Skip to content
2000
image of Anti-inflammatory and Anti-arthritic Properties of Mucuna gigantea Plant Extracts: Establishing by Molecular Docking Study

Abstract

Background

is a traditional plant reported in the management of nervous disorders, male infertility, ., and also exhibits aphrodisiac, anti-oxidant, and anti-diabetic properties. Very few studies are conducted on It has not been pharmacologically evaluated for Rheumatoid Arthritis (RA). In RA, the body's natural defence mechanism gets confused and begins to target the healthy tissues in the body, which leads to joint pain, swelling, bone erosion, and joint stiffness. It is a condition that is classified as an auto-immune disorder.

Methods

docking depicted that beta-sitosterol is present in out of ligand library prepared based on a literature survey using computational analysis. Inflammation was induced by carrageen and chronic inflammation was induced by Freund’s complete adjuvant in the plantar surface of the rats. The petroleum ether, ethanolic and aqueous extracts in three divided doses (75, 150, and 300 mg/kg) were administered orally. Diclofenac sodium (10 mg/kg), prednisolone (5 mg/kg), and methotrexate (0.5 mg/kg) were used as standard. The statistical significance between means was analyzed using one-way ANOVA, followed by Dunnett’s multiple range test. The values are expressed as mean ± SD for each group (n = 6), and a <0.0001, b <0.001, and c <0.05 were compared with a negative control group.

Results

Ethanolic and petroleum ether extracts showed a statistically significant a <0.0001 effect at 3 hr with 300 mg/kg effect in analgesic activity, whereas aqueous extracts showed statistically significant a <0.0001 effect at 1.5 hr with 150 and 300 mg/kg. In the carrageen-induced model, all three extracts at 300 mg/kg showed a statistically significant a <0.0001 effect from 2-4 hr. In Freund’s adjuvant model, all three extracts at all doses showed a statistically significant a <0.0001 effect. Also, remarkably ameliorated altered WBCs, rheumatoid factor, and positively modified radiographic and histopathological changes.

Conclusion

Taken together, these results support the traditional use of as a potent anti-inflammatory and anti-arthritic agent that may be proposed for rheumatoid arthritis treatment.

Loading

Article metrics loading...

/content/journals/cad/10.2174/1573409920666230817142114
2025-05-26
2026-01-19
Loading full text...

Full text loading...

References

  1. Lakshmi S. Mohana C. Vatsalya J. Kumar C.K. Ashok D. Satheesh K. A review on rheumatoid arthritis-its complications and herbal treatment. J. Global Trends Pharm. Sci. 2013 4 4 1310 1317
    [Google Scholar]
  2. Sumeja Z. Mohammed H. Al E.S. Masri Basel K.; Halabi Hussein; Badsha Humeira, Uthman Imad, Mahfoud Ziyad R., Hadil Ashour, Wissam Gad El Haq, Karim Bayoumy, Marianthi Kapiri, Richa Saxena, Robert M. Plenge8, Layla Kazkaz, Thurayya Arayssi, Epidemiology and treatment patterns of rheumatoid arthritis in a large cohort of Arab patients. PLoS One 2018
    [Google Scholar]
  3. Harith J. Mahdia Nurzalina Abdul Karim Khanb Mohd Zaini Bin Asmawic.; Roziahanim M.; Vikneswaran A/L.; Murugaiyah. In vivo anti-arthritic and anti-nociceptive effects of ethanol extract of Moringaoleifera leaves on complete Freund’s adjuvant (CFA)-induced arthritis in rats. Integr. Med. Res. 2018 7 1 85 94 10.1016/j.imr.2017.11.002 29629295
    [Google Scholar]
  4. Al-RAbeer F. Rheumatoid arthritis: History, stages, epidemiology, pathogenesis, diagnosis and treatment. Int. J. Toxicol. Pharmacol. Res. 2017 9 2 145 155
    [Google Scholar]
  5. Merola J.F. Espinoza L.R. Fleischmann R. Distinguishing rheumatoid arthritis from psoriatic arthritis. RMD Open 2018 4 2 e000656 10.1136/rmdopen‑2018‑000656 30167326
    [Google Scholar]
  6. Neethu S. Veena S.K. Indulekha V.C. Eapen J. Radhakrishnan K.V. Phytoconstituents assessment and development of standardization protocol for ‘Nayopayam Kwatha’, a polyherbal Ayurvedic formulation. J. Ayurveda Integr. Med. 2021 12 3 489 499 10.1016/j.jaim.2021.05.002 34353694
    [Google Scholar]
  7. Kamal R.M. Sabry M.M. Aly Z.Y. Hifnawy M.S. Phytochemical and In-Vivo Anti-Arthritic Significance of Aloe thraskii Baker in Combined Therapy with Methotrexate in Adjuvant-Induced Arthritis in Rats. Molecules 2021 26 12 3660 10.3390/molecules26123660 34203991
    [Google Scholar]
  8. Raina Archna P. Misra R.C. Chemical evaluation of Mucuna species for L-dopa content –an anti- Parkinson’s drug yielding medicinal plant from India. Indian J. Tradit. Knowl. 2018 17 1 148 154
    [Google Scholar]
  9. Deokar G. Kakulte H. Kshirsagar S. Phytochemistry and pharmacological activity of Mucunapruriens: a review. Pharmac Biolog Evaluat. 2016 3 1 50 58
    [Google Scholar]
  10. Kongros K. Bunyaratvej A. Viyoch J. Sila-asna M. The effects of seed extract of Mucunagiganteaon the expression of neural markers in mesenchymal stem cells. Journal of Medicinal Plants Research Vol 2012 6 7 1297 1303
    [Google Scholar]
  11. Choudhary M. Kumar V. Malhotra H. Singh S. Medicinal plants with potential anti- arthritic activity. J. Intercult. Ethnopharmacol. 2015 4 2 313021918 10.5455/jice.20150313021918
    [Google Scholar]
  12. Muthu K. Krishnamoorthy P. Evaluation of androgenic activity of Mucuna pruriens in male rats. Afr. J. Biotechnol. 2011 10 66 15017 15019 10.5897/AJB09.896
    [Google Scholar]
  13. Sahu P.K. Pal A. Nanda G.S. Champatisingh D. Anticataleptic and antiepileptic activity of ethanolic extract of leaves of Mucuna pruriens: A study on role of dopaminergic system in epilepsy in albino rats. Indian J. Pharmacol. 2011 43 2 197 199 10.4103/0253‑7613.77368 21572658
    [Google Scholar]
  14. Bala V. Debnath A. Shill A.K. Bose U. Anti-inflammatory, diuretic and antibacterial activities of aerial parts of Mucuna pruriens Linn. Int. J. Pharmacol. 2011 7 4 498 503 10.3923/ijp.2011.498.503
    [Google Scholar]
  15. Rauf A. Qaisar M. Uddin G. Akhtar S. Muhammad N. Qaisar MJM-EJoMPR Preliminary phytochemical screening and antioxidant profile of Euphorbia prostrate. Tropical Nat Prod Res (TJNPR) 2012 6 11 1798 1801
    [Google Scholar]
  16. Munjal K. Ahmad S. Gupta A. Haye A. Amin S. Polyphenol-enriched fraction and the compounds isolated from Garcinia indica fruits ameliorate obesity through suppression of digestive enzymes and oxidative stress. Mir SRJPM 2020 16 70 236
    [Google Scholar]
  17. Sharma A. Gupta S. Sharma S. Dhanawat M. Munjal K. Combination effect of Spirulina fusiformis with rutin or chlorogenic acid in lipopolysaccharide-induced septic cardiac inflammation in experimental diabetic rat model. JPM 2021 17 6 257
    [Google Scholar]
  18. Gupta S. Nair A. Jhawat V. Mustaq N. Sharma A. Dhanawat M. Khan S.A. Unwinding complexities of diabetic alzheimer by potent novel moleculeS. Am. J. Alzheimers Dis. Other Demen. 2020 35 35 10.1177/1533317520937542 32864980
    [Google Scholar]
  19. Kumar S. Dobos G.J. Rampp T. The significance of ayurvedic medicinal plantS. J. Evid. Based Complementary Altern. Med. 2017 22 3 494 501 10.1177/2156587216671392 27707902
    [Google Scholar]
  20. Chen L. Chen R. Constituents of tannins from Euphorbia prostrata Ait. Zhongguo Zhongyao Zazhi 1992 17 4 225 226
    [Google Scholar]
  21. Schiff M.H. Role of interleukin 1 and interleukin 1 receptor antagonist in the mediation of rheumatoid arthritis. Ann. Rheum. Dis. 2000 59 90001 Suppl. 1 103i 108 10.1136/ard.59.suppl_1.i103 11053099
    [Google Scholar]
  22. Dayer J.M. Oliviero F. Punzi L. A brief history of IL-1 and IL-1 Ra in rheumatology. Front. Pharmacol. 2017 8 293 10.3389/fphar.2017.00293 28588495
    [Google Scholar]
  23. Choy E. Inhibiting interleukin-6 in rheumatoid arthritis. Curr. Rheumatol. Rep. 2008 10 5 413 417 10.1007/s11926‑008‑0066‑x 18817647
    [Google Scholar]
  24. Srirangan S. Choy E.H. The role of Interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 2010 2 5 247 256 10.1177/1759720X10378372 22870451
    [Google Scholar]
  25. Pandolfi F. Franza L. Carusi V. Altamura S. Andriollo G. Nucera E. Interleukin-6 in rheumatoid arthritis. Int. J. Mol. Sci. 2020 21 15 5238 10.3390/ijms21155238 32718086
    [Google Scholar]
  26. Virtanen T. A.; Haikarainen, T.; Raivola, J.; Silvennoinen, O. Selective JAKinibs: Prospects in Inflammatory and Autoimmune Diseases. BioDrugs 2019 33 1 15 32 10.1007/s40259‑019‑00333‑w 30701418
    [Google Scholar]
  27. Davis J.S. Ferreira D. Paige E. Gedye C. Boyle M. Infectious complications of biological and small molecule targeted immunomodulatory therapies. Clin. Microbiol. Rev. 2020 33 3 e00035 e19 10.1128/CMR.00035‑19 32522746
    [Google Scholar]
  28. Blüml S. Scheinecker C. Smolen J.S. Redlich K. Targeting TNF receptors in rheumatoid arthritis. Int. Immunol. 2012 24 5 275 281 10.1093/intimm/dxs047 22457216
    [Google Scholar]
  29. Kaur A. Mujwar S. Adlakha N. In-silico analysis of riboswitch of Nocardia farcinica for design of its inhibitors and pharmacophores. Int. J. Comput. Biol. Drug Des. 2016 9 3 261 276 10.1504/IJCBDD.2016.078278
    [Google Scholar]
  30. Kaushal S.K. Brijendra S. Mujwar S. Prakash B.S. Molecular Docking based analysis to elucidate the DNA Topoisomerase IIbeta as the potential target for the Ganoderic acid, A natural therapeutic agent in cancer therapy. CurrComput Aided Drug Des. 2019 16 2 176 189 10.2174/1573409915666190820144759
    [Google Scholar]
  31. Minaz N. Razdan R. Hammock BD. Mujwar S. Goswami SK. Impact of diabetes on male sexual function in streptozotocininduced diabetic rats: Protective role of soluble epoxide hydrolase inhibitor. Biomed pharmacoth. 2019 115 108897 10.1016/j.biopha.2019.108897
    [Google Scholar]
  32. Fidan O. Mujwar S. Kciuk M. Discovery of adapalene and dihydrotachysterol as antiviral agents for the Omicron variant of SARS-CoV-2 through computational drug repurposing. Mol. Divers. 2023 463 475 10.1007/s11030‑022‑10440‑6 35507211
    [Google Scholar]
  33. Mujwar S. Computational bioprospecting of andrographolide derivatives as potent cyclooxygenase-2 inhibitors. Biomedical and Biotechnology Research Journal (BBRJ) 2021 5 4 446 10.4103/bbrj.bbrj_56_21
    [Google Scholar]
  34. Kumari R. Kumar V. Dhankhar P. Dalal V. Promising antivirals for PLpro of SARS-CoV-2 using virtual screening, molecular docking, dynamics, and MMPBSA. J. Biomol. Struct. Dyn. 2023 41 10 4650 4666 10.1080/07391102.2022.2071340 35510600
    [Google Scholar]
  35. Dalal V. Kumari R. Screening and identification of natural product‐like compounds as potential antibacterial agents targeting FemC of Staphylococcus aureus: An in‐Silico Approach. ChemistrySelect 2022 7 42 10.1002/slct.202201728
    [Google Scholar]
  36. Singh V. Dhankhar P. Dalal V. Tomar S. Golemi-Kotra D. Kumar P. Drug-repurposing approach to combat Staphylococcus aureus: Biomolecular and binding interaction study. ACS Omega 2022 7 43 38448 38458 10.1021/acsomega.2c03671 36340146
    [Google Scholar]
  37. Mujwar S. Sun L. Fidan O. In silico evaluation of food‐derived carotenoids against SARS‐COV-2 drug targets: Crocin is a promising dietary supplement candidate for COVID ‐19. J. Food Biochem. 2022 46 9 e14219 10.1111/jfbc.14219 35545850
    [Google Scholar]
  38. Shah K. Mujwar S. Krishna G. Gupta J.K. Computational design and biological depiction of novel naproxen derivative. Assay Drug Dev. Technol. 2020 18 7 308 317 10.1089/adt.2020.977 32749851
    [Google Scholar]
  39. Lalan B.K. Hiray R.S. Ghongane B.B. Evaluation of analgesic and anti-inflammatory activity of extract of Holoptelea integrifolia and Argyreia speciosa in animal models. J. Clin. Diagn. Res. 2015 9 7 FF01 FF04 10.7860/JCDR/2015/12059.6200 26393140
    [Google Scholar]
  40. Kumar S. Hitendra; Bhatia M.; Gupta S. Acute and chronic inflammation studies of Strobilanthescallosus leaves extract on rat model. Inflammopharmacol 2013 21 233 239 10.1007/s10787‑012‑0150‑8 22983841
    [Google Scholar]
  41. Kciuk M. Mujwar S. Szymanowska A. Marciniak B. Bukowski K. Mojzych M. Kontek R. Preparation of novel pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides and their experimental and computational biological studies. Int. J. Mol. Sci. 2022 23 11 5892 10.3390/ijms23115892 35682571
    [Google Scholar]
  42. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne The protein data bank 2000
    [Google Scholar]
  43. Melgar K. Walker M.M. Jones L.M. Bolanos L.C. Hueneman K. Wunderlich M. Jiang J.K. Wilson K.M. Zhang X. Sutter P. Wang A. Xu X. Choi K. Tawa G. Lorimer D. Abendroth J. O’Brien E. Hoyt S.B. Berman E. Famulare C.A. Mulloy J.C. Levine R.L. Perentesis J.P. Thomas C.J. Starczynowski D.T. Overcoming adaptive therapy resistance in AML by targeting immune response pathways. Sci. Transl. Med. 2019 11 508 eaaw8828 10.1126/scitranslmed.aaw8828 31484791
    [Google Scholar]
  44. Gelinas A.D. Davies D.R. Edwards T.E. Rohloff J.C. Carter J.D. Zhang C. Gupta S. Ishikawa Y. Hirota M. Nakaishi Y. Jarvis T.C. Janjic N. Crystal structure of interleukin-6 in complex with a modified nucleic acid ligand. J. Biol. Chem. 2014 289 12 8720 8734 10.1074/jbc.M113.532697 24415767
    [Google Scholar]
  45. Huang J. Fu X. Chen X. Li Z. Huang Y. Liang C. Promising therapeutic targets for treatment of rheumatoid arthritis. Front. Immunol. 2021 12 686155 10.3389/fimmu.2021.686155 34305919
    [Google Scholar]
  46. Wang T. Duffy J.P. Wang J. Halas S. Salituro F.G. Pierce A.C. Zuccola H.J. Black J.R. Hogan J.K. Jepson S. Shlyakter D. Mahajan S. Gu Y. Hoock T. Wood M. Furey B.F. Frantz J.D. Dauffenbach L.M. Germann U.A. Fan B. Namchuk M. Bennani Y.L. Ledeboer M.W. Janus kinase 2 inhibitors. Synthesis and characterization of a novel polycyclic azaindole. J. Med. Chem. 2009 52 24 7938 7941 10.1021/jm901383u 20014869
    [Google Scholar]
  47. He M.M. Smith A.S. Oslob J.D. Flanagan W.M. Braisted A.C. Whitty A. Cancilla M.T. Wang J. Lugovskoy A.A. Yoburn J.C. Fung A.D. Farrington G. Eldredge J.K. Day E.S. Cruz L.A. Cachero T.G. Miller S.K. Friedman J.E. Choong I.C. Cunningham B.C. Small-molecule inhibition of TNF-α. Science 2005 310 5750 1022 1025 10.1126/science.1116304 16284179
    [Google Scholar]
  48. Agrawal N.U.P. Mujwar S. Mishra P. Analgesic, anti-inflammatory activity and docking study of 2-(substituted phenyl)-3-(naphthalen1-yl)thiazolidin-4-ones. J. Indian Chem. Soc. 2020 97 39 46
    [Google Scholar]
  49. Soni N. Pardasani K.R. Mujwar S. In silico analysis of dietary agents as anticancer inhibitors of insulin like growth factor 1 receptor (IGF1R). J. Pharm. Pharm. Sci. 2015 7 9 191 196
    [Google Scholar]
  50. Jain R. Mujwar S. Repurposing metocurine as main protease inhibitor to develop novel antiviral therapy for COVID-19. Struct. Chem. 2020 31 6 2487 2499 10.1007/s11224‑020‑01605‑w 32837119
    [Google Scholar]
  51. Matotoka M.M. Masoko P. Phytochemical screening and pharmacological evaluation of herbal concoctions sold at Ga Maja Limpopo Province. South African J. Bot. 2018 117 1 10 10.1016/j.sajb.2018.04.013
    [Google Scholar]
  52. Sonia S.S. Singh S.K. Phytopharmacognostical study of Beta vulgaris L. leaves: An Update. RESEARCH REVIEW. International Journal of Multidisciplinary 2018 03 09 56 63 10.5281/zenodo.1409094
    [Google Scholar]
  53. Acharya B. Anti-inflammatory and anti-arthritic efficacies of an indian traditional herbo-mineral medicine “Divya Amvatari Ras” in collagen antibody-induced arthritis (CAIA) mouse model through modulation of IL-6/IL-1β/TNF-α/NFκB signaling. Front. Pharmacol. 2019 10 659 10.3389/fphar.2019.00659
    [Google Scholar]
  54. Tiwari R.K. Anti-inflammatory and anti-arthritic potential of standardized extract of Clerodendrum serratum (L.) moon. Front. Pharmacol. 2021 12 629607 10.3389/fphar.2021.629607
    [Google Scholar]
  55. Suryawanshi S.S. Kamble P.P. Bapat V.A. Jadhav J.P. Bioactive components of magical velvet beans. IntechOpen 2020 10.5772/intechopen.92124
    [Google Scholar]
  56. Alamgeer, Uttra AM, Hasan UH., Anti-arthritic activity of aqueous-methanolic extract and various fractions of Berberis orthobotrys Bien ex Aitch. BMC Complement. Altern. Med. 2017 17 1 371 10.1186/s12906‑017‑1879‑9 28720131
    [Google Scholar]
  57. Choudhary M. Anti-arthritic activity of Barleria prionitis Linn. leaves in acute and chronic models in Sprague Dawley rats. Bulletin Facult Pharmacy Cairo Univ. 2014 52 2 199 209 10.1016/j.bfopcu.2014.07.002
    [Google Scholar]
  58. Wojdasiewicz P. Poniatowski Ł.A. Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014 2014 1 19 10.1155/2014/561459 24876674
    [Google Scholar]
  59. Chen G. Goeddel D.V. TNF-R1 signaling: a beautiful pathway. Science 2002 296 5573 1634 1635 10.1126/science.1071924 12040173
    [Google Scholar]
  60. Qian K. Zheng X.X. Wang C. Huang W.G. Liu X.B. Xu S.D. Liu D.K. Liu M.Y. Lin C.S. β-Sitosterol inhibits rheumatoid synovial angiogenesis through suppressing VEGF signaling pathway. Front. Pharmacol. 2022 12 816477 10.3389/fphar.2021.816477 35295740
    [Google Scholar]
  61. Xia Z. Skeletal interoception: an emerging area for musculoskeletal research. Biomater Transl 2022 3 4 237 239 10.12336/biomatertransl.2022.04.001 36846506
    [Google Scholar]
  62. Chen X. Li X. Zhai X. Zhi X. Cao L. Qin L. Su J. Shikimic acid inhibits osteoclastogenesis in vivo and in vitro by blocking RANK/TRAF6 association and suppressing NF-κB and MAPK signaling pathways. Cell. Physiol. Biochem. 2018 51 6 2858 2871 10.1159/000496039 30562759
    [Google Scholar]
  63. Sun Y. Gao L. Hou W. Wu J. β-Sitosterol alleviates inflammatory response via inhibiting the activation of ERK/p38 and NF-κB pathways in LPS-exposed BV2 cells. BioMed Res. Int. 2020 2020 1 10 10.1155/2020/7532306 32596368
    [Google Scholar]
/content/journals/cad/10.2174/1573409920666230817142114
Loading
/content/journals/cad/10.2174/1573409920666230817142114
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test