Skip to content
2000
image of The Active Ingredients and Mechanisms of Xuefuzhuyu Pills in Treating Hyperprolactinemia Caused by Antipsychotics based on UHPLCQ-TOF-MS/MS, Network Pharmacology, and Molecular Docking Validation

Abstract

Background

XueFuZhuYu pills (XFZY), a traditional Chinese herbal formula originated from the xuefuzhuyu decoction in Correction on Errors in Medical Classics, has a certain clinical effect on the treatment of hyperprolactinemia (HPRL) caused by antipsychotics. However, the active ingredients and mechanism by which XFZY contributes to the hyperprolactinemia caused by antipsychotics remain unclear.

Objectives

The aim of the study was to investigate the molecular basis of XFZY in the therapy of antipsychotic-induced HPRL and to establish a scientific foundation for its application.

Methods

First, the UHPLC-Q-TOF-MS/MS methodology was employed to perform chromatographic separation and gather mass spectrometry data. Subsequently, the preprocessed mass spectrometry data were uploaded to the Global Natural Products Social Molecular Networking (GNPS) platform for spectral library interrogation and molecular network analysis. Next, based on the detected chemical constituents and the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, the effective chemical components within XFZY were chosen. Swiss Target Prediction was employed to determine probable targets of components, and we used Cytoscape to create a network of components and their associated targets. After that, HPRL-related targets were found and filtered using four disease databases, and then a protein-protein interaction (PPI) network was built using the STRING database. Cytoscape was utilized to conduct visualization and cluster analysis. Meanwhile, the Metascape database was adopted for the enrichment analysis of GO and KEGG. At last, Autodock Vina was applied to perform molecular docking between the principal components and target proteins.

Results

In total, 213 compounds were discovered in XFZY. Two hundred eight active chemical components, 622 probable targets, and 242 HPRL-related target genes were identified. There were 76 common targets between the XFZY and HPRL. Following analysis, 1371 GO biological process items and 162 KEGG signal pathways were identified. The primary chemicals and target proteins exhibited great affinity in molecular docking.

Conclusion

This research manifests that XFZY, as a traditional Chinese medicine formula, proffers a novel pathway for the treatment of antipsychotic-induced HPRL. We elucidated the specific molecular mechanisms underlying the anti-HPRL effects of XFZY and its active ingredients, laying a foundation for the subsequent clinical applications of this formula.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099366667250410061157
2025-04-25
2025-09-04
Loading full text...

Full text loading...

References

  1. Ghoreshi Z. Akbari H. Sharif-zak M. Arefinia N. Abbasi-Jorjandi M. Asadikaram G. Recent findings on hyperprolactinemia and its pathological implications: A literature review. J. Investig. Med. 2022 70 7 1443 1451 10.1136/jim‑2022‑002351 35768141
    [Google Scholar]
  2. Borba V.V. Zandman-Goddard G. Shoenfeld Y. Prolactin and autoimmunity: The hormone as an inflammatory cytokine. Best Pract. Res. Clin. Endocrinol. Metab. 2019 33 6 101324 10.1016/j.beem.2019.101324 31564625
    [Google Scholar]
  3. Krogh J. Selmer C. Torp-Pedersen C. Gislason G. Kistorp C. Hyperprolactinemia and the association with all-cause mortality and cardiovascular mortality. Horm. Metab. Res. 2017 49 6 411 417 10.1055/s‑0043‑107243 28437810
    [Google Scholar]
  4. Besag F.M.C. Vasey M.J. Salim I. Is adjunct aripiprazole effective in treating hyperprolactinemia induced by psychotropic medication? A narrative review. CNS Drugs 2021 35 5 507 526 10.1007/s40263‑021‑00812‑1 33880739
    [Google Scholar]
  5. Zhuo C. Xu Y. Wang H. Fang T. Chen J. Zhou C. Li Q. Liu J. Xu S. Yao C. Yang W. Yang A. Li B. Chen Y. Tian H. Lin C. Safety and efficacy of high-dose vitamin B6 as an adjunctive treatment for antipsychotic-induced hyperprolactinemia in male patients with treatment-resistant schizophrenia. Front. Psychiatry 2021 12 12 681418 10.3389/fpsyt.2021.681418 34512411
    [Google Scholar]
  6. Voicu V. Medvedovici A. Ranetti A.E. Rădulescu F.Ş. Drug-induced hypo- and hyperprolactinemia: Mechanisms, clinical and therapeutic consequences Expert Opin. Drug Metab. Toxicol. 2013 9 8 955 968 10.1517/17425255.2013.791283 23600946
    [Google Scholar]
  7. Glezer A. Garmes H. M. Kasuki L. Martins M. Elias P. Nogueira V. Hyperprolactinemia in women: Diagnostic approach. Rev. Bras. Ginecol. Obstet. 2024 46 e-FPS04
    [Google Scholar]
  8. Rusgis M.M. Alabbasi A.Y. Nelson L.A. Guidance on the treatment of antipsychotic-induced hyperprolactinemia when switching the antipsychotic is not an option. Am. J. Health Syst. Pharm. 2021 78 10 862 871 10.1093/ajhp/zxab065 33954421
    [Google Scholar]
  9. Labad J. Montalvo I. González-Rodríguez A. García-Rizo C. Crespo-Facorro B. Monreal J.A. Palao D. Pharmacological treatment strategies for lowering prolactin in people with a psychotic disorder and hyperprolactinaemia: A systematic review and meta-analysis. Schizophr. Res. 2020 222 222 88 96 10.1016/j.schres.2020.04.031 32507371
    [Google Scholar]
  10. Benetti-Pinto C.L. Nácul A.P. Rosa-e-Silva A.C.J.S. Maciel G.A.R. Nogueira V.S.N. Elias P.C.L. Martins M. Kasuki L. Garmes H.M. Glezer A. Treatment of hyperprolactinemia in women: A position statement from the Brazilian federation of gynecology and obstetrics associations (Febrasgo) and the Brazilian society of endocrinology and metabolism (SBEM). Arch. Endocrinol. Metab. 2024 68 e230504 10.20945/2359‑4292‑2023‑0504 38578473
    [Google Scholar]
  11. Gao Y. Shen L. Yan H. Clinical research progress of hyperprolactinemia caused by antipsychotics. J Med Theory Pract. 2021 34 20 3519 3520
    [Google Scholar]
  12. Wang R. Wang Y. Fang L. Xie Y. Yang S. Liu S. Fang Y. Zhang Y. Efficacy and safety of traditional Chinese medicine in the treatment of menopause-like syndrome for breast cancer survivors: A systematic review and meta-analysis. BMC Cancer 2024 24 1 42 10.1186/s12885‑023‑11789‑z 38191442
    [Google Scholar]
  13. Jin H. Dai L. Yi Y. Wang Q. Cai C. Cai C. Effectiveness of traditional Chinese medicine with liver-soothing function for hyperplasia of mammary glands: A systematic review and meta-analysis. J. Herb. Med. 2024 44 100850 10.1016/j.hermed.2024.100850
    [Google Scholar]
  14. Li Y.X. Progress in treatment based on syndrome differentiation of traditional Chinese medicine for hyperprolactinemia caused by antipsychotic drugs. Glob Tradit Chin Med. 2014 7 11 893 896
    [Google Scholar]
  15. Chen G. He H. Hu K. Gao J. Li J. Han M. Wang J. Sensitive biomarker analysis of Xue-Fu-Zhu-Yu capsule for patients with Qi stagnation and blood stasis pattern: A nested case-control study. Evid. Based Complement. Alternat. Med. 2019 2019 1 12 10.1155/2019/7182865 31827557
    [Google Scholar]
  16. Li H. Wu H. Li W. Yang J. Wei P. Anti-inflammatory mechanisms of Xuefu Zhuyu decoction in the treatment of atherosclerosis based on network pharmacology and microarray data differences analysis. Research Square 2021 10.21203/rs.3.rs‑184004/v1
    [Google Scholar]
  17. Lin L. Wang Y. Yuan H. Clinical study on Xuefu Zhuyu Tang for risperidone-induced hyperprolactinemia in female schizophrenia. New Chinese Medicine. 2022 54 19 34 38
    [Google Scholar]
  18. Liu L.F. Clinical study of Xuefu Zhuyu tablet in the treatment of female patients with hyperprolactinemia caused by antipsychotic drugs. Electron J Pract Gynecol Endocrinol. 2021 8 16 38 40
    [Google Scholar]
  19. Liu D. Xu F. Ma J. Meng H. Xu M. Clinical study on Xuefu Zhuyu decoction in the treatment of hyperprolactinemia caused by antipsychotics. J Clin Psychosom Dis. 2017 23 01 20 22
    [Google Scholar]
  20. Wang H. Liang S. Wang M. Gao J. Sun C. Wang J. Xia W. Wu S. Sumner S.J. Zhang F. Sun C. Wu L. Potential serum biomarkers from a metabolomics study of autism. J. Psychiatry Neurosci. 2016 41 1 27 37 10.1503/jpn.140009 26395811
    [Google Scholar]
  21. Shao S.Y. Ting Y. Wang J. Sun J. Guo X.F. Characterization and identification of the major flavonoids in Phyllostachys edulis leaf extract by UPLC–QTOF–MS/MS. Acta Chromatogr. 2020 32 4 228 237 10.1556/1326.2019.00688
    [Google Scholar]
  22. Schmid R. Petras D. Nothias L.F. Wang M. Aron A.T. Jagels A. Tsugawa H. Rainer J. Garcia-Aloy M. Dührkop K. Korf A. Pluskal T. Kameník Z. Jarmusch A.K. Caraballo-Rodríguez A.M. Weldon K.C. Nothias-Esposito M. Aksenov A.A. Bauermeister A. Albarracin Orio A. Grundmann C.O. Vargas F. Koester I. Gauglitz J.M. Gentry E.C. Hövelmann Y. Kalinina S.A. Pendergraft M.A. Panitchpakdi M. Tehan R. Le Gouellec A. Aleti G. Mannochio Russo H. Arndt B. Hübner F. Hayen H. Zhi H. Raffatellu M. Prather K.A. Aluwihare L.I. Böcker S. McPhail K.L. Humpf H.U. Karst U. Dorrestein P.C. Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nat. Commun. 2021 12 1 3832 10.1038/s41467‑021‑23953‑9 34158495
    [Google Scholar]
  23. Nothias L.F. Petras D. Schmid R. Dührkop K. Rainer J. Sarvepalli A. Protsyuk I. Ernst M. Tsugawa H. Fleischauer M. Aicheler F. Aksenov A.A. Alka O. Allard P.M. Barsch A. Cachet X. Caraballo-Rodriguez A.M. Da Silva R.R. Dang T. Garg N. Gauglitz J.M. Gurevich A. Isaac G. Jarmusch A.K. Kameník Z. Kang K.B. Kessler N. Koester I. Korf A. Le Gouellec A. Ludwig M. Martin H C. McCall L.I. McSayles J. Meyer S.W. Mohimani H. Morsy M. Moyne O. Neumann S. Neuweger H. Nguyen N.H. Nothias-Esposito M. Paolini J. Phelan V.V. Pluskal T. Quinn R.A. Rogers S. Shrestha B. Tripathi A. van der Hooft J.J.J. Vargas F. Weldon K.C. Witting M. Yang H. Zhang Z. Zubeil F. Kohlbacher O. Böcker S. Alexandrov T. Bandeira N. Wang M. Dorrestein P.C. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 2020 17 9 905 908 10.1038/s41592‑020‑0933‑6 32839597
    [Google Scholar]
  24. Wang M. Carver J.J. Phelan V.V. Sanchez L.M. Garg N. Peng Y. Nguyen D.D. Watrous J. Kapono C.A. Luzzatto-Knaan T. Porto C. Bouslimani A. Melnik A.V. Meehan M.J. Liu W.T. Crüsemann M. Boudreau P.D. Esquenazi E. Sandoval-Calderón M. Kersten R.D. Pace L.A. Quinn R.A. Duncan K.R. Hsu C.C. Floros D.J. Gavilan R.G. Kleigrewe K. Northen T. Dutton R.J. Parrot D. Carlson E.E. Aigle B. Michelsen C.F. Jelsbak L. Sohlenkamp C. Pevzner P. Edlund A. McLean J. Piel J. Murphy B.T. Gerwick L. Liaw C.C. Yang Y.L. Humpf H.U. Maansson M. Keyzers R.A. Sims A.C. Johnson A.R. Sidebottom A.M. Sedio B.E. Klitgaard A. Larson C.B. Boya P C.A. Torres-Mendoza D. Gonzalez D.J. Silva D.B. Marques L.M. Demarque D.P. Pociute E. O’Neill E.C. Briand E. Helfrich E.J.N. Granatosky E.A. Glukhov E. Ryffel F. Houson H. Mohimani H. Kharbush J.J. Zeng Y. Vorholt J.A. Kurita K.L. Charusanti P. McPhail K.L. Nielsen K.F. Vuong L. Elfeki M. Traxler M.F. Engene N. Koyama N. Vining O.B. Baric R. Silva R.R. Mascuch S.J. Tomasi S. Jenkins S. Macherla V. Hoffman T. Agarwal V. Williams P.G. Dai J. Neupane R. Gurr J. Rodríguez A.M.C. Lamsa A. Zhang C. Dorrestein K. Duggan B.M. Almaliti J. Allard P.M. Phapale P. Nothias L.F. Alexandrov T. Litaudon M. Wolfender J.L. Kyle J.E. Metz T.O. Peryea T. Nguyen D.T. VanLeer D. Shinn P. Jadhav A. Müller R. Waters K.M. Shi W. Liu X. Zhang L. Knight R. Jensen P.R. Palsson B.Ø. Pogliano K. Linington R.G. Gutiérrez M. Lopes N.P. Gerwick W.H. Moore B.S. Dorrestein P.C. Bandeira N. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 2016 34 8 828 837 10.1038/nbt.3597 27504778
    [Google Scholar]
  25. Aron A.T. Gentry E.C. McPhail K.L. Nothias L.F. Nothias-Esposito M. Bouslimani A. Petras D. Gauglitz J.M. Sikora N. Vargas F. van der Hooft J.J.J. Ernst M. Kang K.B. Aceves C.M. Caraballo-Rodríguez A.M. Koester I. Weldon K.C. Bertrand S. Roullier C. Sun K. Tehan R.M. Boya P C.A. Christian M.H. Gutiérrez M. Ulloa A.M. Tejeda Mora J.A. Mojica-Flores R. Lakey-Beitia J. Vásquez-Chaves V. Zhang Y. Calderón A.I. Tayler N. Keyzers R.A. Tugizimana F. Ndlovu N. Aksenov A.A. Jarmusch A.K. Schmid R. Truman A.W. Bandeira N. Wang M. Dorrestein P.C. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 2020 15 6 1954 1991 10.1038/s41596‑020‑0317‑5 32405051
    [Google Scholar]
  26. Quinn R.A. Nothias L.F. Vining O. Meehan M. Esquenazi E. Dorrestein P.C. Molecular networking as a drug discovery, drug metabolism, and precision medicine strategy. Trends Pharmacol. Sci. 2017 38 2 143 154 10.1016/j.tips.2016.10.011 27842887
    [Google Scholar]
  27. Houriet J. Allard P.M. Queiroz E.F. Marcourt L. Gaudry A. Vallin L. Li S. Lin Y. Wang R. Kuchta K. Wolfender J.L. A mass spectrometry based metabolite profiling workflow for selecting abundant specific markers and their structurally related multi-component signatures in traditional chinese medicine multi‐herb formulae. Front. Pharmacol. 2020 11 11 578346 10.3389/fphar.2020.578346 33362543
    [Google Scholar]
  28. Adusumilli R. Mallick P. Data conversion with proteowizard msconvert. Methods Mol. Biol. 2017 1550 1550 339 368 10.1007/978‑1‑4939‑6747‑6_23 28188540
    [Google Scholar]
  29. Myers O.D. Sumner S.J. Li S. Barnes S. Du X. One step forward for reducing false positive and false negative compound identifications from mass spectrometry metabolomics data: New algorithms for constructing extracted ion chromatograms and detecting chromatographic peaks. Anal. Chem. 2017 89 17 8696 8703 10.1021/acs.analchem.7b00947 28752754
    [Google Scholar]
  30. Luo T. Lu Y. Yan S. Xiao X. Rong X. Guo J. Network pharmacology in research of chinese medicine formula: Methodology, application and prospective. Chin. J. Integr. Med. 2020 26 1 72 80 10.1007/s11655‑019‑3064‑0 30941682
    [Google Scholar]
  31. Hopkins A.L. Network pharmacology. Nat. Biotechnol. 2007 25 10 1110 1111 10.1038/nbt1007‑1110 17921993
    [Google Scholar]
  32. Jiashuo W.U. Fangqing Z. Zhuangzhuang L.I. Weiyi J. Yue S. Integration strategy of network pharmacology in Traditional Chinese Medicine: A narrative review. J. Tradit. Chin. Med. 2022 42 3 479 486 35610020
    [Google Scholar]
  33. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  34. Barlow D.J. Buriani A. Ehrman T. Bosisio E. Eberini I. Hylands P.J. In-silico studies in Chinese herbal medicines’ research: Evaluation of in-silico methodologies and phytochemical data sources, and a review of research to date. J. Ethnopharmacol. 2012 140 3 526 534 10.1016/j.jep.2012.01.041 22326356
    [Google Scholar]
  35. Pluskal T. Castillo S. Villar-Briones A. Orešič M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 2010 11 1 395 10.1186/1471‑2105‑11‑395 20650010
    [Google Scholar]
  36. Hu M. Krauss M. Brack W. Schulze T. Optimization of LC-Orbitrap-HRMS acquisition and MZmine 2 data processing for nontarget screening of environmental samples using design of experiments. Anal. Bioanal. Chem. 2016 408 28 7905 7915 10.1007/s00216‑016‑9919‑8 27714402
    [Google Scholar]
  37. Ramabulana A.T. Petras D. Madala N.E. Tugizimana F. Metabolomics and molecular networking to characterize the chemical space of four Momordica plant species. Metabolites 2021 11 11 763 10.3390/metabo11110763 34822421
    [Google Scholar]
  38. Li B. Rui J. Ding X. Yang X. Exploring the multicomponent synergy mechanism of Banxia Xiexin Decoction on irritable bowel syndrome by a systems pharmacology strategy. J. Ethnopharmacol. 2019 233 233 158 168 10.1016/j.jep.2018.12.033 30590198
    [Google Scholar]
  39. Hongkaew Y. Gaedigk A. Wilffert B. Gaedigk R. Kittitharaphan W. Ngamsamut N. Limsila P. Puangpetch A. Sukprasong R. Sukasem C. Pharmacogenomics factors influencing the effect of risperidone on prolactin levels in Thai pediatric patients with autism spectrum disorder. Front. Pharmacol. 2021 12 12 743494 10.3389/fphar.2021.743494 34690776
    [Google Scholar]
  40. Coronel D.A. De la Peña F.R. Palacios-Cruz L. Cuevas D. Duran S. Sociodemographic and clinical characteristics related with hyperprolactinaemia in psychiatric clinical population. Int. J. Psychiatry Clin. Pract. 2022 26 4 387 394 10.1080/13651501.2022.2050259 35471923
    [Google Scholar]
  41. Neumeier M.S. Homan S. Vetter S. Seifritz E. Kane J.M. Huhn M. Leucht S. Homan P. Examining side effect variability of antipsychotic treatment in schizophrenia spectrum disorders: A meta-analysis of variance. Schizophr. Bull. 2021 47 6 1601 1610 10.1093/schbul/sbab078 34374418
    [Google Scholar]
  42. Majumdar A. Mangal N. Hyperprolactinemia. J. Hum. Reprod. Sci. 2013 6 3 168 175 10.4103/0974‑1208.121400 24347930
    [Google Scholar]
  43. Serretti A. Chiesa A. A meta-analysis of sexual dysfunction in psychiatric patients taking antipsychotics. Int. Clin. Psychopharmacol. 2011 26 3 130 140 10.1097/YIC.0b013e328341e434 21191308
    [Google Scholar]
  44. Montejo Á.L. Majadas S. Rico-Villademoros F. LLorca G. De La Gándara J. Franco M. Martín-Carrasco M. Aguera L. Prieto N. Frequency of sexual dysfunction in patients with a psychotic disorder receiving antipsychotics. J. Sex. Med. 2010 7 10 3404 3413 10.1111/j.1743‑6109.2010.01709.x 20214720
    [Google Scholar]
  45. Heald A. Physical health in schizophrenia: A challenge for antipsychotic therapy. Eur. Psychiatry 2010 25 S2 Suppl. 2 S6 S11 10.1016/S0924‑9338(10)71700‑4 20620888
    [Google Scholar]
  46. Lambert M. Conus P. Eide P. Mass R. Karow A. Moritz S. Golks D. Naber D. Impact of present and past antipsychotic side effects on attitude toward typical antipsychotic treatment and adherence. Eur. Psychiatry 2004 19 7 415 422 10.1016/j.eurpsy.2004.06.031 15504648
    [Google Scholar]
  47. Cavelti M. Kircher T. Nagels A. Strik W. Homan P. Is formal thought disorder in schizophrenia related to structural and functional aberrations in the language network? A systematic review of neuroimaging findings. Schizophr. Res. 2018 199 199 2 16 10.1016/j.schres.2018.02.051 29510928
    [Google Scholar]
  48. Cavelti M. Winkelbeiner S. Federspiel A. Walther S. Stegmayer K. Giezendanner S. Laimböck K. Dierks T. Strik W. Horn H. Homan P. Formal thought disorder is related to aberrations in language-related white matter tracts in patients with schizophrenia. Psychiatry Res. Neuroimaging 2018 279 279 40 50 10.1016/j.pscychresns.2018.05.011 29861197
    [Google Scholar]
  49. Winkelbeiner S. Cavelti M. Federspiel A. Kunzelmann K. Dierks T. Strik W. Horn H. Homan P. Decreased blood flow in the right insula and middle temporal gyrus predicts negative formal thought disorder in schizophrenia. Schizophr. Res. 2018 201 201 432 434 10.1016/j.schres.2018.06.009 29935888
    [Google Scholar]
  50. Bhattacharjee J. El-Sayeh H.G. Aripiprazole versus typical antipsychotic drugs for schizophrenia. Cochrane Libr. 2008 2014 7 CD006617 10.1002/14651858.CD006617.pub3 18646161
    [Google Scholar]
  51. Zhang X.Y. Zhou D.F. Yuan C.L. Zhang P.Y. Wu G.Y. Shen Y.C. Risperidone-induced increase in serum prolactin is correlated with positive symptom improvement in chronic schizophrenia. Psychiatry Res. 2002 109 3 297 302 10.1016/S0165‑1781(02)00022‑7 11959366
    [Google Scholar]
  52. Baeza-Flores G.D.C. Guzmán-Priego C.G. Parra-Flores L.I. Murbartián J. Torres-López J.E. Granados-Soto V. Metformin: A prospective alternative for the treatment of chronic pain. Front. Pharmacol. 2020 11 11 558474 10.3389/fphar.2020.558474 33178015
    [Google Scholar]
  53. Labad J. Montalvo I. González-Rodríguez A. García-Rizo C. Crespo-Facorro B. Monreal J.A. Palao D. Data of a meta-analysis on pharmacological treatment strategies for lowering prolactin in people with a psychotic disorder and hyperprolactinaemia. Data Brief 2020 31 31 105904 10.1016/j.dib.2020.105904 32642517
    [Google Scholar]
  54. Dong Z. Zhang T. Li Y. Wan J. Meta analysis of hyperprolactinemia treated by soothing the liver. Asia Pac Tradit Med. 2020 16 01 168 172
    [Google Scholar]
  55. Zhang F. Chen J. Xu L. Li Y. Effect of modified Xiaoyaosan on ERK signal transduction pathway of dopamine receptorin model rats with hyperprolactinemia. Zhongguo Shiyan Fangjixue Zazhi 2019 25 15 70 76
    [Google Scholar]
  56. Zhang T. Li Y. Xu L. Yang R. Li X. Ling X. Effects of Xiaoyao Powder on the apoptosis of ovarian granule cells and related protein in HPRL model rats. Zhonghua Zhongyiyao Zazhi 2018 33 09 3909 3912
    [Google Scholar]
  57. Liu C. Lai S. Mechanism of Modified Danggui Shaoyao Powder in treating hyperprolactinemia rats based on dopamine receptorcAMP-PKA signaling pathway. Zhejiang J Integr Tradit Chin West Med. 2019 29 01 10 15
    [Google Scholar]
  58. Zhai S.Y. Gu H.W. Wang C. Li Y.S. Tang H.B. Gynura procumbens and selected metabolites: Amelioration of depressive-like behaviors in mice and risperidone-induced hyperprolactinemia in rats. Biomed. Pharmacother. 2024 173 116361 10.1016/j.biopha.2024.116361 38428310
    [Google Scholar]
  59. Zhang N. Xu H. Wang Y. Yao Y. Liu G. Lei X. Sun H. Wu X. Li J. Protective mechanism of kaempferol against Aβ25-35-mediated apoptosis of pheochromocytoma (PC-12) cells through the ER/ERK/MAPK signalling pathway. Arch. Med. Sci. 2021 17 2 406 416 10.5114/aoms.2020.98199 33747277
    [Google Scholar]
  60. Kluska M. Juszczak M. Żuchowski J. Stochmal A. Woźniak K. Effect of Kaempferol and its glycoside derivatives on antioxidant status of HL-60 cells treated with Etoposide. Molecules 2022 27 2 333 10.3390/molecules27020333 35056649
    [Google Scholar]
  61. Kim E.H. Shim Y.Y. Lee H.I. Lee S. Reaney M.J.T. Chung M.J. Astragalin and isoquercitrin isolated from Aster scaber suppress LPS-induced neuroinflammatory responses in microglia and mice. Foods 2022 11 10 1505 10.3390/foods11101505 35627075
    [Google Scholar]
  62. Cao Y. Chen Y. Wang P. Lu J. Han X. She J. Network pharmacology and experimental validation to explore the molecular mechanisms of Bushen Huoxue for the treatment of premature ovarian insufficiency. Bioengineered 2021 12 2 10345 10362 10.1080/21655979.2021.1996317 34753385
    [Google Scholar]
  63. Liu H. Huang Y. Yang J. Xu X. Dai Q. Zhang Y. Zhao L. Zhang M. Zhang J. Liu T. Zhong L. Involvement of estrogen receptor activation in kaempferol-3-O-glucoside’s protection against aging-related cognition impairment and microglial inflammation. Exp. Cell Res. 2023 433 2 113849 10.1016/j.yexcr.2023.113849 37926343
    [Google Scholar]
  64. Ruan G.Y. Ye L.X. Lin J.S. Lin H.Y. Yu L.R. Wang C.Y. Mao X.D. Zhang S.H. Sun P.M. An integrated approach of network pharmacology, molecular docking, and experimental verification uncovers kaempferol as the effective modulator of HSD17B1 for treatment of endometrial cancer. J. Transl. Med. 2023 21 1 204 10.1186/s12967‑023‑04048‑z 36932403
    [Google Scholar]
  65. Harrath A.H. Jalouli M. Oueslati M.H. Farah M.A. Feriani A. Aldahmash W. Aldawood N. Al-Anazi K. Falodah F. Swelum A. Alwasel S. The flavonoid, kaempferol‐3‐O‐apiofuranosyl‐7‐O ‐rhamnopyranosyl, as a potential therapeutic agent for breast cancer with a promoting effect on ovarian function. Phytother. Res. 2021 35 11 6170 6180 10.1002/ptr.7067 33908658
    [Google Scholar]
  66. Bakrim S. Benkhaira N. Bourais I. Benali T. Lee L.H. El Omari N. Sheikh R.A. Goh K.W. Ming L.C. Bouyahya A. Health benefits and pharmacological properties of stigmasterol. Antioxidants 2022 11 10 1912 10.3390/antiox11101912 36290632
    [Google Scholar]
  67. Yadav P. Chauhan C. Singh S. Banerjee S. Murti K. β-sitosterol in various pathological conditions: An update. Curr. Bioact. Compd. 2022 18 6 e301221199685 10.2174/1573407218666211230144036
    [Google Scholar]
  68. Bernardi D.M. Marchi J.P. De Souza Alferes Araújo C. Nascimento V.R.D. De Souza Lima D. Wietzikoski S. Ferro M.M. Miyoshi E. Lívero F.A.D.R. Seixas F.A.V. Lovato E.C.W. Dopamine docking studies of biologically active metabolites from Curcuma longa L. Research. Soc. Dev. 2021 10 7 e59910716992
    [Google Scholar]
  69. Lin Y.C. Liu L.C. Ho C.T. Hung C.M. Way T.D. Luteolin inhibits ER-α expression through ILK inhibition is regulated by a pathway involving twist and YB-1. J. Funct. Foods 2018 42 42 75 84 10.1016/j.jff.2017.12.059
    [Google Scholar]
  70. Mintz R. Wang M. Xu S. Colditz G.A. Markovic C. Toriola A.T. Hormone and receptor activator of NF-κB (RANK) pathway gene expression in plasma and mammographic breast density in postmenopausal women. Breast Cancer Res. 2022 24 1 28 10.1186/s13058‑022‑01522‑2 35422057
    [Google Scholar]
  71. Sun J.W. Collins J.M. Ling D. Wang D. Highly variable expression of ESR1 splice variants in human liver: Implication in the liver gene expression regulation and inter-person variability in drug metabolism and liver related diseases. J. Mol. Genet. Med. 2019 13 3 434 32457812
    [Google Scholar]
  72. Ivanova S.A. Paderina D.Z. Boiko A.S. Pozhidaev I.V. Kornetova E.G. Wilffert B. Loonen A.J.M. P.583 Polymorphisms in BDNF, AKT1, GSK3B genes: Possible association with antipsychotic-induced hyperprolactinemia in schizophrenia patients. Eur. Neuropsychopharmacol. 2020 40 S331 S332 10.1016/j.euroneuro.2020.09.427
    [Google Scholar]
  73. Arias-Álvarez M. García-García R.M. López-Tello J. Rebollar P.G. Gutiérrez-Adán A. Lorenzo P.L. In vivo and in vitro maturation of rabbit oocytes differently affects the gene expression profile, mitochondrial distribution, apoptosis and early embryo development. Reprod. Fertil. Dev. 2017 29 9 1667 1679 10.1071/RD15553 27678473
    [Google Scholar]
  74. Glaviano A. Foo A.S.C. Lam H.Y. Yap K.C.H. Jacot W. Jones R.H. Eng H. Nair M.G. Makvandi P. Geoerger B. Kulke M.H. Baird R.D. Prabhu J.S. Carbone D. Pecoraro C. Teh D.B.L. Sethi G. Cavalieri V. Lin K.H. Javidi-Sharifi N.R. Toska E. Davids M.S. Brown J.R. Diana P. Stebbing J. Fruman D.A. Kumar A.P. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023 22 1 138 10.1186/s12943‑023‑01827‑6 37596643
    [Google Scholar]
  75. Lang L. Liang S. Zhang F. Fu Y. Wang J. Deng K. Wang L. Gao P. Zhu C. Shu G. Wu R. Jiang Q. Wang S. Knockdown of the VEGFB/VEGFR1 signaling suppresses pubertal mammary gland development of mice via the inhibition of PI3K/Akt pathway. Int. J. Biol. Macromol. 2024 264 Pt 2 130782 10.1016/j.ijbiomac.2024.130782 38471613
    [Google Scholar]
  76. Chen J. Pan Z. Li Q. Wu Y. Li X. Wang X. Hao D. Peng X. Pan L. Li W. Wang J. Li T. Fu F. The aqueous extract of Hemerocallis citrina Baroni improves the lactation-promoting effect in bovine mammary epithelial cells through the PI3K-AKT signaling pathway. Foods 2024 13 17 2813 10.3390/foods13172813 39272577
    [Google Scholar]
  77. Yang J. Du J. Wang Y.X. Liu C.R. Activation of JAK/STAT in ovarian high-grade serous cancers and its prognostic significance. Beijing Da Xue Xue Bao 2023 55 2 270 275 37042137
    [Google Scholar]
  78. Braun T. Arnold H.H. Myf-5 and myoD genes are activated in distinct mesenchymal stem cells and determine different skeletal muscle cell lineages. EMBO J. 1996 15 2 310 318 10.1002/j.1460‑2075.1996.tb00361.x 8617206
    [Google Scholar]
  79. Takayanagi H. Kim S. Koga T. Taniguchi T. Stat1-mediated cytoplasmic attenuation in osteoimmunology. J. Cell. Biochem. 2005 94 2 232 240 10.1002/jcb.20316 15546140
    [Google Scholar]
  80. Liu X. Robinson G.W. Wagner K.U. Garrett L. Wynshaw-Boris A. Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 1997 11 2 179 186 10.1101/gad.11.2.179 9009201
    [Google Scholar]
  81. Zhang H. Liu Y. Liu J. Chen J. Wang J. Hua H. Jiang Y. cAMP-PKA/EPAC signaling and cancer: The interplay in tumor microenvironment. J. Hematol. Oncol. 2024 17 1 5 10.1186/s13045‑024‑01524‑x 38233872
    [Google Scholar]
  82. Aslam M. Ladilov Y. Emerging role of cAMP/AMPK signaling. Cells 2022 11 2 308 10.3390/cells11020308 35053423
    [Google Scholar]
  83. Miao H. Miao C. Han J. Li N. Anti-hyperprolactinemia mechanism of Radix bupleuri extract in rats. Trop J Pharm Res. 2016 15 9 1903 1907 10.4314/tjpr.v15i9.13
    [Google Scholar]
/content/journals/cad/10.2174/0115734099366667250410061157
Loading
/content/journals/cad/10.2174/0115734099366667250410061157
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test