Skip to content
2000
image of Screening of the Prodiginine Molecules as BH3-mimetics against the Developed Bcl-2 Antiapoptotic Chemotherapeutic Resistance: A Molecular Docking and ADMET Study Supported by Molecular Dynamics Simulations

Abstract

Background

Chemotherapy remains a primary treatment for stopping cancer cell growth. Unfortunately, resistance to chemotherapy is a challenge that leads to cancer relapse. Overexpression of the antiapoptotic proteins is a major cause of this resistance. BH3 mimetic compounds were developed in this work to deal with this issue by blocking the Bcl-2 anti-apoptotic proteins. Currently, only a few BH3 mimetics are approved drugs, and even fewer can effectively target all antiapoptotic Bcl-2 proteins.

Objective

The present study aimed to explore and screen the prodiginine family of molecules for new potential and effective BH-3 mimetics.

Methods

Molecular docking and molecular dynamics (MD) simulations were used to assess the potential of 30 prodiginine analogs as BH3 mimetics, including the obatoclax molecule, a prodiginine member used in clinical trials as a BH3 mimetic.

Results

Molecular docking results showed four prodiginines to have lower free binding energy values for five Bcl-2 proteins (Bcl-2, Mcl-1, Bcl-w, Bcl-xl, and Bfl1) compared to the reference drug, obatoclax. The five analogs presented safe pharmacological profiles according to Lipinski’s rule of five. Furthermore, MD simulations demonstrated butylcycloheptyl prodiginine-Bcl-2 and prodigiosin-R2-Bcl-xl complexes to be more stable than the reference complexes obatoclax-Bcl-2 and obatoclax-Bcl-xl.

Conclusion

Based on these results, butylcycloheptyl prodigiosin and prodigiosin-R2 could be more effective BH3 mimetics and should be further studied.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099367809250407094437
2025-05-09
2025-09-04
Loading full text...

Full text loading...

References

  1. Willis S. Day C.L. Hinds M.G. Huang D.C.S. The Bcl-2-regulated apoptotic pathway. J. Cell Sci. 2003 116 20 4053 4056 10.1242/jcs.00754 12972498
    [Google Scholar]
  2. Elmore S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007 35 4 495 516 10.1080/01926230701320337 17562483
    [Google Scholar]
  3. Newton K. Strasser A. Kayagaki N. Dixit V.M. Cell death. Cell 2024 187 2 235 256 10.1016/j.cell.2023.11.044 38242081
    [Google Scholar]
  4. Al-Aamri H.M. Irving H.R. Bradley C. Meehan-Andrews T. Intrinsic and extrinsic apoptosis responses in leukaemia cells following daunorubicin treatment. BMC Cancer 2021 21 1 438 10.1186/s12885‑021‑08167‑y 33879127
    [Google Scholar]
  5. Siddiqui W.A. Ahad A. Ahsan H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: An update. Arch. Toxicol. 2015 89 3 289 317 10.1007/s00204‑014‑1448‑7 25618543
    [Google Scholar]
  6. Shamas-Din A. Brahmbhatt H. Leber B. Andrews D.W. BH3-only proteins: Orchestrators of apoptosis. Biochim. Biophys. Acta Mol. Cell Res. 2011 1813 4 508 520 10.1016/j.bbamcr.2010.11.024 21146563
    [Google Scholar]
  7. Villalobos-Ortiz M. Ryan J. Mashaka T.N. Opferman J.T. Letai A. BH3 profiling discriminates on-target small molecule BH3 mimetics from putative mimetics. Cell Death Differ. 2020 27 3 999 1007 10.1038/s41418‑019‑0391‑9 31332296
    [Google Scholar]
  8. Giam M. Huang D.C.S. Bouillet P. BH3-only proteins and their roles in programmed cell death. Oncogene 2008 27 S1 Suppl. 1 S128 S136 10.1038/onc.2009.50 19641498
    [Google Scholar]
  9. Letai A. BH3 domains as BCL-2 inhibitors: Prototype cancer therapeutics. Expert Opin. Biol. Ther. 2003 3 2 293 304 10.1517/14712598.3.2.293 12662143
    [Google Scholar]
  10. Roberts A.W. Davids M.S. Pagel J.M. Kahl B.S. Puvvada S.D. Gerecitano J.F. Kipps T.J. Anderson M.A. Brown J.R. Gressick L. Wong S. Dunbar M. Zhu M. Desai M.B. Cerri E. Heitner Enschede S. Humerickhouse R.A. Wierda W.G. Seymour J.F. Targeting BCL2 with venetoclax in relapsed chronic Lymphocytic Leukemia. N. Engl. J. Med. 2016 374 4 311 322 10.1056/NEJMoa1513257 26639348
    [Google Scholar]
  11. Czabotar P.E. Lessene G. Strasser A. Adams J.M. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 2014 15 1 49 63 10.1038/nrm3722 24355989
    [Google Scholar]
  12. Dai H. Meng X.W. Kaufmann S.H. Mitochondrial apoptosis and BH3 mimetics. F1000 Res. 2016 5 2804 10.12688/f1000research.9629.1 27990281
    [Google Scholar]
  13. Daïri K. Yao Y. Faley M. Tripathy S. Rioux E. Billot X. Rabouin D. Gonzalez G. Lavallée J-F. Attardo G. A scalable process for the synthesis of the Bcl inhibitor Obatoclax. Org. Process Res. Dev. 2007 11 6 1051 1054 10.1021/op7001613
    [Google Scholar]
  14. Kataoka T. Muroi M. Ohkuma S. Waritani T. Magae J. Takatsuki A. Kondo S. Yamasaki M. Nagai K. Prodigiosin 25‐C uncouples vacuolar type H + ‐ATPase, inhibits vacuolar acidification and affects glycoprotein processing. FEBS Lett. 1995 359 1 53 59 10.1016/0014‑5793(94)01446‑8 7851530
    [Google Scholar]
  15. Melvin M.S. Tomlinson J.T. Saluta G.R. Kucera G.L. Lindquist N. Manderville R.A. Double-strand DNA cleavage by copper· prodigiosin. J. Am. Chem. Soc. 2000 122 26 6333 6334 10.1021/ja0000798
    [Google Scholar]
  16. Laskowski R. A. MacArthur M. W. Moss D. S. Thornton J. M. PROCHECK: A program to check the stereochemical quality of protein structures J. Appl. Cryst. 2025 26 2 283 291 10.1107/S0021889892009944
    [Google Scholar]
  17. Krieger E. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins 77 Suppl 9 114 122 10.1002/prot.22570
    [Google Scholar]
  18. Xiong G. Wu Z. Yi J. Fu L. Yang Z. Hsieh C. Yin M. Zeng X. Wu C. Lu A. Chen X. Hou T. Cao D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021 49 W1 W5 W14 10.1093/nar/gkab255 33893803
    [Google Scholar]
  19. Brown J.R. Tesar B. Yu L. Werner L. Takebe N. Mikler E. Reynolds H.M. Thompson C. Fisher D.C. Neuberg D. Freedman A.S. Obatoclax in combination with fludarabine and rituximab is well-tolerated and shows promising clinical activity in relapsed chronic lymphocytic leukemia. Leuk. Lymphoma 2015 56 12 3336 3342 10.3109/10428194.2015.1048441 25971907
    [Google Scholar]
  20. Chiappori A. Williams C. Northfelt D.W. Adams J.W. Malik S. Edelman M.J. Rosen P. Van Echo D.A. Berger M.S. Haura E.B. Obatoclax mesylate, a pan-bcl-2 inhibitor, in combination with docetaxel in a phase 1/2 trial in relapsed non-small-cell lung cancer. J. Thorac. Oncol. 2014 9 1 121 125 10.1097/JTO.0000000000000027 24346101
    [Google Scholar]
  21. Chiappori A.A. Schreeder M.T. Moezi M.M. Stephenson J.J. Blakely J. Salgia R. Chu Q.S. Ross H.J. Subramaniam D.S. Schnyder J. Berger M.S. A phase I trial of pan-Bcl-2 antagonist obatoclax administered as a 3-h or a 24-h infusion in combination with carboplatin and etoposide in patients with extensive-stage small cell lung cancer. Br. J. Cancer 2012 106 5 839 845 10.1038/bjc.2012.21 22333598
    [Google Scholar]
  22. PyMOL Molecular Graphics System v. 2.0, by Schrödinger. 2025 Available from: https://www.pubcompare.ai/product/KiThCZIBPBHhf-iF3nGv/
  23. Dai H. Meng X.W. Kaufmann S.H. Selective Inhibition of BFL1: It’s All about Finding the Right Partner. Cell Chem. Biol. 2020 27 6 639 642 10.1016/j.chembiol.2020.05.014 32559500
    [Google Scholar]
  24. Berger S. Procko E. Margineantu D. Lee E.F. Shen B.W. Zelter A. Silva D.A. Chawla K. Herold M.J. Garnier J.M. Johnson R. MacCoss M.J. Lessene G. Davis T.N. Stayton P.S. Stoddard B.L. Fairlie W.D. Hockenbery D.M. Baker D. Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer. eLife 2016 5 e20352 10.7554/eLife.20352 27805565
    [Google Scholar]
  25. Liu Q. Moldoveanu T. Sprules T. Matta-Camacho E. Mansur-Azzam N. Gehring K. Apoptotic regulation by MCL-1 through heterodimerization. J. Biol. Chem. 2010 285 25 19615 19624 10.1074/jbc.M110.105452 20392693
    [Google Scholar]
  26. Jenson J.M. Xue V. Stretz L. Mandal T. Reich L.L. Keating A.E. Peptide design by optimization on a data-parameterized protein interaction landscape. Proc. Natl. Acad. Sci. USA 2018 115 44 E10342 E10351 10.1073/pnas.1812939115 30322927
    [Google Scholar]
  27. Kumari R. Dalal V. Identification of potential inhibitors for LLM of Staphylococcus aureus : Structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies. J. Biomol. Struct. Dyn. 2022 40 20 9833 9847 10.1080/07391102.2021.1936179 34096457
    [Google Scholar]
  28. Kumari R. Rathi R. Pathak S.R. Dalal V. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus. J. Mol. Struct. 2022 1255 132476 10.1016/j.molstruc.2022.132476
    [Google Scholar]
  29. Dalal V. Kumari R. Screening and identification of natural product‐like compounds as potential antibacterial agents targeting FemC of Staphylococcus aureus : An in‐silico approach. ChemistrySelect 2022 7 42 e202201728 10.1002/slct.202201728
    [Google Scholar]
  30. YASARA Energy Minimization Server. 2023 Available from: http://www.yasara.org/minimizationserver.htm
  31. Ramos A. Sadeghi S. Tabatabaeian H. Battling chemoresistance in cancer: Root causes and strategies to uproot them. Int. J. Mol. Sci. 2021 22 17 9451 10.3390/ijms22179451 34502361
    [Google Scholar]
  32. Vasan N. Baselga J. Hyman D.M. A view on drug resistance in cancer. Nature 2019 575 7782 299 309 10.1038/s41586‑019‑1730‑1 31723286
    [Google Scholar]
  33. Yeldag G. Rice A. Del Río Hernández A. Chemoresistance and the self-maintaining tumor microenvironment. Cancers 2018 10 12 471 10.3390/cancers10120471 30487436
    [Google Scholar]
  34. Pearce M.C. Gamble J.T. Kopparapu P.R. O’Donnell E.F. Mueller M.J. Jang H.S. Greenwood J.A. Satterthwait A.C. Tanguay R.L. Zhang X.K. Kolluri S.K. Induction of apoptosis and suppression of tumor growth by Nur77-derived Bcl-2 converting peptide in chemoresistant lung cancer cells. Oncotarget 2018 9 40 26072 26085 10.18632/oncotarget.25437 29899843
    [Google Scholar]
  35. Reed J.C. Bcl-2 on the brink of breakthroughs in cancer treatment. Cell Death Differ. 2018 25 1 3 6 10.1038/cdd.2017.188 29227986
    [Google Scholar]
  36. Wise A.R. Maloney S. Hering A. Zabala S. Richmond G.E. VanKlompenberg M.K. Nair M.T. Prosperi J.R. Bcl-2 up-regulation mediates taxane resistance downstream of APC loss. Int. J. Mol. Sci. 2024 25 12 6745 10.3390/ijms25126745 38928449
    [Google Scholar]
  37. Schmitt C.A. Lowe S.W. Bcl-2 mediates chemoresistance in matched pairs of primary E(μ)-myc lymphomas in vivo. Blood Cells Mol. Dis. 2001 27 1 206 216 10.1006/bcmd.2000.0372 11358381
    [Google Scholar]
  38. Zhang L. Ming L. Yu J. BH3 mimetics to improve cancer therapy; Mechanisms and examples. Drug Resist. Updat. 2007 10 6 207 217 10.1016/j.drup.2007.08.002 17921043
    [Google Scholar]
  39. Billard C. BH3 mimetics: Status of the field and new developments. Mol. Cancer Ther. 2013 12 9 1691 1700 10.1158/1535‑7163.MCT‑13‑0058 23974697
    [Google Scholar]
  40. Parry N. Wheadon H. Copland M. The application of BH3 mimetics in myeloid leukemias. Cell Death Dis. 2021 12 2 222 10.1038/s41419‑021‑03500‑6 33637708
    [Google Scholar]
  41. Ferdek P.E. Jakubowska M.A. On BH3 mimetics and Ca 2+ signaling. Drug Dev. Res. 2017 78 6 313 318 10.1002/ddr.21405 28804913
    [Google Scholar]
  42. Wang C. Huang S.B. Yang M.C. Lin Y.T. Chu I.H. Shen Y.N. Chiu Y.H. Hung S.H. Kang L. Hong Y.R. Chen C.H. Combining paclitaxel with ABT-263 has a synergistic effect on paclitaxel resistant prostate cancer cells. PLoS One 2015 10 3 e0120913 10.1371/journal.pone.0120913 25811469
    [Google Scholar]
  43. Cang S. Iragavarapu C. Savooji J. Song Y. Liu D. ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development. J. Hematol. Oncol. 2015 8 1 129 10.1186/s13045‑015‑0224‑3 26589495
    [Google Scholar]
  44. Handunnetti S. M. Three year update of the phase II ABT-199 (Venetoclax) and Ibrutinib in mantle cell Lymphoma (AIM) study Blood 2019 134 Supplement 1 756 10.1182/blood‑2019‑126619
    [Google Scholar]
  45. Maji S. Tew K.D. Fisher P.B. Bcl-2 antiapoptotic family proteins and chemoresistance in cancer. Advances in Cancer Research. Academic Press 2018 Vol. 137 37 75 10.1016/bs.acr.2017.11.001
    [Google Scholar]
  46. Espona-Fiedler M. Manuel-Manresa P. Benítez-García C. Fontova P. Quesada R. Soto-Cerrato V. Pérez-Tomás R. Antimetastatic properties of prodigiosin and the BH3-Mimetic Obatoclax (GX15-070) in melanoma. Pharmaceutics 2022 15 1 97 10.3390/pharmaceutics15010097 36678726
    [Google Scholar]
  47. de Rond T. Stow P. Eigl I. Johnson R.E. Chan L.J.G. Goyal G. Baidoo E.E.K. Hillson N.J. Petzold C.J. Sarpong R. Keasling J.D. Oxidative cyclization of prodigiosin by an alkylglycerol monooxygenase-like enzyme. Nat. Chem. Biol. 2017 13 11 1155 1157 10.1038/nchembio.2471 28892091
    [Google Scholar]
  48. Ayoub E.A. Azoubi Z. Nadia Z. Assia M. Mohammed M. Relationships of prodiginins mechanisms and molecular structures to their antiproliferative effects. Anticancer. Agents Med. Chem. 2024 24 19 1383 1395 10.2174/0118715206314212240805105735 39113301
    [Google Scholar]
  49. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  50. Lipinski C.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev. 2016 101 34 41 10.1016/j.addr.2016.04.029 27154268
    [Google Scholar]
  51. Sora V. Papaleo E. Structural Details of BH3 Motifs and BH3-Mediated Interactions: An Updated Perspective. Front. Mol. Biosci. 2022 9 864874 10.3389/fmolb.2022.864874 35685242
    [Google Scholar]
  52. Yi J. Kellner V. Joo H. Chien N. Patel S. Chaban Z. Tsai J. Characterizing the consensus residue specificity and surface of BCL-2 binding to BH3 ligands using the Knob-Socket model. PLoS One 2023 18 2 e0281463 10.1371/journal.pone.0281463 36795726
    [Google Scholar]
  53. Mirzaei S.A. Safari Kavishahi M. Keshavarz Z. Elahian F. Unlike Butylcycloheptylprodigiosin, isolated undecylprodigiosin from Streptomyces parvulus is not a MDR1 and BCRP substrate in multidrug-resistant cancers. DNA Cell Biol. 2018 37 6 535 542 10.1089/dna.2018.4161 29672160
    [Google Scholar]
  54. Arshadi Z. Hosseini S.A. Fatehi D. Mirzaei S.A. Elahian F. Butylcycloheptylprodigiosin and undecylprodigiosin are potential photosensitizer candidates for photodynamic cancer therapy. Mol. Biol. Rep. 2021 48 8 5965 5975 10.1007/s11033‑021‑06598‑1 34331180
    [Google Scholar]
  55. Reeves J.T. A concise synthesis of butylcycloheptylprodigiosin. Org. Lett. 2007 9 10 1879 1881 10.1021/ol070341i 17439221
    [Google Scholar]
  56. Lee E.F. Smith B.J. Horne W.S. Mayer K.N. Evangelista M. Colman P.M. Gellman S.H. Fairlie W.D. Structural basis of Bcl-xL recognition by a BH3-mimetic α/β-peptide generated by sequence-based design. ChemBioChem 2011 12 13 2025 2032 10.1002/cbic.201100314 21744457
    [Google Scholar]
  57. Kimata S. Matsuda T. Suizu Y. Hayakawa Y. Prodigiosin R2, a new prodigiosin from the roseophilin producer Streptomyces griseoviridis 2464-S5. J. Antibiot. 2018 71 3 393 396 10.1038/s41429‑017‑0011‑1 29348526
    [Google Scholar]
  58. Dutta S. Gullá S. Chen T.S. Fire E. Grant R.A. Keating A.E. Determinants of BH3 binding specificity for Mcl-1 versus Bcl-xL. J. Mol. Biol. 2010 398 5 747 762 10.1016/j.jmb.2010.03.058 20363230
    [Google Scholar]
  59. Harvey E. P. Seo H.-S. Guerra R. M. Bird G. H. Dhe-Paganon S. Walensky L. D. Crystal structures of anti-apoptotic BFL-1 and its complex with a covalent stapled peptide inhibitor. Structure 26 1 153 160 10.1016/j.str.2017.11.016
    [Google Scholar]
  60. D’Alessio R. Bargiotti A. Carlini O. Colotta F. Ferrari M. Gnocchi P. Isetta A. Mongelli N. Motta P. Rossi A. Rossi M. Tibolla M. Vanotti E. Synthesis and immunosuppressive activity of novel prodigiosin derivatives. J. Med. Chem. 2000 43 13 2557 2565 10.1021/jm001003p 10891115
    [Google Scholar]
/content/journals/cad/10.2174/0115734099367809250407094437
Loading
/content/journals/cad/10.2174/0115734099367809250407094437
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: MD simulation ; chemoresistance ; BH3 mimetics ; docking ; Prodigiosin ; Bcl-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test