáñezR. In-depth study of factors affecting the formation of MCM-41-type mesoporous silica nanoparticles.Microporous Mesoporous Mater.202436311284010.1016/j.micromeso.2023.112840
    [Google Scholar]
  21. Ramírez-ArévaloM.S. Pérez-LópezT. Quintana-OwenP. Fajardo-San MiguelG.J. Talavera-PechW.A. Comparative Study of Physicochemical Properties of MCM-41 Silica Nanoparticles Obtained from Recycled Glass and TEOS Comparative study of physicochemical properties of MCM-41 silica nanoparticles obtained from recycled glass and TEOS.Silicon20231562653266110.1007/s12633‑022‑02206‑4
    [Google Scholar]
  22. ShendeR.A. ChaudhariB.P. Robust optimization and characterization of MCM‐41 nanoparticle synthesis using modified sol‐gel method.ChemistrySelect2023811e20220496810.1002/slct.202204968
    [Google Scholar]
  23. DayC.M. SweetmanM.J. SongY. PlushS.E. GargS. Functionalized mesoporous silica nanoparticles as delivery systems for doxorubicin: Drug loading and release.Appl. Sci.20211113612110.3390/app11136121
    [Google Scholar]
  24. NguyenT.N.T. LeN.T.T. NguyenN.H. LyB.T.K. NguyenT.D. NguyenD.H. Aminated hollow mesoporous silica nanoparticles as an enhanced loading and sustained releasing carrier for doxorubicin delivery.Microporous Mesoporous Mater.202030911054310.1016/j.micromeso.2020.110543
    [Google Scholar]
  25. StephenS. GorainB. ChoudhuryH. ChatterjeeB. Exploring the role of mesoporous silica nanoparticle in the development of novel drug delivery systems.Drug Deliv. Transl. Res.202212110512310.1007/s13346‑021‑00935‑433604837
    [Google Scholar]
  26. ZahidF. ZahidS. ChinnamS. ZubairA. SarfrazF. ShahM. IlyasU. AnwerR. AkbarZ. ShahA.A. Synthesis and recent developments of mesoporous silica nanoparticles in targeted anti-tumor therapy.J. Popul. Ther. Clin. Pharmacol.202431117511761
    [Google Scholar]
  27. ZhaoH. LiY. ChenJ. ZhangJ. YangQ. CuiJ. ShiA. WuJ. Environmental stimulus-responsive mesoporous silica nanoparticles as anticancer drug delivery platforms.Colloids Surf. B Biointerfaces202423411375810.1016/j.colsurfb.2024.11375838241892
    [Google Scholar]
  28. ShenS. WuY. LiuY. WuD. High drug-loading nanomedicines: Progress, current status, and prospects.Int. J. Nanomed.2017124085410910.2147/IJN.S132780
    [Google Scholar]
  29. LuJ. LiongM. LiZ. ZinkJ.I. TamanoiF. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals.Small20106161794180510.1002/smll.20100053820623530
    [Google Scholar]
  30. BiswasR. GhoshD. DasguptaS. BhaduriS.N. BanerjeeR. DattaP. BiswasP. Vanadium-Incorporated Mesoporous Silica as Oxidase Mimic for Colorimetric Dopamine Detection and Anticancer Activity Vanadium-incorporated mesoporous silica as oxidase mimic for colorimetric dopamine detection and anticancer activity.ChemistrySelect2023819e20220498910.1002/slct.202204989
    [Google Scholar]
  31. KhosraviyanP. Shafiee ArdestaniM. KhoobiM. OstadS.N. DorkooshF.A. Akbari JavarH. AmanlouM. Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel.OncoTargets Ther.201697315733010.2147/OTT.S11381527980423
    [Google Scholar]
  32. KneževićN.Ž. DurandJ.O. Large pore mesoporous silica nanomaterials for application in delivery of biomolecules.Nanoscale2015762199220910.1039/C4NR06114D25583539
    [Google Scholar]
  33. YousefiaslS. ManoochehriH. MakvandiP. AfsharS. SalahinejadE. KhosraviyanP. SaidijamM. Soleimani AslS. SharifiE. Chitosan/alginate bionanocomposites adorned with mesoporous silica nanoparticles for bone tissue engineering.J. Nanostructure Chem.202313338940310.1007/s40097‑022‑00507‑z
    [Google Scholar]
  34. MorsiR.E. MohamedR.S. Nanostructured mesoporous silica: Influence of the preparation conditions on the physical-surface properties for efficient organic dye uptake.R. Soc. Open Sci.20185317202110.1098/rsos.17202129657800
    [Google Scholar]
  35. TorchilinV.P. Recent advances with liposomes as pharmaceutical carriers.Nat. Rev. Drug Discov.20054214516010.1038/nrd163215688077
    [Google Scholar]
  36. AminM.U. AliS. AliM.Y. TariqI. NasrullahU. PinnapreddyS.R. WölkC. BakowskyU. BrüßlerJ. Enhanced efficacy and drug delivery with lipid coated mesoporous silica nanoparticles in cancer therapy.Eur. J. Pharm. Biopharm.2021165314010.1016/j.ejpb.2021.04.02033962002
    [Google Scholar]
  37. AminM.U. AliS. TariqI. AliM.Y. PinnapreddyS.R. PreisE. WölkC. HarveyR.D. HauseG. BrüßlerJ. BakowskyU. Ultrasound-responsive smart drug delivery system of lipid coated mesoporous silica nanoparticles.Pharmaceutics2021139139610.3390/pharmaceutics1309139634575472
    [Google Scholar]
  38. FamS.Y. CheeC.F. YongC.Y. HoK.L. MariatulqabtiahA.R. TanW.S. Stealth coating of nanoparticles in drug-delivery systems.Nanomaterials202010478710.3390/nano1004078732325941
    [Google Scholar]
  39. SunQ. YouQ. WangJ. LiuL. WangY. SongY. ChengY. WangS. TanF. LiN. Theranostic nanoplatform: Triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles.ACS Appl. Mater. Interfaces20181021963197510.1021/acsami.7b1365129276824
    [Google Scholar]
  40. YangS. SongS. HanK. WuX. ChenL. HuY. WangJ. LiuB. Characterization, in vitro evaluation and comparative study on the cellular internalization of mesoporous silica nanoparticle-supported lipid bilayers.Microporous Mesoporous Mater.201928421222410.1016/j.micromeso.2019.04.043
    [Google Scholar]
  41. TorchilinV. Multifunctional nanocarriers.Adv. Drug Deliv. Rev.200658141532155510.1016/j.addr.2006.09.00917092599
    [Google Scholar]
  42. GbianD.L. OmriA. Lipid-based drug delivery systems for diseases managements.Biomedicines2022109213710.3390/biomedicines1009213736140237
    [Google Scholar]
  43. LiuW. HouY. JinY. WangY. XuX. HanJ. Research progress on liposomes: Application in food, digestion behavior and absorption mechanism.Trends Food Sci. Technol.202010417718910.1016/j.tifs.2020.08.012
    [Google Scholar]
  44. MengH. XueM. XiaT. JiZ. TarnD.Y. ZinkJ.I. NelA.E. Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model.ACS Nano2011554131414410.1021/nn200809t21524062
    [Google Scholar]
  45. NazliA. Irshad KhanM.Z. RáczÁ. BéniS. Acid-sensitive prodrugs; A promising approach for site-specific and targeted drug release.Eur. J. Med. Chem.202427611669910.1016/j.ejmech.2024.11669939089000
    [Google Scholar]
  46. SelmiM. SalekA. BarbouraM. NjimL. TrabelsiA. LahmarA. LautramN. RogerE. BaatiT. GhediraL. Thymoquinone-loaded lipid nanocapsules with promising anticancer activity for colorectal cancer.Nanoscale Adv.20235195390539810.1039/D3NA00445G37767034
    [Google Scholar]
  47. ShabaniH. KaramiM.H. KolourJ. SayyahiZ. ParvinM.A. SoghalaS. BaghiniS.S. MardasiM. ChopaniA. MoulaviP. FarkhondehT. DarroudiM. KabiriM. SamarghandianS. Anticancer activity of thymoquinone against breast cancer cells: Mechanisms of action and delivery approaches.Biomed. Pharmacother.202316511497210.1016/j.biopha.2023.11497237481931
    [Google Scholar]
  48. ChenA.M. ZhangM. WeiD. StueberD. TaratulaO. MinkoT. HeH. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells.Small20095232673267710.1002/smll.20090062119780069
    [Google Scholar]
  49. MengH. WangM. LiuH. LiuX. SituA. WuB. JiZ. ChangC.H. NelA.E. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice.ACS Nano2015943540355710.1021/acsnano.5b0051025776964
    [Google Scholar]
  50. XieX. YueT. GuW. ChengW. HeL. RenW. LiF. PiaoJ.G. Recent advances in mesoporous silica nanoparticles delivering siRNA for cancer treatment.Pharmaceutics20231510248310.3390/pharmaceutics1510248337896243
    [Google Scholar]
  51. BahloulB. ChaabaniR. ZahraY. KalboussiN. KraiemJ. SfarS. MignetN. AbdennebiH. Thymoquinone-loaded self-nano-emulsifying drug delivery system against ischemia/reperfusion injury.Drug Deliv. Transl. Res.202414122323510.1007/s13346‑023‑01395‑837523093
    [Google Scholar]
  52. GomathinayagamR. HaJ.H. JayaramanM. SongY.S. IsidoroC. DhanasekaranD.N. Chemopreventive and anticancer effects of thymoquinone: Cellular and molecular targets.J. Cancer Prev.202025313615110.15430/JCP.2020.25.3.13633033708
    [Google Scholar]
  53. MohammadabadiM.R. MozafariM.R. Enhanced efficacy and bioavailability of thymoquinone using nanoliposomal dosage form.J. Drug Deliv. Sci. Technol.20184744545310.1016/j.jddst.2018.08.019
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018317245241007044455
Loading
/content/journals/cdd/10.2174/0115672018317245241007044455
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test