Skip to content
2000
image of In Silico Identification of 2,4-Diaryl-6-styrylpyridine Derivatives as Orthosteric-allosteric EGFR Inhibitors

Abstract

Background

Epidermal growth factor receptor tyrosine kinase (EGFR TK) is a primary target for inhibiting cellular signal transduction in several types of cancer. Numerous EGFR TK inhibitors have been developed and approved as standard therapy for cancer management. However, the development of drug resistance and significant adverse effects have encouraged the search for alternative EGFR TK inhibitors.

Objective

This study attempted to identify 2,4-diaryl-6-styrylpyridine derivatives as alternative orthosteric-allosteric EGFR TK inhibitors through molecular docking, molecular dynamic simulation, binding free energy calculation, and pharmacokinetic properties analysis.

Methods

Two series of 2,4-diaryl-6-styrylpyridine derivatives were docked in orthosteric and allosteric sites of EGFR TK. Docking results were validated through molecular dynamic simulation and binding free energy calculation using YASARA Structure. Pharmacokinetic properties were analyzed using web-based free servers SwissADME and ADMETLab 3.0.

Results

The molecular docking studies revealed relatively strong affinity, with binding energy ranging from -10.2 to -12.2 kcal/mol in the orthosteric site and from -7.7 to -10.9 kcal/mol in the allosteric site of EGFR TK. The proposed ligand complexes with the highest binding energy and proper hydrogen bonds showed comparable stability and binding free energy than native ligand complexes. The pharmacokinetic properties of the proposed ligands indicated relatively poor characteristics due to relatively high lipophilicity and certain toxicophores.

Conclusion

This study identified NASP06 and NASP01 as the most stable orthosteric and allosteric inhibitors of EGFR TK, respectively. These findings revealed a novel class of EGFR TK inhibitors capable of interacting with both orthosteric and allosteric sites.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099370189250416024026
2025-04-29
2025-12-05
Loading full text...

Full text loading...

References

  1. Takeshima H. Ushijima T. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ. Precis. Oncol. 2019 3 1 1 8 10.1038/s41698‑019‑0079‑0
    [Google Scholar]
  2. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  3. Song Q. Merajver S.D. Li J.Z. Cancer classification in the genomic era: five contemporary problems. Hum. Genomics 2015 9 1 27 10.1186/s40246‑015‑0049‑8 26481255
    [Google Scholar]
  4. Hanahan D. Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  5. Gutschner T. Diederichs S. The hallmarks of cancer. RNA Biol. 2012 9 6 703 719 10.4161/rna.20481 22664915
    [Google Scholar]
  6. Kato S. Okamura R. Mareboina M. Lee S. Goodman A. Patel S.P. Fanta P.T. Schwab R.B. Vu P. Raymond V.M. Lanman R.B. Sicklick J.K. Lippman S.M. Kurzrock R. Revisiting epidermal growth factor receptor (EGFR) amplification as a target for anti-EGFR therapy: Analysis of cell-free circulating tumor DNA in patients with advanced malignancies. JCO Precis. Oncol. 2019 3 3 1 14 10.1200/PO.18.00180 31058253
    [Google Scholar]
  7. Kang X. Li R. Li X. Xu X. EGFR mutations and abnormal trafficking in cancers. Mol. Biol. Rep. 2024 51 1 924 10.1007/s11033‑024‑09865‑z 39167290
    [Google Scholar]
  8. Sabbah D.A. Hajjo R. Sweidan K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr. Top. Med. Chem. 2020 20 10 815 834 10.2174/1568026620666200303123102 32124699
    [Google Scholar]
  9. Yan G.E. Efferth T. Broad-spectrum cross-resistance to anticancer drugs mediated by epidermal growth factor receptor. Anticancer Res. 2019 39 7 3585 3593 10.21873/anticanres.13505 31262883
    [Google Scholar]
  10. Sigismund S. Avanzato D. Lanzetti L. Emerging functions of the EGFR in cancer. Mol. Oncol. 2018 12 1 3 20 10.1002/1878‑0261.12155 29124875
    [Google Scholar]
  11. Guardiola S. Varese M. Sánchez-Navarro M. Giralt E. A third shot at EGFR: New opportunities in cancer therapy. Trends Pharmacol. Sci. 2019 40 12 941 955 10.1016/j.tips.2019.10.004 31706618
    [Google Scholar]
  12. Du X. Yang B. An Q. Assaraf Y.G. Cao X. Xia J. Acquired resistance to third-generation EGFR-TKIs and emerging next-generation EGFR inhibitors. Innovation 2021 2 2 100103 10.1016/j.xinn.2021.100103 34557754
    [Google Scholar]
  13. Zhou J. Ji Q. Li Q. Resistance to anti-EGFR therapies in metastatic colorectal cancer: underlying mechanisms and reversal strategies. J. Exp. Clin. Cancer Res. 2021 40 1 328 10.1186/s13046‑021‑02130‑2 34663410
    [Google Scholar]
  14. Picon H. Guddati A.K. Mechanisms of resistance in head and neck cancer. Am. J. Cancer Res. 2020 10 9 2742 2751 33042614
    [Google Scholar]
  15. Pan P.C. Magge R.S. Mechanisms of EGFR resistance in glioblastoma. Int. J. Mol. Sci. 2020 21 22 8471 10.3390/ijms21228471 33187135
    [Google Scholar]
  16. Morgillo F. Della Corte C.M. Fasano M. Ciardiello F. Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open 2016 1 3 e000060 10.1136/esmoopen‑2016‑000060 27843613
    [Google Scholar]
  17. Shyam Sunder S. Sharma U.C. Pokharel S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduct. Target. Ther. 2023 8 1 262 10.1038/s41392‑023‑01469‑6 37414756
    [Google Scholar]
  18. Shah R.R. Shah D.R. Safety and tolerability of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in oncology. Drug Saf. 2019 42 2 181 198 10.1007/s40264‑018‑0772‑x 30649743
    [Google Scholar]
  19. Solassol I. Pinguet F. Quantin X. FDA- and EMA-approved tyrosine kinase inhibitors in advanced EGFR-mutated non-small cell lung cancer: Safety, tolerability, plasma concentration monitoring, and management. Biomolecules 2019 9 11 668 10.3390/biom9110668 31671561
    [Google Scholar]
  20. Stamos J. Sliwkowski M.X. Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 2002 277 48 46265 46272 10.1074/jbc.M207135200 12196540
    [Google Scholar]
  21. Park J.H. Liu Y. Lemmon M.A. Radhakrishnan R. Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. Biochem. J. 2012 448 3 417 423 10.1042/BJ20121513 23101586
    [Google Scholar]
  22. Jia Y. Yun C.H. Park E. Ercan D. Manuia M. Juarez J. Xu C. Rhee K. Chen T. Zhang H. Palakurthi S. Jang J. Lelais G. DiDonato M. Bursulaya B. Michellys P.Y. Epple R. Marsilje T.H. McNeill M. Lu W. Harris J. Bender S. Wong K.K. Jänne P.A. Eck M.J. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature 2016 534 7605 129 132 10.1038/nature17960 27251290
    [Google Scholar]
  23. Wittlinger F. Ogboo B.C. Shevchenko E. Damghani T. Pham C.D. Schaeffner I.K. Oligny B.T. Chitnis S.P. Beyett T.S. Rasch A. Buckley B. Urul D.A. Shaurova T. May E.W. Schaefer E.M. Eck M.J. Hershberger P.A. Poso A. Laufer S.A. Heppner D.E. Linking ATP and allosteric sites to achieve superadditive binding with bivalent EGFR kinase inhibitors. Commun. Chem. 2024 7 1 38 10.1038/s42004‑024‑01108‑3 38378740
    [Google Scholar]
  24. Hasegawa H. Yasuda H. Hamamoto J. Masuzawa K. Tani T. Nukaga S. Hirano T. Kobayashi K. Manabe T. Terai H. Ikemura S. Kawada I. Naoki K. Soejima K. Efficacy of afatinib or osimertinib plus cetuximab combination therapy for non-small-cell lung cancer with EGFR exon 20 insertion mutations. Lung Cancer 2019 127 127 146 152 10.1016/j.lungcan.2018.11.039 30642543
    [Google Scholar]
  25. Guerrab A.E. Bamdad M. Kwiatkowski F. Bignon Y.J. Penault-Llorca F. Aubel C. Anti-EGFR monoclonal antibodies and EGFR tyrosine kinase inhibitors as combination therapy for triple-negative breast cancer. Oncotarget 2016 7 45 73618 73637 10.18632/oncotarget.12037 27655662
    [Google Scholar]
  26. Nishii K. Ohashi K. Watanabe H. Makimoto G. Nakasuka T. Higo H. Ninomiya K. Kato Y. Kubo T. Rai K. Ichihara E. Hotta K. Tabata M. Maeda Y. Kiura K. Triple therapy with osimertinib, bevacizumab and cetuximab in EGFR‑mutant lung cancer with HIF‑1α/TGF‑α expression. Oncol. Lett. 2021 22 3 639 10.3892/ol.2021.12900 34386061
    [Google Scholar]
  27. Li Q. Zhang T. Li S. Tong L. Li J. Su Z. Feng F. Sun D. Tong Y. Wang X. Zhao Z. Zhu L. Ding J. Li H. Xie H. Xu Y. Discovery of potent and noncovalent reversible EGFR kinase inhibitors of EGFRL858R/T790M/C797S. ACS Med. Chem. Lett. 2019 10 6 869 873 10.1021/acsmedchemlett.8b00564 31223440
    [Google Scholar]
  28. Fan M. Hu L. Shi S. Song X. He H. Qi B. Design, synthesis and biological evaluation of EGFR kinase inhibitors that spans the orthosteric and allosteric sites. Bioorg. Med. Chem. 2023 96 August 117534 10.1016/j.bmc.2023.117534 37952262
    [Google Scholar]
  29. Wittlinger F. Heppner D.E. To C. Günther M. Shin B.H. Rana J.K. Schmoker A.M. Beyett T.S. Berger L.M. Berger B.T. Bauer N. Vasta J.D. Corona C.R. Robers M.B. Knapp S. Jänne P.A. Eck M.J. Laufer S.A. Design of a “two-in-one” mutant-selective epidermal growth factor receptor inhibitor that spans the orthosteric and allosteric sites. J. Med. Chem. 2022 65 2 1370 1383 10.1021/acs.jmedchem.1c00848 34668706
    [Google Scholar]
  30. Mansour M.A. AboulMagd A.M. Abbas S.H. Abdel-Rahman H.M. Abdel-Aziz M. Insights into fourth generation selective inhibitors of (C797S) EGFR mutation combating non-small cell lung cancer resistance: a critical review. RSC Advances 2023 13 27 18825 18853 10.1039/D3RA02347H 37350862
    [Google Scholar]
  31. Mohr K. Tränkle C. Kostenis E. Barocelli E. De Amici M. Holzgrabe U. Rational design of dualsteric GPCR ligands: quests and promise. Br. J. Pharmacol. 2010 159 5 997 1008 10.1111/j.1476‑5381.2009.00601.x 20136835
    [Google Scholar]
  32. El-Sayed M.A.A. El-Husseiny W.M. Abdel-Aziz N.I. El-Azab A.S. Abuelizz H.A. Abdel-Aziz A.A.M. Synthesis and biological evaluation of 2-styrylquinolines as antitumour agents and EGFR kinase inhibitors: molecular docking study. J. Enzyme Inhib. Med. Chem. 2018 33 1 199 209 10.1080/14756366.2017.1407926 29251017
    [Google Scholar]
  33. Karnik K.S. Sarkate A.P. Tiwari S.V. Azad R. Computational and synthetic approach with biological evaluation of substituted quinoline derivatives as small molecule L858R/T790M/C797S triple mutant EGFR inhibitors targeting resistance in non-small cell lung cancer (NSCLC). Bioorg. Chem. 2021 107 104612 10.1016/j.bioorg.2020.104612 33476869
    [Google Scholar]
  34. Karnik K.S. Sarkate A.P. Tiwari S.V. Azad R. Wakte P.S. Free energy perturbation guided synthesis with biological evaluation of substituted quinoline derivatives as small molecule L858R/T790M/C797S mutant EGFR inhibitors targeting resistance in non-small cell lung cancer (NSCLC). Bioorg. Chem. 2021 115 April 105226 10.1016/j.bioorg.2021.105226 34364055
    [Google Scholar]
  35. Dennington R. Keith T.A. Millam J.M. Gauss View Version 5. Shawnee Mission Semichem Inc. 2009 1 9
    [Google Scholar]
  36. Frisch M.J. Trucks G.W. Schlegel H.B. Scuseria G.E. Robb M.A. Cheeseman J.R. Gaussian 09. Wallingford Gaussian Inc. 2010 1 6
    [Google Scholar]
  37. Xu G. Abad M.C. Connolly P.J. Neeper M.P. Struble G.T. Springer B.A. Emanuel S.L. Pandey N. Gruninger R.H. Adams M. Moreno-Mazza S. Fuentes-Pesquera A.R. Middleton S.A. 4-Amino-6-arylamino-pyrimidine-5-carbaldehyde hydrazones as potent ErbB-2/EGFR dual kinase inhibitors. Bioorg. Med. Chem. Lett. 2008 18 16 4615 4619 10.1016/j.bmcl.2008.07.020 18653333
    [Google Scholar]
  38. Obst-Sander U. Ricci A. Kuhn B. Friess T. Koldewey P. Kuglstatter A. Hewings D. Goergler A. Steiner S. Rueher D. Imhoff M.P. Raschetti N. Marty H.P. Dietzig A. Rynn C. Ehler A. Burger D. Kornacker M. Schaffland J.P. Herting F. Pao W. Bischoff J.R. Martoglio B. Alice Nagel Y. Jaeschke G. Discovery of novel allosteric EGFR L858R inhibitors for the treatment of non-small-cell lung cancer as a single agent or in combination with osimertinib. J. Med. Chem. 2022 65 19 13052 13073 10.1021/acs.jmedchem.2c00893 36178776
    [Google Scholar]
  39. Bittrich S. Segura J. Duarte J.M. Burley S.K. Rose Y. RCSB protein Data Bank: exploring protein 3D similarities via comprehensive structural alignments. Bioinformatics 2024 40 6 btae370 10.1093/bioinformatics/btae370 38870521
    [Google Scholar]
  40. Krieger E. Vriend G. Yasara view—molecular graphics for all devices—from smartphones to workstations. Bioinformatics 2014 30 20 2981 2982 10.1093/bioinformatics/btu426 24996895
    [Google Scholar]
  41. Biovia D.S. Biovia Discovery Studio Visualizer. San Diego Dassault Systèmes Biovia 2020 1 8
    [Google Scholar]
  42. Daina A. Michielin O. Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  43. Fu L. Shi S. Yi J. Wang N. He Y. Wu Z. Peng J. Deng Y. Wang W. Wu C. Lyu A. Zeng X. Zhao W. Hou T. Cao D. ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res. 2024 52 W1 W422 W431 10.1093/nar/gkae236 38572755
    [Google Scholar]
  44. Gohlke H. Hendlich M. Klebe G. Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol. 2000 295 2 337 356 10.1006/jmbi.1999.3371 10623530
    [Google Scholar]
  45. Frisch M.J. Trucks G.W. Cheeseman J.R. Systematic model chemistries based on density functional theory: Comparison with traditional models and with experiment. Theoret. Comput. Chem. 1996 4 679 707 10.1016/S1380‑7323(96)80100‑2
    [Google Scholar]
  46. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  47. Baell J.B. Holloway G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010 53 7 2719 2740 10.1021/jm901137j 20131845
    [Google Scholar]
  48. Brenk R. Schipani A. James D. Krasowski A. Gilbert I.H. Frearson J. Wyatt P.G. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem 2008 3 3 435 444 10.1002/cmdc.200700139 18064617
    [Google Scholar]
  49. Lipinski C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol. 2004 1 4 337 341 10.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  50. Ghose A.K. Viswanadhan V.N. Wendoloski J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999 1 1 55 68 10.1021/cc9800071 10746014
    [Google Scholar]
  51. Veber D.F. Johnson S.R. Cheng H.Y. Smith B.R. Ward K.W. Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002 45 12 2615 2623 10.1021/jm020017n 12036371
    [Google Scholar]
  52. Egan W.J. Merz K.M. Jr Baldwin J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000 43 21 3867 3877 10.1021/jm000292e 11052792
    [Google Scholar]
  53. Martin Y.C. A bioavailability score. J. Med. Chem. 2005 48 9 3164 3170 10.1021/jm0492002 15857122
    [Google Scholar]
  54. Dulsat J. López-Nieto B. Estrada-Tejedor R. Borrell J.I. Evaluation of free online ADMET tools for academic or small biotech environments. Molecules 2023 28 2 776 10.3390/molecules28020776 36677832
    [Google Scholar]
  55. Roberts B.C. Mancera R.L. Ligand-protein docking with water molecules. J. Chem. Inf. Model. 2008 48 2 397 408 10.1021/ci700285e 18211049
    [Google Scholar]
  56. Castro-Alvarez A. Costa A. Vilarrasa J. The performance of several docking programs at reproducing protein-macrolide-like crystal structures. Molecules 2017 22 1 136 10.3390/molecules22010136 28106755
    [Google Scholar]
  57. Jiang X. Yu J. Zhou Z. Kongsted J. Song Y. Pannecouque C. De Clercq E. Kang D. Poongavanam V. Liu X. Zhan P. Molecular design opportunities presented by solvent‐exposed regions of target proteins. Med. Res. Rev. 2019 39 6 2194 2238 10.1002/med.21581 31002405
    [Google Scholar]
  58. Carugo O. Pongor S. A normalized root‐mean‐spuare distance for comparing protein three‐dimensional structures. Protein Sci. 2001 10 7 1470 1473 10.1110/ps.690101 11420449
    [Google Scholar]
  59. Li D.D. Wu T.T. Yu P. Wang Z.Z. Xiao W. Jiang Y. Zhao L.G. Molecular dynamics analysis of binding sites of epidermal growth factor receptor kinase inhibitors. ACS Omega 2020 5 26 16307 16314 10.1021/acsomega.0c02183 32656454
    [Google Scholar]
  60. Wan S. Yan R. Jiang Y. Li Z. Zhang J. Wu X. Insight into binding mechanisms of EGFR allosteric inhibitors using molecular dynamics simulations and free energy calculations. J. Biomol. Struct. Dyn. 2019 37 16 4384 4394 10.1080/07391102.2018.1552197 30499387
    [Google Scholar]
  61. Maity S. Pai K.S.R. Nayak Y. Advances in targeting EGFR allosteric site as anti-NSCLC therapy to overcome the drug resistance. Pharmacol. Rep. 2020 72 4 799 813 10.1007/s43440‑020‑00131‑0 32666476
    [Google Scholar]
  62. Lobanov M.Y. Bogatyreva N.S. Galzitskaya O.V. Radius of gyration as an indicator of protein structure compactness. Mol. Biol. 2008 42 4 623 628 10.1134/S0026893308040195 18856071
    [Google Scholar]
  63. Zhao P. Yao M.Y. Zhu S.J. Chen J.Y. Yun C.H. Crystal structure of EGFR T790M/C797S/V948R in complex with EAI045. Biochem. Biophys. Res. Commun. 2018 502 3 332 337 10.1016/j.bbrc.2018.05.154 29802850
    [Google Scholar]
  64. Panigrahi S.K. Desiraju G.R. Strong and weak hydrogen bonds in the protein–ligand interface. Proteins 2007 67 1 128 141 10.1002/prot.21253 17206656
    [Google Scholar]
  65. Panigrahi S.K. Strong and weak hydrogen bonds in protein-ligand complexes of kinases: a comparative study. Amino Acids 2008 34 4 617 633 10.1007/s00726‑007‑0015‑4 18180869
    [Google Scholar]
  66. Homeyer N. Gohlke H. Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method. Mol. Inform. 2012 31 2 114 122 10.1002/minf.201100135 27476956
    [Google Scholar]
  67. Swanson J.M.J. Henchman R.H. McCammon J.A. Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy. Biophys. J. 2004 86 1 67 74 10.1016/S0006‑3495(04)74084‑9 14695250
    [Google Scholar]
  68. Genheden S. Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015 10 5 449 461 10.1517/17460441.2015.1032936 25835573
    [Google Scholar]
  69. Krieger E. YASARA Biosciences GmbH. Yet Another Scientific Artificial Reality Application. 2024 1 5 Available from: http://www.yasara.org/macros.htm (Accessed on: 14 Jan 2025).
  70. Chang C.A. Chen W. Gilson M.K. Ligand configurational entropy and protein binding. Proc. Natl. Acad. Sci. USA 2007 104 5 1534 1539 10.1073/pnas.0610494104 17242351
    [Google Scholar]
  71. Chen D. Oezguen N. Urvil P. Ferguson C. Dann S.M. Savidge T.C. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci. Adv. 2016 2 3 e1501240 10.1126/sciadv.1501240 27051863
    [Google Scholar]
  72. Caminero Gomes Soares A. Marques Sousa G.H. Calil R.L. Goulart Trossini G.H. Absorption matters: A closer look at popular oral bioavailability rules for drug approvals. Mol. Inform. 2023 42 11 e202300115 10.1002/minf.202300115 37550251
    [Google Scholar]
  73. Stegemann S. Moreton C. Svanbäck S. Box K. Motte G. Paudel A. Trends in oral small-molecule drug discovery and product development based on product launches before and after the rule of five. Drug Discov. Today 2023 28 2 103344 10.1016/j.drudis.2022.103344 36442594
    [Google Scholar]
  74. Leeson P.D. Young R.J. Molecular property design: Does everyone get it? ACS Med. Chem. Lett. 2015 6 7 722 725 10.1021/acsmedchemlett.5b00157 26191353
    [Google Scholar]
  75. Roskoski R. Jr Rule of five violations among the FDA-approved small molecule protein kinase inhibitors. Pharmacol. Res. 2023 191 April 106774 10.1016/j.phrs.2023.106774 37075870
    [Google Scholar]
  76. Nepali K. Lee H.Y. Liou J.P. Nitro-group-containing drugs. J. Med. Chem. 2019 62 6 2851 2893 10.1021/acs.jmedchem.8b00147 30295477
    [Google Scholar]
  77. Noriega S. Cardoso-Ortiz J. López-Luna A. Cuevas-Flores M.D.R. Flores De La Torre J.A. The Diverse biological activity of recently synthesized nitro compounds. Pharmaceuticals (Basel) 2022 15 6 717 10.3390/ph15060717 35745635
    [Google Scholar]
  78. Liu G. Kim H. Wang P. Fricke D.R. Chen H. Wang T. Shen Q. Zhou J. Further lead optimization on Bax activators: Design, synthesis and pharmacological evaluation of 2-fluoro-fluorene derivatives for the treatment of breast cancer. Eur. J. Med. Chem. 2021 219 113427 10.1016/j.ejmech.2021.113427 33845235
    [Google Scholar]
  79. Torres-Gómez H. Keiff F. Hortschansky P. Bernal F. Kerndl V. Meyer F. Messerschmidt N. Dal Molin M. Krüger T. Rybniker J. Brakhage A.A. Kloss F. Replacement of the essential nitro group by electrophilic warheads towards nitro-free antimycobacterial benzothiazinones. Eur. J. Med. Chem. 2024 279 June 116849 10.1016/j.ejmech.2024.116849 39265253
    [Google Scholar]
  80. Meanwell N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem. 2011 54 8 2529 2591 10.1021/jm1013693 21413808
    [Google Scholar]
  81. Rizk M.L. Zou L. Savic R.M. Dooley K.E. Importance of drug pharmacokinetics at the site of action. Clin. Transl. Sci. 2017 10 3 133 142 10.1111/cts.12448 28160433
    [Google Scholar]
  82. Moini J. Logalbo A. ABPP-CN, Schnellmann JG. Pharmacokinetics. Neuropsychopharmacology. Moini J. LoGalbo A. Schnellmann J.G. Oxford Elsevier Science 2023 29 53 10.1016/B978‑0‑323‑95974‑2.00024‑4
    [Google Scholar]
  83. Liang Y. Li S. Chen L. The physiological role of drug transporters. Protein Cell 2015 6 5 334 350 10.1007/s13238‑015‑0148‑2 25797421
    [Google Scholar]
  84. Xiao H. Zheng Y. Ma L. Tian L. Sun Q. Clinically-relevant ABC transporter for anti-cancer drug resistance. Front. Pharmacol. 2021 12 April 648407 10.3389/fphar.2021.648407 33953682
    [Google Scholar]
  85. Thakkar N. Lockhart A.C. Lee W. Role of organic anion-transporting polypeptides (OATPs) in cancer therapy. AAPS J. 2015 17 3 535 545 10.1208/s12248‑015‑9740‑x 25735612
    [Google Scholar]
  86. Neul C. Schaeffeler E. Sparreboom A. Laufer S. Schwab M. Nies A.T. Impact of membrane drug transporters on resistance to small-molecule tyrosine kinase inhibitors. Trends Pharmacol. Sci. 2016 37 11 904 932 10.1016/j.tips.2016.08.003 27659854
    [Google Scholar]
  87. Falasca M. Linton K.J. Investigational ABC transporter inhibitors. Expert Opin. Investig. Drugs 2012 21 5 657 666 10.1517/13543784.2012.679339 22493979
    [Google Scholar]
  88. Słoczyńska K. Gunia-Krzyżak A. Koczurkiewicz P. Wójcik-Pszczoła K. Żelaszczyk D. Popiół J. Pękala E. Metabolic stability and its role in the discovery of new chemical entities. Acta Pharm. 2019 69 3 345 361 10.2478/acph‑2019‑0024 31259741
    [Google Scholar]
  89. Miller R.R. Madeira M. Wood H.B. Geissler W.M. Raab C.E. Martin I.J. Integrating the impact of lipophilicity on potency and pharmacokinetic parameters enables the use of diverse chemical space during small molecule drug optimization. J. Med. Chem. 2020 63 21 12156 12170 10.1021/acs.jmedchem.9b01813 32633947
    [Google Scholar]
  90. Attwood M.M. Fabbro D. Sokolov A.V. Knapp S. Schiöth H.B. Trends in kinase drug discovery: targets, indications and inhibitor design. Nat. Rev. Drug Discov. 2021 20 11 839 861 10.1038/s41573‑021‑00252‑y 34354255
    [Google Scholar]
  91. Hossam M. Lasheen D.S. Abouzid K.A.M. Covalent EGFR inhibitors: Binding mechanisms, synthetic approaches, and clinical profiles. Arch. Pharm. (Weinheim) 2016 349 8 573 593 10.1002/ardp.201600063 27258393
    [Google Scholar]
  92. Zhao Z. Xie L. Bourne P.E. Structural insights into characterizing binding sites in epidermal growth factor receptor kinase mutants. J. Chem. Inf. Model. 2019 59 1 453 462 10.1021/acs.jcim.8b00458 30582689
    [Google Scholar]
  93. Wood E.R. Truesdale A.T. McDonald O.B. Yuan D. Hassell A. Dickerson S.H. Ellis B. Pennisi C. Horne E. Lackey K. Alligood K.J. Rusnak D.W. Gilmer T.M. Shewchuk L. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 2004 64 18 6652 6659 10.1158/0008‑5472.CAN‑04‑1168 15374980
    [Google Scholar]
  94. Barker A.J. Gibson K.H. Grundy W. Godfrey A.A. Barlow J.J. Healy M.P. Woodburn J.R. Ashton S.E. Curry B.J. Scarlett L. Henthorn L. Richards L. Studies leading to the identification of ZD1839 (iressa™): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg. Med. Chem. Lett. 2001 11 14 1911 1914 10.1016/S0960‑894X(01)00344‑4 11459659
    [Google Scholar]
  95. Ishikawa T. Seto M. Banno H. Kawakita Y. Oorui M. Taniguchi T. Ohta Y. Tamura T. Nakayama A. Miki H. Kamiguchi H. Tanaka T. Habuka N. Sogabe S. Yano J. Aertgeerts K. Kamiyama K. Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold. J. Med. Chem. 2011 54 23 8030 8050 10.1021/jm2008634 22003817
    [Google Scholar]
  96. Kröhnke F. The specific synthesis of pyridines and oligopyridines. Synthesis 1976 1976 1 1 24 10.1055/s‑1976‑23941
    [Google Scholar]
/content/journals/cad/10.2174/0115734099370189250416024026
Loading
/content/journals/cad/10.2174/0115734099370189250416024026
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test