Current Computer - Aided Drug Design - Online First
Description text for Online First listing goes here...
21 - 36 of 36 results
-
-
Prediction Factors for Quality Risks in the Pharmaceutical Development of Tablets Bisoprolol Fumarate with Indapamide
Authors: Nadia Malanchuk, Mariana Demchuk, Andriy Sverstiuk and Yuri PalanizaAvailable online: 13 March 2025More LessBackgroundAn important characteristic of the quality-by-design approach is defining risk, which is a combination of the probability of harm and its severity. During risk assessment, it is essential to determine how the formulation, properties of active ingredients and excipients, and process parameters can potentially affect critical quality attributes or critical process parameters.
Objectiveto develop an algorithm and a mathematical model for predicting quality risks in the pharmaceutical development of bisoprolol fumarate tablets with indapamide.
MethodsThe software programs “Microsoft Excel 2016” and “Statistica 10.0” (StatSoft, Inc.) were used to predict potential risks and to build a regression model of quality-related risks for bisoprolol fumarate tablets with indapamide.
ResultsA mathematical model for predicting the tablet quality risk has been developed, incorporating significant predictors: Carr's index for powder mixtures (Х1), evaluation of the pressing process (Х2), uniformity of tablet weight (Х3), tablets hardness testing (Х4), disintegration time (Х6). Four levels of quality risk are defined: low risk [0.8-1.0], moderate risk [0.6-0.8], high risk [0.4-0.6], and critical risk [0-0.4]. The calculated coefficient of determination of the forecasting model (R2=0.8168) testifies to its high quality.
ConclusionThe developed algorithm and mathematical model for predicting tablet quality risks are highly informative and qualitative. The proposed approach represents an innovative and promising tool for assessing and predicting risks associated with the quality of medicinal products, particularly during the early stages of pharmaceutical development.
-
-
-
HOXC-AS1: A Key Biomarker for Prognosis and Immunotherapy in Lung Adenocarcinoma
Authors: Haiyin Ye, Xiao Yang, Qiu Huang, Yutao Pang, Dongbing Li and Boyun DengAvailable online: 06 March 2025More LessBackgroundThe function of HOXC antisense RNA 1 (HOXC-AS1) in lung adenocarcinoma (LUAD) remains largely unexplored.
ObjectiveThe objective of this research was to examine the relationship between HOXC-AS1 levels and LUAD through both bioinformatics analysis and experimental validation.
MethodsWe employed statistical methods and bioinformatics to evaluate the correlation between HOXC-AS1 expression and various clinical features, survival predictors, regulatory mechanisms, and immune cell infiltration in LUAD. The levels of HOXC-AS1 in LUAD cell lines were ascertained through quantitative reverse transcription PCR.
ResultsHOXC-AS1 displayed significantly increased expression in individuals with LUAD. There was a significant correlation between high HOXC-AS1 levels and diminished overall survival in LUAD patients, characterized by a hazard ratio of 0.66, a 95% confidence interval of 0.49 to 0.88, and a statistically significant P-value (0.005). An elevated expression of HOXC-AS1 was found to be a standalone predictor of poor overall survival in LUAD patients, with a P-value of 0.002. HOXC-AS1 was found to be implicated in various pathways, such as neuroactive ligand-receptor interaction and asthma, among others. The study revealed a substantial link between high HOXC-AS1 expression and unfavorable outcomes in LUAD, including poor survival and altered immune cell infiltration. LUAD cell lines exhibited a marked increase in HOXC-AS1 expression compared to the Beas-2B normal lung cell line.
ConclusionThe research indicated a strong association between higher levels of HOXC-AS1 and negative outcomes in LUAD, such as reduced survival rates and the presence of immune cell infiltration. HOXC-AS1 could potentially be utilized as a biomarker to anticipate patient prognosis and their likelihood of responding to immunotherapies in LUAD.
-
-
-
Research on Detection Model of Penicillin Potency Content based on Near-infrared Spectroscopy Technology
Authors: Jianxia Wang, Nan Shen, Xiaojun Wang and Yan WangAvailable online: 06 March 2025More LessBackgroundThe potency content of penicillin serves as a crucial indicator for measuring its pharmacological effects, playing a vital role in quality control and clinical applications. In recent years, with the continuous improvement of production efficiency and quality requirements in the pharmaceutical industry, the need for high-frequency monitoring of drug potency has become increasingly urgent. Infrared spectroscopy, as an emerging research tool, has demonstrated immense potential in the field of drug potency testing.
ObjectivesThe objective of this study is to develop a real-time monitoring model for penicillin potency content utilizing near-infrared (NIR) spectroscopy data. This model aims to enable rapid and accurate detection of potency content during the penicillin production process, ultimately enhancing production efficiency and reducing costs.
MethodsDuring the penicillin production process, NIR spectroscopy data from penicillin samples were scanned and collected to form a comprehensive dataset. Five distinct spectral preprocessing methods were combined with three regression models to construct detection models. By comparing the performance of different combinations, the optimal model configuration was identified.
ResultsThe optimal model configuration identified in this study integrates the Savitzky-Golay filtering method with ridge regression. Under this optimal model, the coefficient of determination for the test set reached 0.990669, indicating an extremely high degree of agreement between the model's predicted values and the actual measured values. This real-time monitoring model for penicillin potency content can be applied as a rapid and non-destructive monitoring method in factory settings.
ConclusionThis study successfully developed a real-time monitoring model for penicillin potency based on NIR spectroscopy technology. The research findings not only provide strong support for potency monitoring during the penicillin production process but also offer new insights and methodologies for non-destructive testing of other pharmaceuticals and chemicals.
-
-
-
Designing and Evaluation of a Novel IL-1RA Fusion Cytokine to Enhance the Pharmacokinetics and Receptor Affinity for Better Therapeutic Intervention in Inflammatory Disorders
Authors: Anith Kumar Rajendran, Kalimuthu Karuppanan and Senthilkumar PalanisamyAvailable online: 05 March 2025More LessIntroductionThe extended IL-1 activity is implicated in autoimmune disorders, such as rheumatoid arthritis, diabetes mellitus, and Parkinson's disease, as well as delayed wound healing. Additionally, it can result in cytokine storms during pathogenic infections.
MethodsThe regulation was carried out by Interleukin-1 receptor antagonist (IL-1RA), a key anti-inflammatory molecule. IL-1RA serves as a decoy protein that competes with Interleukin-1 receptors (IL-1RI and IL-1RII) for binding, effectively counteracting the activity of Interleukin-1 (IL-1). The deficiency was substantiated by commercially available recombinant IL-1RA called Anakinra. The main problem with the existing drug is that it has less pharmacokinetics and reduced binding affinity to its receptor, which requires frequent administration of the drug. To overcome these drawbacks, we have designed a new fusion protein by adding an Fc fragment of Human IgGI fused with IL-1RA using a linker in between, and the design aimed to transport the protein into the N-glycosylation pathway. These characteristic features increase the pharmacokinetics, solubility, and binding efficiency of the protein. As the protein was designed to be expressed in a eukaryotic system, to understand the possibility of the proposed hypothesis, we used machine learning-based AlphaFold2 to model the protein structure and molecular simulation studies to understand the functional integrity of the designed protein.
ResultsThe in silico results showed that the modeled fusion protein structure has very good binding to its receptor with the support of 21 H bonds and 7 salt bridges and maintained the binding stability over the MD simulations.
ConclusionThese findings support fusion protein’s potential as a promising and stable therapeutic candidate.
-
-
-
Network Pharmacology and Experimental Validation to Reveal the Pharmacological Mechanisms of Gynostemma pentaphylla against Acute Pharyngitis
Authors: Juan Zhong, Xiaozhong Wu, Chunxi Huang, Yongqiang Li, Min Huang, Liuyan Xu, Jianfeng Lu, Lili Pang, Qiuju Huang and Jing ChenAvailable online: 04 February 2025More LessBackgroundAcute pharyngitis (AP) is a prevalent ailment. Gynostemma pentaphylla (GP), a traditional Chinese medicine (TCM), may treat AP due to its anti-tumor and anti-inflammatory properties, but this remains unexplored.
MethodsThis study utilized the TCMSP and Swiss Target Prediction databases to analyze GP's chemical composition and target proteins. The Genecards database was used to identify targets relevant to AP. A PPI network diagram of drug-disease intersection targets was created using the STRING database, and Cytoscape was utilized to create a network visualization diagram of “GP active components-targets-AP” in order to determine key active components of GP in treating AP. Gene ontology (GO) and biological pathway (KEGG) enrichment analyses were conducted on targets in the David database. Molecular docking verification of key targets and components was performed using AutoDock Vina software. In animal experiments, a rat model of AP was induced by a 15% concentrated ammonia solution, and HE staining was conducted to observe histopathological changes in the rat pharynx after intragastric administration of Houyanqing. ELISA was used to detect expression levels of serum interleukin-1-beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF-α).
ResultsA total of 18 active ingredients were screened from GP, among which Ruvoside _ qt, Rhamnazin, 3 ' -methyleriodictyol, and sitosterol were five key active ingredients. The key targets involved EGFR, STAT3, MAPK3, SRC, AKT1, etc. KEGG enrichment analysis showed that GP mainly acted on Pathways in cancer, P13K-AKT signaling Pathways, JAK-STAT signaling pathways, and other signaling pathways. Molecular docking results showed that four core compounds and five key targets met the energy matching. Animal experiments showed that compared with the normal group, the expression levels of IL-1β, IL-6, and TNF-α in the AP model group were significantly up-regulated (P < 0.05). In addition, compared with the model group, intragastric administration of the dexamethasone group and gypenosides group could alleviate the up-regulation of inflammatory factors in model rats, and the levels of IL-1β, IL-6, and TNF-α were decreased (P < 0.05).
ConclusionThis study predicted the possible targets of GP in the treatment of AP through network pharmacology. The results suggest that gypenosides may inhibit the expression of inflammatory factors by regulating Pathways in cancer, P13K-AKT, and JAK-STAT signaling pathways to treat AP.
-
-
-
Qi-Gui-Jian-Gu Decoction Accelerates Osteogenesis and Fracture Healing by Activating the Wnt/β-Catenin Signaling Pathway
Authors: Siluo Wu, Jiayang Wang, Ziheng Luo, Bifeng Li, Liangliang Xu, Liuchao Hu and Rihe HuAvailable online: 04 February 2025More LessBackgroundQi-Gui-Jian-Gu decoction (QGJG), as a clinical empirical formula, has clinical benefits in promoting bone formation, but the underlying mechanism for its application in treating fractures has not been investigated.
MethodsThe potential therapeutic target and signaling pathway of QGJG for treating fractures were analyzed by network pharmacology. In vitro, we used bone marrow mesenchymal stem cells (MSCs) to evaluate osteogenic differentiation and mineralization by alizarin red staining, quantitative real-time polymerase chain reaction (qRT-PCR), western blot (WB), and immunofluorescence staining. In vivo, the 8w male SPF C57BL/6J mouse femoral fracture model was constructed, and the therapeutic effects of QGJG were evaluated.
ResultsBy network pharmacology analysis, we found that glycogen synthase kinase 3 beta (GSK3β) was a potential therapeutic target of QGJG for treating fractures. The canonical Wnt signaling pathway was selected as the potential molecular mechanism. QGJG was confirmed to upregulate the mRNA levels of alkaline phosphatase (ALP) and bone morphogenetic protein 2 (BMP2), thereby promoting osteogenic differentiation and mineralization. Mechanistically, QGJG inhibited GSK3β while increasing p-Ser9-GSK3β to increase β-catenin protein expression and its nuclear translocation, implying the activation of the canonical Wnt signaling pathway. In vivo, QGJG administration promoted fracture healing, as demonstrated by the up-regulation of OPN and Osx, and accelerated the progression of ossification at 2 and 3 weeks after surgery.
ConclusionQGJG promotes osteogenic differentiation and fracture healing by activating the canonical Wnt pathway.
-
-
-
Computational Evaluation of Punica granatum Leaf Phytochemicals against Multi-drug Resistant E. coli: Molecular Docking, ADMET, MD Simulation, and DFT Studies
Authors: Shivam Mishra, Shristi Modanwal, Prabhat Kumar, Ashutosh Mishra and Nidhi MishraAvailable online: 09 January 2025More LessIntroductionMultidrug-resistant (MDR) E. coli presents a significant challenge in clinical settings, necessitating the exploration of novel therapeutic agents. Phytochemicals from Punica granatum (pomegranate) leaves have shown potential antibacterial properties. This study aims to identify and evaluate the efficacy of these phytochemicals against MDR E. coli
ObjectivesThis study aims to identify and evaluate the efficacy of most potential phytochemical of Punica granatum leaf against MDR E. coli. through molecular docking, adme, toxicity, molecular dynamic simulation, MMPBSA and DFT approaches
MethodsWe performed molecular docking of 11 phytochemicals from the IMPPAT database with four MDR E. coli targets: 1AJ6, 1FJ8, 4BJP, and 6BU3. Granatin B demonstrated the best binding affinity and was further analyzed. ADME (Absorption, Distribution, Metabolism, and Excretion) and toxicity analyses were conducted to assess its pharmacokinetic properties and safety profile. Molecular Dynamics (MD) simulations were performed to evaluate the stability of Granatin B with the targets. Finally, density functional theory (DFT) analysis was carried out to understand the electronic properties and reactivity of Granatin B
ResultsGranatin B exhibited the highest binding affinity among the 11 phytochemicals, indicating strong potential as an inhibitor of MDR E. coli. ADME analysis revealed favorable pharmacokinetic properties and toxicity analysis confirmed that Granatin B is non-toxic. MD simulations showed stable interactions between Granatin B and all four targets. DFT analysis provided insights into the electronic properties and reactive sites of Granatin B, supporting its potential mechanism of action
ConclusionGranatin B from Punica granatum leaves is a promising candidate for treating MDR E. coli infections. The integration of molecular docking, ADME, toxicity, MD simulations, and DFT analysis underscores its therapeutic potential and paves the way for further experimental validation and development as a novel antibacterial agent
-
-
-
Identification of a ceRNA Network Regulating Malignant Transformation of Isocitrate Dehydrogenase Mutant Astrocytoma: An Integrated Bioinformatics Study
Authors: Yaqian Cui, Hongquan Zheng, Zhengwei Zhou, Suo Liu, Mingxue Shen, Runze Qiu, Xiong Zhang, Yingbin Li and Hongwei FanAvailable online: 06 January 2025More LessIntroductionAstrocytoma is the most common glioma, accounting for about 65% of glioblastoma. Its malignant transformation is also one of the important causes of patient mortality, making it the most prevalent and difficult to treat in primary brain tumours. However, little is known about the underlying mechanisms of this transformation.
MethodsIn this study, we established a ceRNA network to screen out the potential regulatory pathways involved in the malignant transformation of IDH-mutant astrocytomas. Firstly, the Chinese Glioma Genome Atlas (CGGA) was employed to compare the expression levels of the differential expressed genes (DEGs) in astrocytomas. Then, the ceRNA-regulated network was constructed based on the interaction of lncRNA-miRNA-mRNA. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to explore the main functions of the differentially expressed genes. COX regression analysis and log-rank test were combined to screen the ceRNA network further. In addition, quantitative real-time PCR (qRT-PCR) was conducted to identify the potential regulatory mechanisms of malignant transformation in IDH-mutant astrocytoma.
ResultsA ceRNA network with 34 lncRNAs, 29 miRNAs, and 71 mRNAs. GO and KEGG analyses results suggested that DEGs were associated with tumor-associated molecular functions and pathways. In addition, we screened two ceRNA regulatory networks using Cox regression analysis and log-rank test. QRT-PCR assay identified the NAA11/hsa-miR-142-3p/GS1-39E22.2 regulatory axis of the ceRNA network to be associated with the malignant transformation of IDH-mutant astrocytoma.
ConclusionThe discovery of this mechanism deepens our understanding of the molecular mechanisms of malignant transformation in astrocytomas and provides new perspectives for exploring glioma progression and targeted therapies.
-
-
-
Mechanisms Underlying the Attenuating Effects of Bugantang on Liver Fibrosis Based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation
Authors: Taojing Zhang, Jia Chang, Zengle Zheng, Guobi Chen, Yiping Wu, Jinxiang Xiang and Jing ChenAvailable online: 02 December 2024More LessBackgroundLiver fibrosis, a chronic liver disease, threatens people's health, increases the burden of healthcare, and currently lacks effective treatment measures. Bugantang (BGT) is a traditional Chinese herbal prescription from Jin Kui Yi with promising potential for treating liver fibrosis. Despite this potential, the efficacy and mechanism for treating liver fibrosis remain unclear.
ObjectiveTo primarily prove the efficacy, predict the active components of BGT, and explore the mechanism of BGT on liver fibrosis.
MethodsThe liver condition of CCL4-induced mice was examined using hematoxylin and eosin staining. The targets and active compounds of BGT were sourced from HERB and TCMSP databases, while the targets related to liver fibrosis were acquired from DisGeNET, Gene Expression Omnibus, and GeneCards databases. The core targets were identified, and the network of protein-protein interactions was established. KEGG and GO analyses were performed on DAVID. Molecular docking and molecular dynamics simulations assessed the active components’ interactions with potential targets.
ResultsA total of 215 targets and 152 active compounds were identified for BGT. The network analysis identified kaempferol, quercetin, 2-(2,4-dihydroxyphenyl)-7-hydroxy-4H-chromen-4-one, sitosterol, naringenin, adenosine, plo, and beta-sitosterol as potential key compounds, and AKT1, MMP9, SRC, TNF, ESR1, NF-κB, and PPARG as potential key targets. KEGG and GO analyses revealed that the therapeutic effect of BGT on liver fibrosis may be associated with the PI3K-AKT and MAPK signaling pathways, as well as cell apoptosis, protein phosphorylation, and inflammation. Molecular docking demonstrated high-affinity binding of the identified targets to the active compounds. Additionally, molecular dynamics simulation further confirmed that the bindings of AKT1-beta-sitosterol and MMP9-quercetin exhibited good stability.
ConclusionsThe potential of BGT in alleviating liver fibrosis may be attributed to a combination of various active compounds, targets, and pathways. These results could support the use of BGT in treating liver fibrosis and facilitate the development of new drug candidates for this condition.
-
-
-
Study on the Mechanism of Alpinia officinarum Hance in the Improvement of Insulin Resistance through Network Pharmacology, Molecular Docking and in vitro Experimental Verification
Authors: Mingyan Zhou, Xiuxia Lian, Xuguang Zhang, Jian Xu and Junqing ZhangAvailable online: 01 November 2024More LessBackgroundResearch has elucidated that the pathophysiological underpinnings of non-alcoholic fatty liver disease and type 2 diabetes mellitus are intrinsically linked to insulin resistance (IR). However, there are currently no pharmacotherapies specifically approved for combating IR. Although Alpinia officinarum Hance (A. officinarum) can ameliorate diabetes, the detailed molecular mechanism through which it influences IR has not been fully clarified.
AimsTo predict the active components of A. officinarum and determine the mechanism by which A. officinarum affects IR.
MethodsThe active compounds and molecular mechanism underlying the improvement of IR by A. officinarum were predicted via network pharmacology and molecular docking. To further substantiate these predictions, an in vitro model of IR was induced in HepG2 cells using high glucose concentrations. Cytotoxicity and oxidative stress levels were evaluated using Cell Counting Kit-8, reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) assay kits. The putative molecular mechanisms were corroborated through Western blot and RT-PCR analyses.
ResultsFourteen principal active components in A. officinarum, 133 potential anti-IR gene targets, and the top five targets with degree values were ALB, AKT1, TNF, IL6, and VEGFA. A. officinarum was posited to exert its pharmacological effects on IR through mechanisms involving lipid and atherosclerosis, the AGE-RAGE signaling pathway in diabetic complications, the PI3K-AKT signaling pathway, fluid shear stress, and atherosclerosis. Intriguingly, network pharmacology analysis highlighted (4E)-7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3-one (A14) as the most active compound. Molecular docking studies further confirmed that A14 has a strong binding affinity for the main targets of PI3K, AKT, and Nrf2. The experiments demonstrated that A14 significantly diminished the ROS and MDA levels while augmenting the SOD activity. Moreover, A14 was found to elevate the protein expression of PI3K, AKT, Nrf2, and HO-1, and increase the mRNA levels of these targets as well as NQO1.
ConclusionA. officinarum could play a therapeutic role in IR through multiple components, targets, and pathways. The most active component of A. officinarum responsible for combating IR is A14, which has the ability to regulate oxidative stress in IR-HepG2 cells by activating the PI3K/AKT/Nrf2 pathway. These findings suggest a potential pharmacological intervention strategy for the treatment of IR.
-
-
-
Identifying Novel Inhibitors for Dengue NS2B-NS3 Protease by Combining Topological similarity, Molecular Dynamics, MMGBSA and SiteMap Analysis
Available online: 29 October 2024More LessIntroductionDENV NS2B-NS3 protease inhibitors were designed based upon the reference molecule, 4-(1,3-dioxoisoindolin-2-yl)-N-(4-ethylphenyl) benzenesulfonamide, reported by our team with the aim to optimize lead compound via rational approach. Top five best scoring molecules with zinc ids ZINC23504872, ZINC48412318, ZINC00413269, ZINC13998032 and ZINC75249613 bearing ‘pyrimidin-4(3H)-one’ basic scaffold have been identified as a promising candidate against DENV protease enzyme.
MethodsThe shape and electrostatic complementary between identified HITs and reference molecules were found to be Tanimotoshape 0.453, 0.690, 0.680, 0.685 & 0.672 respectively and Tanimotoelectrostatic 0.211, 0.211, 0.441, 0.442, 0.442 and 0.442 respectively. The molecular docking studies suggested that the identified HITs displayed the good interactions with active site residues and lower binding energies. The stability of docked complexes was assessed by MD simulations studies. The RMSD values of protein backbone (1.6779, 3.1563, 3.3634, 3.3893 & 3.0960 Å) and protein backbone RMSF values (1.0126, 1.0834, 1.0890, 0.9974 & 1.0080 Å respectively) for all top five HITs were stable and molecules did not fluctuate from the active pocket during entire 100ns MD run.
ResultsThe druggability Dscore below 1 indicate the tightly binding of ligand at the active site. Dscore for ZINC23504872 was found to be 1.084 while for the second class of compounds ZINC48412318, ZINC00413269, ZINC13998032 and ZINC75249613, 0.503, 0.484, 0.487 and 0.501 Dscores were observed. In-silico ADMET calculations suggested that all five HITs were possessed the drug likeliness properties and did not violate the Lipinski’s rule of five.
ConclusionSumming up, these in-silico generated data suggested that the identified molecules bearing pyrimidin-4(3H)-one would be promising scaffold for DENV protease inhibitors. However, experimental results are needed to prove the obtained results.
-
-
-
Discovery of Two GSK3β Inhibitors from Sophora flavescens Ait. using Structure-based Virtual Screening and Bioactivity Evaluation
Authors: Dabo Pan, Yong Zeng, Dewen Jiang, Yonghao Zhang, Mingkai Wu, Yaxuan Huang, Minzhen Han and Xiaojie JinAvailable online: 25 October 2024More LessObjectiveKushen (Sophora flavescens Ait.) has a long history of medicinal use in China due to its medicinal values, such as antibacterial, antiviral, and anti-inflammatory. Rapid discovery of the components and the medicinal effects exerted by Kushen will help elucidate the science of Kushen in curing diseases. GSK3β (glycogen synthase kinase-3 beta) is a protein kinase with a wide range of physiological functions, such as antibacterial, antiviral, and anti-inflammatory. The discovery of inhibitors targeting GSK3β from Kushen was not only helpful for the rapid discovery of the components responsible for the efficacy of Kushen but also important for the development of novel drugs.
MethodsIn this study, the chemical composition of Kushen was extracted from the TMSCP database. Molecular docking, GSK3β enzyme assay, and molecular dynamics simulations were used to discover the GSK3β inhibitors from the chemical composition of Kushen.
ResultsA total of 113 chemical compositions of Kushen were extracted from the TMSCP database. Molecular docking indicated that 15 chemical compositions of Kushen scored better than -8 kcal/mol against GSK3β. GSK3β enzyme assay demonstrated several inhibitory activities of kushenol I and kushenol F with IC50 values of 7.53 ± 2.55 µM and 4.96 ± 1.29 µM, respectively. Molecular dynamics simulations were used to reveal the interactions of kushenol I and kushenol F with GSK3β from structural and energetic perspectives.
ConclusionKushenol I and kushenol F could be the material basis for the antibacterial, antiviral, and anti-inflammatory properties of Kushen.
-
-
-
Synergistic Action of Thymol-citral is Associated with Cell Cycle Arrest and Intracellular ROS Generation in A549 Cells
Available online: 24 October 2024More LessObjectiveNSCLC is the predominant form of lung cancer, often exhibiting resistance to chemotherapy. Thymol and citral have shown promise as anticancer agents in different cancer cell lines but have not been evaluated in combination against NSCLC. Hence, we planned to investigate the anticancer effect of thymol-citral combination and explore its mechanisms of action against A549 cells.
MethodsA549 cells were exposed to varying concentrations of thymol and citral, alone and in combination. Cell proliferation, plasma membrane integrity, apoptotic markers, reactive oxygen species (ROS) levels, cell cycle distribution, senescence induction, and migration potential were assessed. Additionally, in vitro safety was evaluated in human bronchial epithelial cells (HBECs) and human red blood cells (RBCs).
ResultsThymol and citral showed synergistic action against A549 cells, with a CI value of 0.75. After 24 h, they induced apoptosis, caused G0/G1 phase arrest, and increased ROS levels, suggesting oxidative stress as the mechanism. This combination also induced cell senescence, significantly inhibited A549 cell migration, and was non-toxic to human RBCs and HBECs.
ConclusionOverall, the thymol-citral synergistic combination was found to be a safe and effective therapy option for non-small cell lung cancer.
-
-
-
Discovery of Novel PTP1B Inhibitors by High-throughput Virtual Screening
Available online: 14 October 2024More LessAimTo Discover novel PTP1B inhibitors by high-throughput virtual screening
BackgroundType 2 Diabetes is a significant global health concern. According to projections, the estimated number of individuals affected by the condition will reach 578 million by the year 2030 and is expected to further increase to 700 million deaths by 2045. Protein Tyrosine Phosphatase 1B is an enzymatic protein that has a negative regulatory effect on the pathways involved in insulin signaling. This regulatory action ultimately results in the development of insulin resistance and the subsequent elevation of glucose levels in the bloodstream. The proper functioning of insulin signaling is essential for maintaining glucose homeostasis, whereas the disruption of insulin signaling can result in the development of type 2 diabetes. Consequently, we sought to utilize PTP1B as a drug target in this investigation.
ObjectiveThe purpose of our study was to identify novel PTP1B inhibitors as a potential treatment for managing type 2 diabetes.
MethodsTo discover potent PTP1B inhibitors, we have screened the Maybridge HitDiscover database by SBVS. Top hits have been passed based on various drug-likeness rules, toxicity predictions, ADME assessment, Consensus Molecular docking, DFT, and 300 ns MD Simulations.
ResultsTwo compounds have been identified with strong binding affinity at the active site of PTP1B along with drug-like properties, efficient ADME, low toxicity, and high stability.
ConclusionThe identified molecules could potentially manage T2DM effectively by inhibiting PTP1B, providing a promising avenue for therapeutic strategies.
-
-
-
Exploring the Mechanism of Centipeda minima in Treating Nasopharyngeal Carcinoma Based on Network Pharmacology
Authors: Can Huang, Xiaolin Liu, Weimo Wang and Zhen GuoAvailable online: 14 October 2024More LessBackgroundCentipeda minima (CM) is a traditional Chinese herbal medicine used for the treatment of sinusitis and rhinitis, and it possesses anti-cancer properties. However, the mechanism of CM in the treatment of nasopharyngeal carcinoma (NPC) remains unclear.
ObjectiveThis study aimed to explore the mechanism of CM in the treatment of NPC using a network pharmacology approach.
MethodsThe active components and targets of CM and NPC were screened using TCMSP, SwissTarget, and GeneCards database. The association between CM components and NPC targets or pathways was analyzed using String, Cytoscape 3.9.1, David 6.7, and AutoDock Vina. The Sangerbox platform was used to conduct differential expression and Kaplan-Meier survival analysis of core genes.
ResultsWe identified 17 active compounds of CM and 146 corresponding targeted proteins in NPC. These targets may modulate pathways in cancer, PI3K-Akt, apoptosis, prolactin, relaxin, and TNF signaling. The top 5 core genes of the PPI network were found to be AKT1, STAT3, CASP3, EGFR, and SRC, which may be the main targets of CM in treating NPC. Molecular docking confirmed the binding energies of quercetin with CASP3, 8-Hydroxy-9,10-diisobutyryloxythymol with AKT1, and plenolin with AKT1, which were particularly low, suggesting robust and stable interactions. The expression levels of AKT1, CASP3, EGFR, SRC, MMP9, CCND1, and PTGS2 were significantly higher in head and neck squamous cell carcinoma (HNSC) samples compared to normal samples. In addition, the hub genes could predict the prognosis of HNSC as the Kaplan-Meier survival curve showed that patients with lower expressions of AKT1, STAT3, CASP3, EGFR, MMP9, ESR1, PTGS2, and PPARG had better overall survival.
ConclusionBy conducting a network pharmacology approach, we revealed the main ingredients, key targets, and regulatory pathways of Centipeda minima in the treatment of NPC.
-
-
-
Exploring the Potential Mechanisms of Danshen for the Treatment of Ulcerative Colitis based on Serum Pharmacochemistry, Gene Expression Profiling, and Network Pharmacology: Regulation of Cell Apoptosis and Inflammatory Response
Authors: Run-Xiang Zhai, Meng-Yu Wang, Hai-Tao Du, Chun-Xiao Yan, Zi-Wei Li, Kuo Xu, Hui Li, Xian-Jun Fu and Xia RenAvailable online: 10 October 2024More LessBackgroundAs a traditional Chinese medicine, Danshen shows potential efficacy for treating ulcerative colitis (UC). However, the bioactive components and mode of action were unclear.
Aim of this StudyThis paper uses a combination of network pharmacology, serum medicinal chemistry, and gene expression profiling to clarify its possible molecular mechanism of action and material basis.
MethodsUltra-high performance liquid chromatography-mass spectrometry (UPLC-MS) was utilized to analyze the herbal components and metabolites from the serum of Danshen-treated mice. Gene expression profiles were applied to construct a database of Danshen action targets. Then, active ingredient-target-biological functional module networks were constructed to analyze the mechanism of action. Molecular docking has further confirmed the possibility of its components to the targets.
ResultsAs a result, 193 common targets between 1684 Danshen-related DEGs and 1492 UC targets were determined as the potential targets for Danshen in treatment with UC. Serum pharmacochemistry and target prediction showed that 22 components in serum acted on 777 targets. Intersection with common targets yielded 46 core targets, and an active ingredient-target-biological functional module network was constructed for analysis. Network prediction and molecular docking results showed that the main action modules were inflammatory response and cell apoptosis, which mainly acted on targets SRC, RELA, HSP90AA1, CTNNB1, STAT3, and CASP3. The main components of Danshen intervention in UC were predicted to include Catechol, 3,9-Dimethoxypterocarpan, 8-Prenylnaringenin, Isoferulic acid, Salvianolic acid C, and Danshensu.
ConclusionThe present study provides a scientific foundation for further explicating the mechanisms of Danshen against UC.
-