Skip to content
2000
image of Validation of the Mechanism of Action of Jiedu Shengji Oil in the Treatment of Radiation Dermatitis based on Network Pharmacology and In vivo Experiments

Abstract

Background

Radiation Dermatitis (RD) is a common complication of radiation therapy, with approximately 90% of patients experiencing moderate to severe radiation dermatitis injury after radiotherapy. Jiedu Shengji oil (JDSJY) is a commonly used herbal topical preparation in our hospital, with remarkable clinical efficacy in treating radiation dermatitis. However, the mechanism of JDSJY in treating RD is unclear.

Aims

The aim of the study is to explore JDSJY's mechanism of action in treating RD through methods, such as network pharmacology and experiments.

Methods

The active components and disease targets of JDSJY were screened and intersected network pharmacology for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The pharmacodynamics of JDSJY was evaluated by establishing a rat model of RD.

Results

Network pharmacology showed that the pathway network of JDSJY action involved 64 targets and 6 pathways and might act by targeting key targets, such as C-reactive protein (CRP) and regulating the MAPK signalling pathway. In addition, experiments showed that JDSJY reduced skin inflammation and inhibited apoptosis, significantly ameliorated mitochondrial damage in keratinocytes, and reduced the levels of antioxidant-related indicators.

Conclusion

Comprehensive network pharmacology and experiments revealed that JDSJY's therapeutic efficacy in RD is mediated by ameliorating oxidative stress and maintaining mitochondrial homeostasis in keratinocytes.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099370851250512074033
2025-05-16
2025-12-06
Loading full text...

Full text loading...

References

  1. Lin B. Gao F. Yang Y. Wu D. Zhang Y. Feng G. Dai T. Du X. FLASH radiotherapy: History and future. Front. Oncol. 2021 11 644400 10.3389/fonc.2021.644400 34113566
    [Google Scholar]
  2. Yang X. Ren H. Guo X. Hu C. Fu J. Radiation-induced skin injury: Pathogenesis, treatment, and management. Aging (Albany NY) 2020 12 22 23379 23393 10.18632/aging.103932 33202382
    [Google Scholar]
  3. Xie Y. Wang Q. Hu T. Chen R. Wang J. Chang H. Cheng J. Risk factors related to acute radiation dermatitis in breast cancerpatients after radiotherapy: A systematic review and meta-analysis. Front. Oncol. 2021 11 738851 10.3389/fonc.2021.738851 34912704
    [Google Scholar]
  4. Rzepecki A. Birnbaum M. Ohri N. Daily J. Fox J. Bodner W. Kabarriti R. Garg M. Mehta K. Kalnicki S. McLellan B.N. Characterizing the effects of radiation dermatitis on quality of life: A prospective survey-based study. J. Am. Acad. Dermatol. 2022 86 1 161 163 10.1016/j.jaad.2019.03.011 30878566
    [Google Scholar]
  5. Beamer L.C. Grant M. Using the dermatology life quality index to assess how breast radiodermatitis affects patients' quality of life. reast Cancer (Auckl). 2019 131178223419835547 10.1177/1178223419835547
    [Google Scholar]
  6. Behroozian T. Bonomo P. Patel P. Kanee L. Finkelstein S. van den Hurk C. Chow E. Wolf J.R. Behroozian T. Bonomo P. Patel P. Kanee L. Finkelstein S. van den Hurk C. Chow E. Ryan Wolf J. Banerjee S. Becherini C. Boers-Doets C. Carlesimo M. Caro G. Caterina Fortuna M. Chan A.W. Drapek L. Freites-Martinez A. Hirakawa S. Hoffman Smith E. Iacovelli N.A. Kwong B. Lee S.F. Markova A. Miller R. Marta G.N. Pugliese S. Reyes Habito C.M. Robijns J. Salvestrini V. Schmeel L.C. Spalek M. Trombetta M. Wong H.C.Y. Multinational Association of Supportive Care in Cancer (MASCC) clinical practice guidelines for the prevention and management of acute radiation dermatitis: International Delphi consensus-based recommendations. Lancet Oncol. 2023 24 4 e172 e185 10.1016/S1470‑2045(23)00067‑0 36990615
    [Google Scholar]
  7. Aschoff R. Lang A. Koch E. Effects of intermittent treatment with topical corticosteroids and calcineurin inhibitors on epidermal and dermal thickness using optical coherence tomography and ultrasound. Skin Pharmacol. Physiol. 2022 35 1 41 50 10.1159/000518214 34348352
    [Google Scholar]
  8. Rosenthal A. Israilevich R. Moy R. Management of acute radiation dermatitis: A review of the literature and proposal for treatment algorithm. J. Am. Acad. Dermatol. 2019 81 2 558 567 10.1016/j.jaad.2019.02.047 30802561
    [Google Scholar]
  9. Cilla S. Romano C. Macchia G. Boccardi M. Pezzulla D. Buwenge M. Castelnuovo A.D. Bracone F. Curtis A.D. Cerletti C. Iacoviello L. Donati M.B. Deodato F. Morganti A.G. Machine-learning prediction model for acute skin toxicity after breast radiation therapy using spectrophotometry. Front. Oncol. 2023 12 1044358 10.3389/fonc.2022.1044358 36686808
    [Google Scholar]
  10. Wang Y. Zhang Y. Peng G. Han X. Glycyrrhizin ameliorates atopic dermatitis-like symptoms through inhibition of HMGB1. Int. Immunopharmacol. 2018 60 9 17 10.1016/j.intimp.2018.04.029 29702284
    [Google Scholar]
  11. Song F. Liao Z. Li T. Kang N. Li Z. Fan S. Liu F. Topical use of Jiawei Simiao Yongan Gao to prevent radiodermatitis in patients with head and neck cancer. Medicine (Baltimore) 2020 99 48 e23318 10.1097/MD.0000000000023318 33235092
    [Google Scholar]
  12. Zeng H. Zhao B. Zhang D. Rui X. Hou X. Chen X. Zhang B. Yuan Y. Deng H. Ge G. Viola yedoensis Makino formula alleviates DNCB-induced atopic dermatitis by activating JAK2/STAT3 signaling pathway and promoting M2 macrophages polarization. Phytomedicine 2022 103 154228 10.1016/j.phymed.2022.154228 35689898
    [Google Scholar]
  13. Wu X.H. Xun S.J. Wu W.X. Hu J.H. Duan Y. Li X. Zhao Q.H. Ma Y.C. Research progress on the chemical composition and pharmacological effects of Coptis chinensis. J. Tradit. Chin. Med. 2024 52 07 110 116 10.19664/j.cnki.1002‑2392.240148
    [Google Scholar]
  14. Mao H.X. Zhou Y. Zhou X. Long Y. Based on network pharmacology to study the mechanism of action of comfrey in the treatment of radiation dermatitis. Herald of Traditional Chinese Medicine. 2020 26 7 84 91 10.13862/i.cnki.cn43‑1446/r.2020.07.022
    [Google Scholar]
  15. Wu J. Xie K.Y. Yuan L. Tian C.E. Li D. Tang L. Song W. Liu G. Zhou B.H. Research progress on the pharmacological mechanism of action of Ulmus vulgaris in the past five years. Global Chinese Medicine. 2024 17 08 1669 1678 10.3969/i.issn.1674‑1749.2024.08.035
    [Google Scholar]
  16. Wang X.J. Lin S. Kang H.F. Dai Z.J. Bai M.H. Ma X.L. Ma X.B. Liu M. Liu X.X. Wang B.F. The effect of Rhizoma Coptidis and Coptis Chinensis aqueous extract on radiation-induced skin injury in a rat model. BMC Complement. Altern. Med. 2013 13 1 105 10.1186/1472‑6882‑13‑105 23675786
    [Google Scholar]
  17. Sun Z.X. Li Y.W. Zhang F.C. Xiao F. Expert consensus on the clinical application of compound comfrey oil in dermatology. Chi. Med. World. 2020 15 2 301 304 10.3969/i.issn.1673‑7202.2020.02.033
    [Google Scholar]
  18. Duan Z.Y. Li J.G. Yuan X.H. Chen J. Li L.N. Zhou W. Yu L. Zhang S.M. Protective mechanism of bicalyptus oil in TR4/MyD88/NF-KB pathway on rat radiation dermatitis model. Chin. J. Dermatol. Venereol. 2020 32 8 861 866 10.13735/j.cjdv.1001‑7089.201910144
    [Google Scholar]
  19. Yang L. Liu Y.P. Wei Z. Li X.L. Liu R. Fan D.Q. Chen H.P. Research progress on shellfish medicinal material oyster cassia mother-of-pearl. Shizhen Chin. Med. 2013 24 12 2990 10.3969/J.issn.1008‑0805.2013.12.074
    [Google Scholar]
  20. Younus J. Lock M. Vujovic O. Yu E. Malec J. D’Souza D. Stitt L. A case-control, mono-center, open-label, pilot study to evaluate the feasibility of therapeutic touch in preventing radiation dermatitis in women with breast cancer receiving adjuvant radiation therapy. Complement. Ther. Med. 2015 23 4 612 616 10.1016/j.ctim.2014.11.003 26275655
    [Google Scholar]
  21. Jiang H.Y. Zhang Z.Q. Gao Y.C. Wu F.S. Lin Y.N. Xie J.T. The efficacy of JDSJY in preventing and treating RD in patients with head and neck malignant tumours and its effect on psychological status. Chin. J. Integr. Med. 2023 32 21 3054 3058 10.3969/j.issn.1008‑8849.2023.21.025
    [Google Scholar]
  22. Hao X. Bu W. Lv G. Xu L. Hou D. Wang J. Liu X. Yang T. Zhang X. Liu Q. Gong Y. Shao C. Disrupted mitochondrial homeostasis coupled with mitotic arrest generates antineoplastic oxidative stress. Oncogene 2022 41 3 427 443 10.1038/s41388‑021‑02105‑9 34773075
    [Google Scholar]
  23. Lazzarini R. Tartaglione M.F. Ciarapica V. Piva F. Giulietti M. Fulgenzi G. Martelli M. Ledda C. Vitale E. Malavolta M. Santarelli L. Bracci M. Keratinocytes exposed to blue or red light: Proteomic characterization showed cytoplasmic thioredoxin reductase 1 and Aldo-Keto reductase family 1 member C3 triggered expression. Int. J. Mol. Sci. 2023 24 22 16189 10.3390/ijms242216189 38003379
    [Google Scholar]
  24. Wang Y. Han D. Huang Y. Dai Y. Wang Y. Liu M. Wang N. Yin T. Du W. He K. Zheng Y. Oral administration of punicalagin attenuates imiquimod‐induced psoriasis by reducing ROS generation and inflammation viaMAPK/ERK and NF‐κB signaling pathways. Phytother. Res. 2024 38 2 713 726 10.1002/ptr.8071 38009260
    [Google Scholar]
  25. Liang J. Lian L. Wang X. Li L. Thymoquinone, extract from Nigella sativa seeds, protects human skin keratinocytes against UVA-irradiated oxidative stress, inflammation and mitochondrial dysfunction. Mol. Immunol. 2021 135 21 27 10.1016/j.molimm.2021.03.015 33857815
    [Google Scholar]
  26. Souza-Neto F.P. Marinello P.C. Melo G.P. Ramalho L.Z.N. Cela E.M. Campo V.E. González-Maglio D.H. Cecchini R. Cecchini A.L. Metformin inhibits the inflammatory and oxidative stress response induced by skin UVB-irradiation and provides 4-hydroxy-2-nonenal and nitrotyrosine formation and p53 protein activation. J. Dermatol. Sci. 2020 100 2 152 155 10.1016/j.jdermsci.2020.05.012 33051086
    [Google Scholar]
  27. Jiang Z. Wang Y. Liu T. Yan X. Wang Z. Wang Y. Wang J. Yang Y. Wang X. Guan W. Yun J. Wang X. Genetic and molecular markers of oxidative stress in a rat model of skin irradiation and wound injury. Radiat. Res. 2022 197 3 264 276 10.1667/RADE‑21‑00140.1
    [Google Scholar]
  28. Yang K. Kim S.Y. Park J.H. Ahn W.G. Jung S.H. Oh D. Park H.C. Choi C. Topical application of phlorotannins from brown seaweed mitigates radiation dermatitis in a mouse model. Mar. Drugs 2020 18 8 377 10.3390/md18080377 32707897
    [Google Scholar]
  29. Piao M.J. Ahn M.J. Kang K.A. Kim K.C. Zheng J. Yao C.W. Cha J.W. Hyun C.L. Kang H.K. Lee N.H. Hyun J.W. Phloroglucinol inhibits ultraviolet B radiation-induced oxidative stress in the mouse skin. Int. J. Radiat. Biol. 2014 90 10 928 935 10.3109/09553002.2014.911990 24716481
    [Google Scholar]
  30. Tang C. Cai J. Yin X.M. Weinberg J.M. Venkatachalam M.A. Dong Z. Mitochondrial quality control in kidney injury and repair. Nat. Rev. Nephrol. 2021 17 5 299 318 10.1038/s41581‑020‑00369‑0 33235391
    [Google Scholar]
  31. Martic I. Papaccio F. Bellei B. Cavinato M. Mitochondrial dynamics and metabolism across skin cells: Implications for skin homeostasis and aging. Front. Physiol. 2023 14 1284410 10.3389/fphys.2023.1284410 38046945
    [Google Scholar]
  32. Brand R.M. Wipf P. Durham A. Epperly M.W. Greenberger J.S. Falo L.D. Jr Targeting mitochondrial oxidative stress to mitigate UV-Induced skin damage. Front. Pharmacol. 2018 9 920 10.3389/fphar.2018.00920 30177881
    [Google Scholar]
  33. Pang Y. Lv J. He C. Ju C. Lin Y. Zhang C. Li M. Covalent organic frameworks-derived carbon nanospheres based nanoplatform for tumor specific synergistic therapy viaoxidative stress amplification and calcium overload. J. Colloid Interface Sci. 2024 661 908 922 10.1016/j.jcis.2024.01.217 38330663
    [Google Scholar]
  34. Ma P. Zhang R. Xu L. Liu H. Xiao P. The neuroprotective effects of Coreopsis tinctoria and its mechanism: Interpretation of network pharmacological and experimental data. Front. Pharmacol. 2022 12 791288 10.3389/fphar.2021.791288 35222009
    [Google Scholar]
  35. Noor F. Tahir ul Qamar, M.; Ashfaq, U.A.; Albutti, A.; Alwashmi, A.S.S.; Aljasir, M.A. Network pharmacology approach for medicinal plants: Review and assessment. Pharmaceuticals 2022 15 5 572 10.3390/ph15050572 35631398
    [Google Scholar]
  36. Liu Z. Guo F. Wang Y. Li C. Zhang X. Li H. Diao L. Gu J. Wang W. Li D. He F. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional chinese medicine. Sci. Rep. 2016 6 1 21146 10.1038/srep21146 26879404
    [Google Scholar]
  37. Fishilevich S. Nudel R. Rappaport N. Hadar R. Plaschkes I. Iny Stein T. Rosen N. Kohn A. Twik M. Safran M. Lancet D. Cohen D. GeneHancer: Genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford) 2017 2017 bax028 10.1093/database/bax028 28605766
    [Google Scholar]
  38. Apweiler R. Bairoch A. Wu C.H. Barker W.C. Boeckmann B. Ferro S. Gasteiger E. Huang H. Lopez R. Magrane M. Martin M.J. Natale D.A. O’Donovan C. Redaschi N. Yeh L.S.L. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2004 32 90001 115D 119 10.1093/nar/gkh131 14681372
    [Google Scholar]
  39. Szklarczyk D. Franceschini A. Wyder S. Forslund K. Heller D. Huerta-Cepas J. Simonovic M. Roth A. Santos A. Tsafou K.P. Kuhn M. Bork P. Jensen L.J. von Mering C. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015 43 D1 D447 D452 10.1093/nar/gku1003 25352553
    [Google Scholar]
  40. Ashburner M. Ball C.A. Blake J.A. Botstein D. Butler H. Cherry J.M. Davis A.P. Dolinski K. Dwight S.S. Eppig J.T. Harris M.A. Hill D.P. Issel-Tarver L. Kasarskis A. Lewis S. Matese J.C. Richardson J.E. Ringwald M. Rubin G.M. Sherlock G. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000 25 1 25 29 10.1038/75556 10802651
    [Google Scholar]
  41. Kanehisa M. Furumichi M. Tanabe M. Sato Y. Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017 45 D1 D353 D361 10.1093/nar/gkw1092 27899662
    [Google Scholar]
  42. Huang D.W. Sherman B.T. Tan Q. Kir J. Liu D. Bryant D. Guo Y.J. Stephens R. Baseler M.W. Lane H.C. Lempicki R.A. DAVID bioinformatics resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007 35 W169 10.1093/nar/gkm415
    [Google Scholar]
  43. Zhou F. Sun J. Ye L. Jiang T. Li W. Su C. Ren S. Wu F. Zhou C. Gao G. Fibronectin promotes tumor angiogenesis and progression of non-small-cell lung cancer by elevating WISP3 expression viaFAK/MAPK/HIF-1α axis and activating wnt signaling pathway. Exp. Hematol. Oncol. 2023 12 1 61 10.1186/s40164‑023‑00419‑w 37468964
    [Google Scholar]
  44. Zhou H.H. Tang Y.L. Xu T.H. Cheng B. C-reactive protein: Structure, function, regulation, and role in clinical diseases. Front. Immunol. 2024 15 1425168 10.3389/fimmu.2024.1425168 38947332
    [Google Scholar]
  45. Alimirah F. Pulido T. Valdovinos A. Alptekin S. Chang E. Jones E. Diaz D.A. Flores J. Velarde M.C. Demaria M. Davalos A.R. Wiley C.D. Limbad C. Desprez P.Y. Campisi J. Cellular senescence promotes skin carcinogenesis through p38MAPK and p44/42MAPK signaling. Cancer Res. 2020 80 17 3606 3619 10.1158/0008‑5472.CAN‑20‑0108 32641409
    [Google Scholar]
  46. Tao R. Mao Y. Li Y. Sun M. Cao X. Chen N. Xu S. Wang D. Zhao Y. Connexin26 modulates radiation-induced skin damage by regulating chemokine CCL27 through MAPK signaling. Radiat. Res. 2023 200 3 281 288 10.1667/RADE‑20‑00085.1 37450610
    [Google Scholar]
  47. Liu H.M. Cheng M.Y. Xun M.H. Zhao Z.W. Zhang Y. Tang W. Cheng J. Ni J. Wang W. Possible mechanisms of oxidative stress-induced skin cellular senescence, inflammation, and cancer and the therapeutic potential of plant polyphenols. Int. J. Mol. Sci. 2023 24 4 3755 10.3390/ijms24043755 36835162
    [Google Scholar]
  48. Feng X. Feng J.F. Wang X.R. Yang Q. Liu H.W. Wang L.J. Guo X.H. Wang H.Y. Wang Q. Wang J.H. Wang X.R. Wang X.S. The role of hypoxia-inducible factor-1α in the pathogenesis and progression of radiation dermatitis. Radiat. Res. 2023 200 630 641 10.1667/RR21043.1
    [Google Scholar]
  49. Zheng J. Li G. Wang J. Wang S. Tang Q. Sheng H. Wu W. Wang S. Compound kushen injection protects skin from radiation injury viaregulating bim. Front. Pharmacol. 2021 12 753068 10.3389/fphar.2021.753068 34955827
    [Google Scholar]
  50. Ashack K.A. Kuritza V. Visconti M.J. Ashack L. Dermatologic sequelae associated with radiation therapy. Am. J. Clin. Dermatol. 2020 21 4 541 555 10.1007/s40257‑020‑00519‑x 32410134
    [Google Scholar]
  51. Zasadziński K. Spałek M.J. Rutkowski P. Modern dressings in prevention and therapy of acute and chronic radiation dermatitis: A literature review. Pharmaceutics 2022 14 6 1204 10.3390/pharmaceutics14061204 35745777
    [Google Scholar]
  52. Abdel Azim S. Whiting C. Friedman A. Overview of radiation dermatitis: The dermatologist’s role. J. Drugs Dermatol. 2024 23 5 381 382 10.36849/JDD.NVRN0424 38709703
    [Google Scholar]
  53. Behroozian T. Caini S. van den Hurk C. Bonomo P. Chow E. Wolf J.R. Systematic review and meta-analysis on interventions for radiation dermatitis prevention and management: An overview of the methods. Support. Care Cancer 2023 31 5 261 10.1007/s00520‑023‑07707‑5 37052753
    [Google Scholar]
  54. Lee C.J. Fang H.F. Wang C.Y. Chou K.R. Huang T.W. Effect of hyaluronic acid on radiodermatitis in patients with breast cancer: A meta-analysis of randomized controlled trials. Support. Care Cancer 2022 30 5 3965 3975 10.1007/s00520‑022‑06828‑7 35059865
    [Google Scholar]
  55. Presta G. Puliatti A. Bonetti L. Tolotti A. Sari D. Valcarenghi D. Effectiveness of hyaluronic acid gel (Jalosome soothing gel) for the treatment of radiodermatitis in a patient receiving head and neck radiotherapy associated with cetuximab: A case report and review. Int. Wound J. 2019 16 6 1433 1439 10.1111/iwj.13210 31475472
    [Google Scholar]
  56. Fatima S. Hirakawa S. Marta G.N. Caini S. Beveridge M. Bonomo P. Chow E. van den Hurk C. Ryan Wolf J. Lam H. Behroozian T. Topical non-steroidal agents for the prevention of radiation dermatitis: A systematic review and meta-analysis. Support. Care Cancer 2023 31 4 217 10.1007/s00520‑023‑07677‑8 36928164
    [Google Scholar]
  57. Abbas H. Bensadoun R.J. Trolamine emulsion for the prevention of radiation dermatitis in patients with squamous cell carcinoma of the head and neck. Support. Care Cancer 2012 20 1 185 190 10.1007/s00520‑011‑1110‑3 21340657
    [Google Scholar]
  58. Simões F.V. Santos V.O. Silva R.N. Silva R.C. Effectiveness of skin protectors and calendula officinalis for prevention and treatment of radiodermatitis: An integrative review. Rev. Bras. Enferm. 2020 73 Suppl. 5 e20190815 10.1590/0034‑7167‑2019‑0815 33084806
    [Google Scholar]
  59. Geara F.B. Eid T. Zouain N. Thebian R. Andraos T. Chehab C. Ramia P. Youssef B. Zeidan Y.H. Randomized, prospective, open-label phase III trial comparing mebo ointment with biafine cream for the management of acute dermatitis during radiotherapy for breast cancer. Am. J. Clin. Oncol. 2018 41 12 1257 1262 10.1097/COC.0000000000000460 29889137
    [Google Scholar]
  60. Holmes C.J. Plichta J.K. Gamelli R.L. Radek K.A. Burn injury alters epidermal cholinergic mediators and increases HMGB1 and Caspase 3 in autologous donor skin and burn margin. Shock 2017 47 2 175 183 10.1097/SHK.0000000000000752 27648692
    [Google Scholar]
  61. Liao Y. Feng G. Dai T. Long F. Tang J. Pu Y. Zheng X. Cao S. Xu S. Du X. Randomized, self-controlled, prospective assessment of the efficacy of mometasone furoate local application in reducing acute radiation dermatitis in patients with head and neck squamous cell carcinomas. Medicine (Baltimore) 2019 98 52 e18230 10.1097/MD.0000000000018230 31876704
    [Google Scholar]
  62. Uysal B. Gamsız H. Dincoglan F. Demiral S. Sager O. Dirican B. Beyzadeoglu M. Comparative evaluation of topical corticosteroid and moisturizer in the prevention of radiodermatitis in breast cancer radiotherapy. Indian J. Dermatol. 2020 65 4 279 283 10.4103/ijd.IJD_607_18 32831368
    [Google Scholar]
  63. Schmeel L. Koch D. Schmeel F. Bücheler B. Leitzen C. Mahlmann B. Kunze D. Heimann M. Brüser D. Abramian A.V. Schoroth F. Müdder T. Röhner F. Garbe S. Baumert B. Schild H. Wilhelm-Buchstab T. Wilhelm-Buchstab T.M. Hydrofilm polyurethane films reduce radiationdermatitis severity in hypofractionated whole-breast irradiation: An objective, intra-patientrandomized dual-center assessment. Polymers 2019 11 12 2112 10.3390/polym11122112 31888185
    [Google Scholar]
  64. Ahn S. Sung K. Kim H.J. Choi Y.E. Lee Y.K. Kim J.S. Lee S.K. Roh J.Y. Reducing radiation dermatitis using a film-forming silicone gelduring breast radiotherapy: A pilot randomized-controlled trial. In Vivo 2020 34 1 413 422 10.21873/invivo.11790 31882508
    [Google Scholar]
  65. Yan J. Yuan L. Wang J. Li S. Yao M. Wang K. Herst P.M. Mepitel Film is superior to Biafine cream in managing acute radiation‐induced skin reactions in head and neck cancer patients: a randomised intra‐patient controlled clinical trial. J. Med. Radiat. Sci. 2020 67 3 208 216 10.1002/jmrs.397 32475079
    [Google Scholar]
  66. Behroozian T. Goldshtein D. Ryan Wolf J. van den Hurk C. Finkelstein S. Lam H. Patel P. Kanee L. Lee S.F. Chan A.W. Wong H.C.Y. Caini S. Mahal S. Kennedy S. Chow E. Bonomo P. Behroozian T. Goldshtein D. Ryan Wolf J. van den Hurk C. Finkelstein S. Lam H. Patel P. Kanee L. Lee S.F. Chan A.W. Wong H.C.Y. Caini S. Mahal S. Kennedy S. Chow E. Bonomo P. MASCC clinical practice guidelines for the prevention and management of acute radiation dermatitis: Part 1 systematic review. EClinicalMedicine 2023 58 101886 10.1016/j.eclinm.2023.101886 37181415
    [Google Scholar]
  67. Robijns J. Censabella S. Claes S. Pannekoeke L. Bussé L. Colson D. Kaminski I. Lodewijckx J. Bulens P. Maes A. Noé L. Brosens M. Timmermans A. Lambrichts I. Somers V. Mebis J. Biophysical skin measurements to evaluate the effectiveness of photobiomodulation therapy in the prevention of acute radiation dermatitis in breast cancer patients. Support. Care Cancer 2019 27 4 1245 1254 10.1007/s00520‑018‑4487‑4 30270415
    [Google Scholar]
  68. Wen S. Dooner M. Cheng Y. Papa E. Del Tatto M. Pereira M. Deng Y. Goldberg L. Aliotta J. Chatterjee D. Stewart C. Carpanetto A. Collino F. Bruno S. Camussi G. Quesenberry P. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia 2016 30 11 2221 2231 10.1038/leu.2016.107 27150009
    [Google Scholar]
  69. Ferguson S.W. Wang J. Lee C.J. Liu M. Neelamegham S. Canty J.M. Nguyen J. The microRNA regulatory landscape of MSC-derived exosomes: A systems view. Sci. Rep. 2018 8 1 1419 10.1038/s41598‑018‑19581‑x 29362496
    [Google Scholar]
  70. Guangmei D. Weishan H. Wenya L. Fasheng W. Jibing C. Evolution of radiation-induced dermatitis treatment. Clin. Transl. Oncol. 2024 26 9 2142 2155 10.1007/s12094‑024‑03460‑1 38594379
    [Google Scholar]
  71. Wang J. Xie K.H. Ren W. Han R.Y. Xiao L.H. Yu J. Tan R.Z. Wang L. Liao D.Z. Huanglian Jiedu plaster ameliorated Xray-induced radiation dermatitis injury by inhibiting HMGB1-mediated macrophage-inflammatory interaction. J Ethnopharmacol. 2023 302115917 10.1016/j.jep.2022.115917
    [Google Scholar]
  72. Zhao Y.L. Shen H.M. Zhang M. Zhou Y.J. Yuan Y.L. Effect of compound ulcer oil on blood cytokines in patients with radiation dermatitis. Chi. J. Exp. Pharm. 2016 22 09 153 157 10.13422/j.cnki.syfjx.2016090153
    [Google Scholar]
  73. Qiu J. A culture in the balance. Nature 2007 448 7150 126 128 10.1038/448126a 17625539
    [Google Scholar]
  74. Stone R. Biochemistry: Lifting the veil on traditional Chinese medicine. Science 2008 319 5864 709 710 10.1126/science.319.5864.709 18258866
    [Google Scholar]
  75. Di H. Liu H. Xu S. Yi N. Wei G. Network pharmacology and experimental validation to explore the molecular mechanisms of compound huangbai liquid for the treatment of acne. Drug Des. Devel. Ther. 2023 17 39 53 10.2147/DDDT.S385208 36660250
    [Google Scholar]
  76. Wang Y. Yang H. Chen L. Jafari M. Tang J. Network-based modeling of herb combinations in traditional Chinese medicine. Brief. Bioinform. 2021 22 5 bbab106 10.1093/bib/bbab106 33834186
    [Google Scholar]
  77. Wang P. Yang J. Wang Q. Zhang H. Wang Y.M. Han W. Wang Y. Liu M. Wang S.F. Association of serum biomarkers with acute radiation dermatitis in cervical cancer patients treated with radiotherapy. Front. Oncol. 2023 13 10.3389/fonc.2023.1064470
    [Google Scholar]
  78. Kim J.H. Nam J.K. Kim A.R. Park M.S. Lee H.J. Park J. Kim J. Lee Y.J. 2-Methoxyestradiol inhibits radiation-induced skin injuries. Int. J. Mol. Sci. 2022 23 8 4171 10.3390/ijms23084171 35456989
    [Google Scholar]
  79. Zhang Y. Wong H.S. Are mitochondria the main contributor of reactive oxygen species in cells? J. Exp. Biol. 2021 224 5 jeb221606 10.1242/jeb.221606 33707189
    [Google Scholar]
/content/journals/cad/10.2174/0115734099370851250512074033
Loading
/content/journals/cad/10.2174/0115734099370851250512074033
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test