Skip to content
2000
image of Discovery of Polyphenolic Compounds from Mangifera indica as Potent Therapeutics for Strongyloides stercoralis Infection via Computer-aided Drug Design

Abstract

Background

The global spread of has escalated public health concerns, affecting over 600 million people worldwide. The rise in global migration has heightened the risk of transmission, underscoring the urgent need for effective treatment options.

Objective

This study aimed to investigate ten polyphenolic phytochemicals derived from as potential alternatives to combat .

Methods

The efficacy of these compounds was evaluated using computational techniques, including density functional theory (DFT) analysis, molecular docking, adsorption, distribution, metabolism, excretion, and toxicity (ADMET) assessment, and molecular dynamics (MD) simulations.

Results

DFT calculations revealed significant chemical reactivity in compounds such as kaempferol, ellagic acid, quercetin, norathyriol, mangiferin, and ferulic acid. Molecular docking identified mangiferin, quercetin, kaempferol, and norathyriol as top candidates for targeting key proteins (DAF-12) linked to infection. A 200-ns MD simulation of the protein-ligand complex demonstrated the stability and binding behavior of these compounds compared to the reference drug, thiabendazole. ADMET screening confirmed their drug-likeness. Notably, quercetin and mangiferin exhibited strong binding affinities (∆G = -42.35 and -54.57 kcal/mol, respectively), outperforming thiabendazole (∆G = -28.94 kcal/mol).

Conclusion

Quercetin and mangiferin emerge as promising alternatives to thiabendazole, offering favorable chemical reactivity, potent inhibition constants, and strong biological activity for the treatment of .

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099353596250313020805
2025-03-21
2025-09-04
Loading full text...

Full text loading...

References

  1. Lauricella M. Emanuele S. Calvaruso G. Giuliano M. D’Anneo A. Multifaceted health benefits of mangifera indica L. (Mango): The inestimable value of orchards recently planted in sicilian rural areas. Nutrients 2017 9 5 525 10.3390/nu9050525 28531110
    [Google Scholar]
  2. Khan JT Richi AE Riju SA Jalal T Orchi RJ Singh S Bhagat P Abdel-Wahab YH Ansari P Evaluation of antidiabetic potential of mangifera indica leaf in streptozotocin-induced type 2 diabetic rats: Focus on glycemic control and cholesterol regulation. Endocrine 2024 5 2 137 152 10.3390/endocrines5020010
    [Google Scholar]
  3. Kim H. Castellon-Chicas M.J. Arbizu S. Talcott S.T. Drury N.L. Smith S. Mertens-Talcott S.U. Mango (Mangifera indica L.) polyphenols: Anti-inflammatory intestinal microbial health benefits, and associated mechanisms of actions. Molecules 2021 26 9 2732 10.3390/molecules26092732 34066494
    [Google Scholar]
  4. Kabir M.R. Hasan S.M.K. Islam M.R. Ahmed M. Development of functional noodles by encapsulating mango peel powder as a source of bioactive compounds. Heliyon 2024 10 1 e24061 10.1016/j.heliyon.2024.e24061 38230233
    [Google Scholar]
  5. Hannan A. Asghar S. Naeem T. Ikram Ullah M. Ahmed I. Aneela S. Hussain S. Antibacterial effect of mango (Mangifera indica Linn.) leaf extract against antibiotic sensitive and multi-drug resistant Salmonella typhi. Pak. J. Pharm. Sci. 2013 26 4 715 719 23811447
    [Google Scholar]
  6. Nguyen H.T. Miyamoto A. Hoang H.T. Vu T.T.T. Pothinuch P. Nguyen H.T.T. Effects of maturation on antibacterial properties of vietnamese mango (Mangifera indica) leaves. Molecules 2024 29 7 1443 10.3390/molecules29071443 38611723
    [Google Scholar]
  7. Yadav D. Singh S.P. Mango: History origin and distribution. RJPP 2017 6 1257 1262
    [Google Scholar]
  8. Blare T. Ballen F.H. Singh A. Haley N. Crane J. Profitability and Cost Estimates for Producing Mango (Mangifera Indica L.) in South Florida. FE1115. EDIS 2022 10.32473/edis‑fe1115‑2022
    [Google Scholar]
  9. Lebaka V.R. Wee Y.J. Ye W. Korivi M. Nutritional composition and bioactive compounds in three different parts of mango fruit. Int. J. Environ. Res. Public Health 2021 18 2 741 10.3390/ijerph18020741 33467139
    [Google Scholar]
  10. Shah K.A. Patel M.B. Patel R.J. Parmar P.K. Mangifera indica (mango). Pharmacogn. Rev. 2010 4 7 42 48 10.4103/0973‑7847.65325 22228940
    [Google Scholar]
  11. Maleš I. Pedisić S. Zorić Z. Elez-Garofulić I. Repajić M. You L. Vladimir-Knežević S. Butorac D. Dragović-Uzelac V. The medicinal and aromatic plants as ingredients in functional beverage production. J. Funct. Foods 2022 96 105210 10.1016/j.jff.2022.105210
    [Google Scholar]
  12. Castro R.J. Pedroza K. Hong M.Y. The effects of mango consumption on vascular health and immune function. Metab. Open 2023 20 100260 10.1016/j.metop.2023.100260 38115868
    [Google Scholar]
  13. Alaiya M.A. Odeniyi M.A. Utilisation of Mangifera indica plant extracts and parts in antimicrobial formulations and as a pharmaceutical excipient: A review Futur J Pharm Sci 2023 9 1 29 10.1186/s43094‑023‑00479‑z
    [Google Scholar]
  14. Omotayo O.E. Oladipo G.A. Adekunle D.O. Akinola O.T. Phytochemical and antibacterial activity of Mangifera indica Linn (Mango) bark and leaf extracts on bacteria isolated from domestic wastewater samples. Afr. J. Clin. Exp. Microbiol. 2022 23 1 73 82 10.4314/ajcem.v23i1.10
    [Google Scholar]
  15. Osei-Djarbeng S.N. Kwarteng R.O. Osei-Asante S. Owusu-Dapaah G. Comparative antimicrobial activities of ethanolic extracts of leaves, seed and stem bark of Mangifera indica (Mango). J. Pharmacogn. Phytochem. 2022 9 1 1240 1243
    [Google Scholar]
  16. Chirayath R.B. A A.V. Jayakumar R. Biswas R. Vijayachandran L.S. Development of Mangifera indica leaf extract incorporated carbopol hydrogel and its antibacterial efficacy against Staphylococcus aureus. Colloids Surf. B Biointerfaces 2019 178 377 384 10.1016/j.colsurfb.2019.03.034 30903976
    [Google Scholar]
  17. Phuong N.T.N. Ha M.T. Nguyen D.X.T. Nguyen N.Y. Huynh H.A.T. Hau T.P. Quyen T.T.B. Nguyen M.Q. Nguyen A.T. Pham D.T. Development and antioxidant evaluation of mango leaf (Mangifera indica L.) extract loaded silk fibroin nanoparticles. Front. Mater. 2024 11 1419697 10.3389/fmats.2024.1419697
    [Google Scholar]
  18. Sferrazzo G. Palmeri R. Restuccia C. Parafati L. Siracusa L. Spampinato M. Carota G. Distefano A. Di Rosa M. Tomasello B. Costantino A. Gulisano M. Li Volti G. Barbagallo I. Mangifera indica L. Leaves as a potential food source of phenolic compounds with biological activity. Antioxidants 2022 11 7 1313 10.3390/antiox11071313 35883804
    [Google Scholar]
  19. Khumpook T. Saenphet S. Tragoolpua Y. Saenphet K. Anti-inflammatory and antioxidant activity of Thai mango (Mangifera indica Linn.) leaf extracts. Comp. Clin. Pathol. 2019 28 1 157 164 10.1007/s00580‑018‑2809‑z
    [Google Scholar]
  20. Medina-Saavedra G.Y. Herrera-Corredor J.A. Vargas-Rivera Y. Sánchez-Valera O.V. Cabal-Prieto A. Prinyawiwatkul W. Ramírez-Rivera E.J. Ramón-Canul L.G. Mango ( Mangifera indica L.) leaf extracts as ingredient for the formulation of functional beverages with biological activity. Int. J. Food Sci. Technol. 2021 56 7 3322 3332 10.1111/ijfs.14910
    [Google Scholar]
  21. Tirado-Kulieva V. Atoche-Dioses S. Hernández-Martínez E. Phenolic compounds of mango (Mangifera indica) by-products: Antioxidant and antimicrobial potential, use in disease prevention and food industry, methods of extraction and microencapsulation. Sci. Agropecu. 2021 12 2 283 293 10.17268/sci.agropecu.2021.031
    [Google Scholar]
  22. Fernández-Ponce M.T. Lourdes C. Potential use of mango leaves extracts obtained by high pressure technologies in cosmetic, pharmaceutics and food industries. Chem Engin Transac 2013 32 2 1147 1152 10.3303/CET1332192
    [Google Scholar]
  23. Begum S. Banerjee A. De B. Antioxidant and enzyme inhibitory properties of mangifera indica leaf extract. Nat. Prod. J. 2020 10 4 384 394 10.2174/2210315509666190626124539
    [Google Scholar]
  24. Adetuyi FO Ibrahim TA Phytochemical analysis and antioxidant activities of hot and cold water extracts of mango (Mangifera indica L.) leaf and stem bark. J. Basic Med 2022 1 2
    [Google Scholar]
  25. Sasu P. Role of Mango in Immune System. Qeios 2024 10.32388/QE6AU0
    [Google Scholar]
  26. Luka C.D. Mohammed A. Evaluation of the antidiabetic property of aqueous extract of Mangifera indica leaf on normal and alloxan‐induced diabetic rats. JNPR 2012 2 239 243
    [Google Scholar]
  27. Hoang V.L.T. Pierson J.T. Curry M.C. Shaw P.N. Dietzgen R.G. Gidley M.J. Roberts-Thomson S.J. Monteith G.R. Polyphenolic contents and the effects of methanol extracts from mango varieties on breast cancer cells. Food Sci. Biotechnol. 2015 24 1 265 271 10.1007/s10068‑015‑0035‑x
    [Google Scholar]
  28. Garrido G. Blanco-Molina M. Sancho R. Macho A. Delgado R. Muñoz E. An aqueous stem bark extract ofMangifera indica (Vimang®) inhibits T cell proliferation and TNF-induced activation of nuclear transcription factor NF-κB. Phytother. Res. 2005 19 3 211 215 10.1002/ptr.1656 15934029
    [Google Scholar]
  29. Rivera D.G. Balmaseda I.H. León A.Á. Hernández B.C. Montiel L.M. Garrido G.G. Hernández R.D. Cuzzocrea S. Anti-allergic properties of Mangifera indica L. extract (Vimang) and contribution of its glucosylxanthone mangiferin. J. Pharm. Pharmacol. 2006 58 3 385 392 10.1211/jpp.58.3.0014 16536907
    [Google Scholar]
  30. El-Sherbini G.T. Osman S.M. Anthelmintic activity of unripe Mangifera indica L. (Mango) against Strongyloides stercoralis. IJCMAS 2013 2 401 409
    [Google Scholar]
  31. Buonfrate D. Tamarozzi F. Paradies P. Watts M.R. Bradbury R.S. Bisoffi Z. The diagnosis of human and companion animal Strongyloides stercoralis infection: Challenges and solutions. A scoping review. Adv. Parasitol. 2022 118 1 84 10.1016/bs.apar.2022.07.001 36088083
    [Google Scholar]
  32. Buonfrate D. Bradbury R.S. Watts M.R. Bisoffi Z. Human strongyloidiasis: Complexities and pathways forward. Clin. Microbiol. Rev. 2023 36 4 e00033-23 10.1128/cmr.00033‑23 37937980
    [Google Scholar]
  33. Czeresnia J.M. Weiss L.M. Strongyloides stercoralis. Lung 2022 200 2 141 148 10.1007/s00408‑022‑00528‑z 35396957
    [Google Scholar]
  34. Cross J.H. Baron S. Enteric Nematodes of Humans. Medical Microbiology. University of Texas Medical Branch at Galveston Galveston, TX 4th ed 1996 https://www.ncbi.nlm.nih.gov/books/NBK8261/
    [Google Scholar]
  35. Yeung S. Bharwada Y. Bhasker S. Boggild A. Strongyloidiasis: What every gastroenterologist needs to know. Ther. Adv. Chronic Dis. 2022 13 20406223221137499 10.1177/20406223221137499 36407019
    [Google Scholar]
  36. Piranavan P. Kalantri P. Pandey D. Bharadwaj H.S. Verma A. Strongyloides stercoralis hyperinfection syndrome: A neglected cause of abdominal pain. Cureus 2020 12 9 e10671 10.7759/cureus.10671 33133837
    [Google Scholar]
  37. Henriquez-Camacho C. Gotuzzo E. Echevarria J. White A.C. Jr Terashima A. Samalvides F. Pérez-Molina J.A. Plana M.N. Ivermectin versus albendazole or thiabendazole for Strongyloides stercoralis infection. Cochrane Libr. 2016 2016 1 CD007745 10.1002/14651858.CD007745.pub3 26778150
    [Google Scholar]
  38. Xing F. Ye H. Yang J. Chan J.F.W. Seto W.K. Pai P.M.C. Yuen K.Y. Hung D.L.L. Fatal pancytopenia due to albendazole treatment for strongyloidiasis. IDCases 2018 12 112 116 10.1016/j.idcr.2018.04.002 29942764
    [Google Scholar]
  39. Fox L.M. Ivermectin: Uses and impact 20 years on. Curr. Opin. Infect. Dis. 2006 19 6 588 593 10.1097/QCO.0b013e328010774c 17075336
    [Google Scholar]
  40. Xu Q. Xi X. Feng D. Sang Q. Sheng Y. Ding R. Xu A. A case report: Severe disseminated infection caused by Strongyloides stercoralis in an immunocompromised patient by metagenomic next-generation sequencing. Front. Cell. Infect. Microbiol. 2023 13 1082412 10.3389/fcimb.2023.1082412 37124032
    [Google Scholar]
  41. Erazua E.A. Oyebamiji A.K. Akintelu S.A. Adewole P.D. Adelakun A. Adeleke B.B. Quantitative structure-activity relationship, molecular docking and ADMET screening of Tetrahydroquinoline derivatives as anti-small cell lung cancer agents. Eclet. Quim. J. 2023 55 71 10.26850/1678‑4618eqj.v48.1.2023.p55‑71
    [Google Scholar]
  42. Afolabi S.O. Semire B. Idowu M.A. Electronic and optical properties’ tuning of phenoxazine-based D-A2-π-A1 organic dyes for dye-sensitized solar cells. DFT/TDDFT investigations. Heliyon 2021 7 4 e06827 10.1016/j.heliyon.2021.e06827 33981890
    [Google Scholar]
  43. AlRawashdeh S. Barakat K.H. Applications of molecular dynamics simulations in drug discovery. Methods Mol. Biol. 2024 2714 127 141 10.1007/978‑1‑0716‑3441‑7_7 37676596
    [Google Scholar]
  44. Kabir Y. Shekhar H.U. Sidhu J.S. 2017 Phytochemical compounds in functional properties of mangoes. Wiley 10.1002/9781119014362.ch12
    [Google Scholar]
  45. Wavefunction, Inc. Spartan '14; Wavefunction, Inc. Irvine, CA, USA 2014
    [Google Scholar]
  46. Lee C. Yang W. Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 1988 37 2 785 789 10.1103/PhysRevB.37.785 9944570
    [Google Scholar]
  47. Semire B. Afolabi S.O. Latona D.F. Oyebamiji A.K. Adeoye M.D. Owonikoko A.D. Oyebamiji O.M. Abdulsalami I.O. Odunola O.A. Quantum chemical elucidation on the optoelectronic properties of N 2-(4-Aminophenyl) Pyridine-2, 5-Diamine based dyes for solar cells utilization. CHEM AFR 2023 6 5 10.1007/s42250‑023‑00674‑8
    [Google Scholar]
  48. Zhi X. Zhou X.E. Melcher K. Motola D.L. Gelmedin V. Hawdon J. Kliewer S.A. Mangelsdorf D.J. Xu X.E. Structural conservation of ligand binding reveals a bile acid-like signaling pathway in nematodes. J Biol Chem. 2012 287 7 4894 4903 10.1074/jbc.M111.315242
    [Google Scholar]
  49. Biovia D.S. Discovery Studio Visualizer. San Diego 2019
    [Google Scholar]
  50. Oyebamiji A.K. Akintelu S.A. Ebenezer O. Semire B. Babalola J.O. Acalypha wilkesiana L-A potential anti-stearoyl-CoA desaturase agent: Insilico and network pharmacology studies. Intell. Pharm. 2023 2 4 540 553 10.1016/j.ipha.2023.12.007
    [Google Scholar]
  51. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  52. Lee J. Cheng X. Jo S. MacKerell A.D. Klauda J.B. Im W. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Biophysl J. 2016 12 1 405 413 10.1021/acs.jctc.5b00935
    [Google Scholar]
  53. Roe D.R. Cheatham T.E. III Parallelization of CPPTRAJ enables large scale analysis of molecular dynamics trajectory data. J. Comput. Chem. 2018 39 25 2110 2117 10.1002/jcc.25382 30368859
    [Google Scholar]
  54. Owolabi A.O. Akpor O.B. Ndako J.A. Owa S.O. Oluyori A.P. Oludipe E.O. Afolabi S.O. Asaleye R.M. Antimicrobial potential of Hippocratea Indica Willd. Acetone Leaf fractions against Salmonella Typhi: An in vitro and in silico study. Sci. Rep. 2024 14 1 25222 10.1038/s41598‑024‑75796‑1 39448699
    [Google Scholar]
  55. Abualnaja M.M. Alalawy A.I. Alatawi O.M. Alessa A.H. Fawzi Qarah A. Alqahtani A.M. Bamaga M.A. El-Metwaly N.M. Synthesis of tetrazole hybridized with thiazole, thiophene or thiadiazole derivatives, molecular modelling and antimicrobial activity. Saudi Pharm. J. 2024 32 3 101962 10.1016/j.jsps.2024.101962 38318318
    [Google Scholar]
  56. Hosny N.M. Samir G. Abdel-Rhman M.H. N′-(Furan-2-ylmethylene)-2-hydroxybenzohydrazide and its metal complexes: Synthesis, spectroscopic investigations, DFT calculations and cytotoxicity profiling. BMC Chem. 2024 18 1 22 10.1186/s13065‑023‑01098‑8 38281963
    [Google Scholar]
  57. Afolabi S.O. Semire B. Akiode O.K. Idowu M.A. Quantum study on the optoelectronic properties and chemical reactivity of phenoxazine-based organic photosensitizer for solar cell purposes. Theor. Chem. Acc. 2022 141 4 22 10.1007/s00214‑022‑02882‑w
    [Google Scholar]
  58. Abou-Melha K. Synthesis, characterization, biological activity, molecular docking and thermal analysis of binuclear complexes. Bull. Chem. Soc. Ethiop. 2022 36 4 843 858 10.4314/bcse.v36i4.10
    [Google Scholar]
  59. Chattaraj P.K. Sarkar U. Roy D.R. Electrophilicity Index. Chem. Rev. 2006 106 6 2065 2091 10.1021/cr040109f 16771443
    [Google Scholar]
  60. Molski M. Theoretical modeling of structure-toxicity relationship of cyanides. Toxicol. Lett. 2021 349 30 39 10.1016/j.toxlet.2021.05.011 34089818
    [Google Scholar]
  61. Chen X. Li H. Tian L. Li Q. Luo J. Zhang Y. Analysis of the physicochemical properties of acaricides based on Lipinski’s rule of five. J. Comput. Biol. 2020 27 9 1397 1406 10.1089/cmb.2019.0323 32031890
    [Google Scholar]
  62. Khan T. Lawrence A.J. Azad I. Raza S. Joshi S. Khan A.R. Computational drug designing and prediction of important parameters using in silico methods-A review. Curr Comput Aided Drug Des. 2019 15 5 384 397 10.2174/1573399815666190326120006
    [Google Scholar]
  63. Ursu O. Rayan A. Goldblum A. Oprea T.I. Understanding drug‐likeness. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011 1 5 760 781 10.1002/wcms.52
    [Google Scholar]
  64. Abdul-Hammed M. Adedotun I.O. Olajide M. Irabor C.O. Afolabi T.I. Gbadebo I.O. Rhyman L. Ramasami P. Virtual screening, ADMET profiling, PASS prediction, and bioactivity studies of potential inhibitory roles of alkaloids, phytosterols, and flavonoids against COVID-19 main protease (M pro ). Nat. Prod. Res. 2022 36 12 3110 3116 10.1080/14786419.2021.1935933 34107799
    [Google Scholar]
  65. Bauer M.R. Mackey M.D. Electrostatic complementarity as a fast and effective tool to optimize binding and selectivity of protein–ligand complexes. J. Med. Chem. 2019 62 6 3036 3050 10.1021/acs.jmedchem.8b01925 30807144
    [Google Scholar]
  66. Komura H. Watanabe R. Mizuguchi K. The trends and future prospective of in silico models from the viewpoint of ADME evaluation in drug discovery. Pharmaceutics 2023 15 11 2619 10.3390/pharmaceutics15112619 38004597
    [Google Scholar]
  67. Benet L.Z. Hosey C.M. Ursu O. Oprea T.I. BDDCS, the Rule of 5 and drugability. Adv. Drug Deliv. Rev. 2016 101 89 98 10.1016/j.addr.2016.05.007 27182629
    [Google Scholar]
  68. Bhattacharyya S. Ahmmed S.M. Saha B.P. Mukherjee P.K. Soya phospholipid complex of mangiferin enhances its hepatoprotectivity by improving its bioavailability and pharmacokinetics. J. Sci. Food Agric. 2014 94 7 1380 1388 10.1002/jsfa.6422 24114670
    [Google Scholar]
  69. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  70. Sahin S. Benet L.Z. The operational multiple dosing half-life: A key to defining drug accumulation in patients and to designing extended release dosage forms. Pharm. Res. 2008 25 12 2869 2877 10.1007/s11095‑008‑9787‑9 19015955
    [Google Scholar]
  71. Sanguinetti M.C. Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature 2006 440 7083 463 469 10.1038/nature04710 16554806
    [Google Scholar]
  72. Akash S. Shanto S.K.H.I. Islam M.R. Bayil I. Afolabi S.O. Guendouzi A. Abdellattif M.H. Zaki M.E.A. Discovery of novel MLK4 inhibitors against colorectal cancer through computational approaches. Comput. Biol. Med. 2024 182 109136 10.1016/j.compbiomed.2024.109136 39298888
    [Google Scholar]
  73. Ebenezer O. Oyebamiji A.K. Olanrewaju A.A. Akinola O.T. Afolabi S.O. Olaseinde A.A. Tuszynski J. Designing of potential siRNA molecules for african norovirus gene silencing: A computational approach. Pharmacol Res-Reports 2024 100021 10.1016/j.prerep.2024.100021
    [Google Scholar]
  74. Khalid H. Shityakov S. Förster C.Y. Song Y. Exploring the anti-cancer properties of azadirachta indica: In silico and in vitro study of its phytochemicals against hepatocellular carcinoma. Mol. Struct 2024 10.1016/j.molstruc.2024.138962
    [Google Scholar]
  75. Kumari R. Dalal V. Identification of potential inhibitors for LLM of Staphylococcus aureus: Structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies. J. Biomol. Struct. Dyn. 2021 10.1080/07391102.2021.1936179 34096457
    [Google Scholar]
/content/journals/cad/10.2174/0115734099353596250313020805
Loading
/content/journals/cad/10.2174/0115734099353596250313020805
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test