Skip to content
2000
image of A Multiscale Computational Study for the Identification of Novel Inhibitors Targeting Tau-Tubulin Kinase 1 (TTBK1) in Alzheimer’s Disease

Abstract

Introduction

Excessive phosphorylation of tau protein by the tau-tubulin kinase 1 (TTBK1) enzyme is implicated in the pathogenesis of several neurodegenerative diseases. Based on a comprehensive literature review and availability of the co-crystal structure of TTBK1 in complex inhibitor (pdb id 4BTK), we designed a multiscale computational approach to identify novel hits from the ZINC13 chemical library.

Methods

The High-Throughput Virtual Screening (HTVS) of the ZINC13 database (containing 13,195,609 molecules) was carried out against TTBK1 protein (PDB id 4BTK). Top-scoring molecules and reference molecules were further subjected to MD simulations, PCA analysis, DCCM assay, binding free energies calculations, and ADME calculations.

Results

From a preliminary HTVS study, six molecules were identified based on their docking scores: ZINC37289024, ZINC89755080, ZINC20993115, ZINC72445968, ZINC28247630, and ZINC16638515, with the docking score of -10.186, -09.229, -09.045, -09.021, -08.920 and

-08.821, respectively. In subsequent MD simulations studies, the protein backbone RMSD values were observed to be 1.978, 1.8178, 2.2309, 1.7933, 1.8837, 1.9461, and 1.8711 Å, respectively. Similarly, the protein backbone RMSF values were 0.9511, 1.0172, 1.2023, 1.0591, 1.0029, 1.9755, and 0.9200 Å, respectively. PCA, DCCM, and MMGBSA analysis indicated that these complexes were quite stable throughout the 100 ns MD simulations. ADME predictions of identified top six hits suggested that these top six hits possess favorable drug-like properties, supporting their potential as the lead candidates for therapeutic development.

Conclusion

A multiscale molecular modelling approach was employed, and six top-scoring hits were identified as promising TTBK1 inhibitors. Analysis of the data suggested that ZINC37289024 would be the most promising clinical candidate for AD. However, further

in-vitro

and experimental data would be needed for validation of these results.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099366145250526081959
2025-06-30
2025-12-05
Loading full text...

Full text loading...

References

  1. Scheltens P. De Strooper B. Kivipelto M. Holstege H. Chételat G. Teunissen C.E. Cummings J. van der Flier W.M. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  2. Ballard C. Gauthier S. Corbett A. Brayne C. Aarsland D. Jones E. Alzheimer’s disease. Lancet 2011 377 9770 1019 1031
    [Google Scholar]
  3. Querfurth H.W. LaFerla F.M. Alzheimer’s Disease. N. Engl. J. Med. 2010 362 4 329 344 10.1056/NEJMra0909142 20107219
    [Google Scholar]
  4. Cummings J.L. Alzheimer’s disease. N. Engl. J. Med. 2004 351 1 56 67 10.1056/NEJMra040223 15229308
    [Google Scholar]
  5. Blennow K. de Leon M.J. Zetterberg H. Alzheimer’s disease. Lancet 2006 368 9533 387 403 10.1016/S0140‑6736(06)69113‑7 16876668
    [Google Scholar]
  6. Imbimbo BP Lombard J Pomara, N Pathophysiology of Alzheimer's disease. Neuroimag clin 2005 15 4 727 753
    [Google Scholar]
  7. Bloom G.S. Norambuena A. Dysregulation of mTOR by tau in Alzheimer’s disease. Cytoskeleton 2024 81 1 30 34 10.1002/cm.21782 37638691
    [Google Scholar]
  8. Imahori K. Uchida T. Physiology and pathology of tau protein kinases in relation to Alzheimer’s disease. J. Biochem. 1997 121 2 179 188 [PMID: 9089387
    [Google Scholar]
  9. Iqbal K. Tau and Alzheimer’s disease: Past, present and future. Cytoskeleton 2024 81 1 116 121 10.1002/cm.21822 38126608
    [Google Scholar]
  10. Ye J. Wan H. Chen S. Liu G.P. Targeting tau in Alzheimer’s disease: From mechanisms to clinical therapy. Neural Regen. Res. 2024 19 7 1489 1498 10.4103/1673‑5374.385847 38051891
    [Google Scholar]
  11. Chu D. Yang X. Wang J. Zhou Y. Gu J.H. Miao J. Wu F. Liu F. Tau truncation in the pathogenesis of Alzheimer’s disease: A narrative review. Neural Regen. Res. 2024 19 6 1221 1232 10.4103/1673‑5374.385853 37905868
    [Google Scholar]
  12. Martin L. Latypova X. Wilson C.M. Magnaudeix A. Perrin M-L. Yardin C. Terro F. Tau protein kinases: Involvement in Alzheimer’s disease. Ageing Res. Rev. 2013 12 1 289 309 [PMID: 22742992
    [Google Scholar]
  13. Kalyaanamoorthy S. Opare S.K. Xu X. Ganesan A. Rao P.P.N. Post-translational modifications in tau and their roles in alzheimer’s pathology. Curr. Alzheimer Res. 2024 21 1 24 49 10.2174/0115672050301407240408033046 38623984
    [Google Scholar]
  14. Parra Bravo C. Naguib S.A. Gan L. Cellular and pathological functions of tau. Nat. Rev. Mol. Cell Biol. 2024 25 11 845 864 [PMID: 39014245
    [Google Scholar]
  15. Iqbal, K Tau pathology in Alzheimer disease and other tauopathies. Biochim. Biophys. Acta 2005 1739 2-3 198 210
    [Google Scholar]
  16. Medeiros R. Baglietto-Vargas D. LaFerla F.M. The role of tau in Alzheimer’s disease and related disorders. CNS Neurosci. Ther. 2011 17 5 514 524 [PMID: 20553310
    [Google Scholar]
  17. Mandelkow E-M. Mandelkow E. Tau in Alzheimer’s disease. Trends Cell Biol. 1998 8 11 425 427 [PMID: 9854307
    [Google Scholar]
  18. Tripathi N. Goshisht M.K. Sahu S.K. Arora C. Applications of artificial intelligence to drug design and discovery in the big data era: A comprehensive review. Mol. Divers. 2021 25 3 1643 1664 [PMID: 34110579
    [Google Scholar]
  19. Lipinski C.F. Maltarollo V.G. Oliveira P.R. da Silva A.B.F. Honorio K.M. Advances and perspectives in applying deep learning for drug design and discovery. Front. Robot. AI 2019 6 108 10.3389/frobt.2019.00108 33501123
    [Google Scholar]
  20. Velmurugan D. Pachaiappan R. Ramakrishnan C. Recent trends in drug design and discovery. Curr. Top. Med. Chem. 2020 20 19 1761 1770 10.2174/1568026620666200622150003 32568020
    [Google Scholar]
  21. Nascimento I.J.S. de Aquino T.M. da Silva-Júnior E.F. The new era of drug discovery: The power of computer-aided drug design (CADD). Lett. Drug Des. Discov. 2022 19 11 951 955 10.2174/1570180819666220405225817
    [Google Scholar]
  22. Qiu Y. Cheng F. Artificial intelligence for drug discovery and development in Alzheimer’s disease. Curr. Opin. Struct. Biol. 2024 85 102776 10.1016/j.sbi.2024.102776 38335558
    [Google Scholar]
  23. Singh S. Gupta H. Sharma P. Sahi S. Advances in artificial intelligence (AI)-assisted approaches in drug screening. Artif. Intellig Chem. 2024 2 1 100039 10.1016/j.aichem.2023.100039
    [Google Scholar]
  24. Pushkaran A.C. Arabi A.A. From understanding diseases to drug design: Can artificial intelligence bridge the gap? Artif. Intell. Rev. 2024 57 4 86 10.1007/s10462‑024‑10714‑5
    [Google Scholar]
  25. Bagchi S. Alia U. Mohammad F. Mohd Siddique M.U. High throughput virtual screening based discovery of dengue protease inhibitor. J. Pharma Chem. 2017 4 3 35 40 10.14805/jphchem.2017.art92
    [Google Scholar]
  26. Siddique M.U.M. Ansari A. Sinha B.N. Jayaprakash V. Comparative computational studies on selective cytochromep450 1b1 inhibitors. Int. J. Bioautomation 2020 24 3 213 224 10.7546/ijba.2020.24.3.000537
    [Google Scholar]
  27. Harvey M.J. De Fabritiis G. High-throughput molecular dynamics: The powerful new tool for drug discovery. Drug Discov. Today 2012 17 19-20 1059 1062 10.1016/j.drudis.2012.03.017 22504137
    [Google Scholar]
  28. Murtuja S. Siddique M.U.M. Srivastava K.P. Agarwal Y.O. Wagh S. Yasmin S. Ansari A. Shaikh M.S. Hasnain M.S. Goyal S.N. Identifying novel inhibitors for dengue NS2B-NS3 protease by combining topological similarity, molecular dynamics, MMGBSA and sitemap analysis. Curr. Computeraided Drug Des. 2024 21 1 8 10.2174/0115734099329789240905141013 39473209
    [Google Scholar]
  29. Siddique M.U.M. Sinha B.N. Jayaprakash V. Comparative shape and electrostatic study of highly potent and selective CYP1B1 inhibitor: Assessment of active site of CYP1B1 by Binding Mode Analysis Using Site Map Tool. Indian J. Pharma Educat Res. 2018 52 1 159 165 10.5530/ijper.52.1.18
    [Google Scholar]
  30. Ziyaul-Haque M. Ayub R. Mohd Siddique M.U. Gangwal A. Ansari A. Shahid M. Agrawal Y.O. Khan T. Machine learning approaches in designing anti-HIV nitroimidazoles: 2D/3D QSAR, kNN-MFA, docking, dynamics, PCA analysis and MMGBSA studies. Arab. J. Chem. 2024 17 11 105995 10.1016/j.arabjc.2024.105995
    [Google Scholar]
  31. Mohd Usman M.S. Bharbhuiya T.K. Mondal S. Rani S. Kyal C. Kumari R. Combined protein and ligand based physicochemical aspects of molecular recognition for the discovery of CDK9 inhibitor. Gene Rep. 2018 13 212 219 10.1016/j.genrep.2018.10.011
    [Google Scholar]
  32. Durrant J.D. McCammon J.A. Molecular dynamics simulations and drug discovery. BMC Biol. 2011 9 1 71 10.1186/1741‑7007‑9‑71 22035460
    [Google Scholar]
  33. AlRawashdeh S. Barakat K.H. Applications of molecular dynamics simulations in drug discovery. Methods Mol. Biol. 2023 2714 127 141 10.1007/978‑1‑0716‑3441‑7_7
    [Google Scholar]
  34. Bera I. Payghan P.V. Use of molecular dynamics simulations in structure-based drug discovery. Curr. Pharm. Des. 2019 25 31 3339 3349 10.2174/1381612825666190903153043 31480998
    [Google Scholar]
  35. Sterling T. Irwin J.J. ZINC 15–ligand discovery for everyone. J. Chem. Inf. Model. 2015 55 11 2324 2337 10.1021/acs.jcim.5b00559 26479676
    [Google Scholar]
  36. Irwin J.J. Shoichet B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005 45 1 177 182 10.1021/ci049714+ 15667143
    [Google Scholar]
  37. Schrodinger L. Schrodinger software suite. Schrödinger 2011 LLC 670
    [Google Scholar]
  38. Xue Y. Wan P.T. Hillertz P. Schweikart F. Zhao Y. Wissler L. Dekker N. X-ray structural analysis of tau-tubulin kinase1 and its interactions with small molecular inhibitors. ChemMedChem 2013 8 11 1846 1854 10.1002/cmdc.201300274 24039150
    [Google Scholar]
  39. Klepeis J.L. Lindorff-Larsen K. Dror R.O. Shaw D.E. Long-timescale molecular dynamics simulations of protein structure and function. Curr. Opin. Struct. Biol. 2009 19 2 120 127 10.1016/j.sbi.2009.03.004 19361980
    [Google Scholar]
  40. Maestro S. Maestro. New York Schrödinger 2020 682
    [Google Scholar]
  41. Lu C. Wu C. Ghoreishi D. Chen W. Wang L. Damm W. Ross G.A. Dahlgren M.K. Russell E. Von Bargen C.D. Abel R. Friesner R.A. Harder E.D. OPLS4: Improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput. 2021 17 7 4291 4300 10.1021/acs.jctc.1c00302 34096718
    [Google Scholar]
  42. Yang Y. Yao K. Repasky M.P. Leswing K. Abel R. Shoichet B.K. Jerome S.V. Efficient exploration of chemical space with docking and deep learning. J. Chem. Theory Comput. 2021 17 11 7106 7119 10.1021/acs.jctc.1c00810 34592101
    [Google Scholar]
  43. Bowers K.J. Chow E. Xu H. Dror R.O. Eastwood M.P. Gregersen B.A. Klepeis J.L. Kolossvary I. Moraes M.A. Sacerdoti F.D. Scalable algorithms for molecular dynamics simulations on commodity clusters. Conference: SC 2006 Conference, Proceedings of the ACM/IEEE, 10.1109/SC.2006.54,
    [Google Scholar]
  44. Humphrey W. Dalke A. Schulten K. Visual molecular dynamics. J. Mol. Graph 1996 14 1 33 38 27 28 10.1016/0263‑7855(96)00018‑5 8744570
    [Google Scholar]
  45. Jacobson M.P. Pincus D.L. Rapp C.S. Day T.J.F. Honig B. Shaw D.E. Friesner R.A. A hierarchical approach to all‐atom protein loop prediction. Proteins 2004 55 2 351 367 10.1002/prot.10613 15048827
    [Google Scholar]
  46. Martínez L. Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One 2015 10 3 0119264 10.1371/journal.pone.0119264 25816325
    [Google Scholar]
  47. Benson N.C. Daggett V. A comparison of multiscale methods for the analysis of molecular dynamics simulations. J. Phys. Chem. B 2012 116 29 8722 8731 10.1021/jp302103t 22494262
    [Google Scholar]
  48. Stein S.A.M. Loccisano A.E. Firestine S.M. Evanseck J.D. Principal components analysis: A review of its application on molecular dynamics data. Annu. Rep. Comput. Chem. 2006 2 233 261 10.1016/S1574‑1400(06)02013‑5
    [Google Scholar]
  49. David C.C. Jacobs D.J. Principal component analysis: A method for determining the essential dynamics of proteins. Methods Protoc. 2014 1084 193 226 10.1007/978‑1‑62703‑658‑0_11
    [Google Scholar]
  50. Shao J. Tanner S.W. Thompson N. Cheatham T.E. Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. J. Chem. Theory Comput. 2007 3 6 2312 2334 10.1021/ct700119m 26636222
    [Google Scholar]
  51. Shenkin P.S. McDonald D.Q. Cluster analysis of molecular conformations. J. Comput. Chem. 1994 15 8 899 916
    [Google Scholar]
  52. dos Santos Nascimento I.J. De Souza M. Medeiros D.C. de Moura R.O. Dynamic cross-correlation matrix (DCCM) Reveals new insights to discover new NLRP3 inhibitors useful as anti-inflammatory drugs. Basel, Switzerland MDPI 2022 1 6
    [Google Scholar]
/content/journals/cad/10.2174/0115734099366145250526081959
Loading
/content/journals/cad/10.2174/0115734099366145250526081959
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: MMGBSA ; ZINC13 database ; TTBK1 ; PCA analysis ; MD simulations ; Alzheimer’s disease ; HTVS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test