Skip to content
2000
image of Correlation of miR-214, miR-204, miR-25, miR-15a Expression with IL-33 and Malondialdehyde in Blood Samples from Patients with Alzheimer’s Disease

Abstract

Introduction

Alzheimer’s disease (AD) is a late-onset neurodegenerative disease that affects older people. Deregulations of miRNAs play essential roles in AD pathogenesis; as a result, they might be potential biomarkers for AD development, diagnosis, and treatment. This case-control study aimed to assess the expression of miR-214, miR-204, miR-15a, miR-25, and investigate their correlations with the expression of IL-33, plasma level of Malondialdehyde (MDA), and Mini-Mental State Examination (MMSE) score of the AD patients.

Methods

Blood samples were obtained from 125 participants, including 75 AD patients and 50 healthy controls. Plasma MDA level was assessed using the ZellBio ELISA kit. Total RNA was extracted from blood lymphocytes using RiboExTM (GeneAll), and expression levels of miRNAs and IL-33 were evaluated by qRT-PCR.

Results

Results showed that miR-15a and miR-25, and IL-33 were downregulated in the patients’ group, but miR-214 and miR-204 were upregulated. Besides, the plasma level of MDA was significantly higher in the AD patients. A statistically significant negative correlation was observed between miR-15a and IL-33 expression. The MDA level showed a negative correlation with MMSE and a positive correlation with IL-33. Correlations between the miRNAs and MDA or MMSE scores were all non-significant. However, ROC curve analysis revealed that expressions of the studied miRNAs, IL-33, and the plasma level of MDA effectively differentiate AD patients from healthy controls.

Discussion

Results showed that expression levels of miR-214, miR-204, miR-25, miR-15a, and IL-33 and MDA plasma levels are deregulated in AD patients, highlighting their potential relation with AD pathogenesis.

Conclusion

Expression levels of the studied miRNAs and IL33, and plasma level of MDA might be considered as potential biomarkers for AD development and diagnosis.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366411857251025004952
2026-01-23
2026-01-29
Loading full text...

Full text loading...

References

  1. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023 19 4 1598 1695 10.1002/alz.13016 36918389
    [Google Scholar]
  2. Wei W. Wang Z.Y. Ma L.N. Zhang T.T. Cao Y. Li H. MicroRNAs in Alzheimer’s disease: Function and potential applications as diagnostic biomarkers. Front. Mol. Neurosci. 2020 13 160 10.3389/fnmol.2020.00160 32973449
    [Google Scholar]
  3. Fotuhi S.N. Khalaj-Kondori M. Feizi M.A.H. Talebi M. Memory-related process in physiological status and alzheimer’s disease. Mol. Biol. Rep. 2020 47 6 4651 4657 10.1007/s11033‑020‑05438‑y 32279208
    [Google Scholar]
  4. Fotuhi S.N. Khalaj-Kondori M. Imbalanced clearance of Aβ peptide cause presynaptic plaque formation. Int. J. Neurosci. 2024 134 1 66 70 10.1080/00207454.2022.2085099 35639020
    [Google Scholar]
  5. Cassidy L. Fernandez F. Johnson J.B. Naiker M. Owoola A.G. Broszczak D.A. Oxidative stress in alzheimer’s disease: A review on emergent natural polyphenolic therapeutics. Complement. Ther. Med. 2020 49 102294 10.1016/j.ctim.2019.102294 32147039
    [Google Scholar]
  6. Huang W.J. Zhang X. Chen W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 2016 4 5 519 522 10.3892/br.2016.630 27123241
    [Google Scholar]
  7. Ionescu-Tucker A. Cotman C.W. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol. Aging 2021 107 86 95 10.1016/j.neurobiolaging.2021.07.014 34416493
    [Google Scholar]
  8. Bradley-Whitman M.A. Lovell M.A. Biomarkers of lipid peroxidation in Alzheimer disease (AD): An update. Arch. Toxicol. 2015 89 7 1035 1044 10.1007/s00204‑015‑1517‑6 25895140
    [Google Scholar]
  9. Rani P. Krishnan S. Rani Cathrine C. Study on analysis of peripheral biomarkers for Alzheimer’s disease diagnosis. Front. Neurol. 2017 8 328 10.3389/fneur.2017.00328 28769864
    [Google Scholar]
  10. Rao YL Ganaraja B Marathe A Comparison of malondialde-hyde levels and superoxide dismutase activity in resveratrol and resveratrol/donepezil combination treatment groups in Alzheimer's disease induced rat model. 3 Biotech 2021 11 7 329 10.1007/s13205‑021‑02879‑5 34189010
    [Google Scholar]
  11. Arslan J. Jamshed H. Qureshi H. Early detection and prevention of alzheimer’s disease: Role of oxidative markers and natural antioxidants. Front. Aging Neurosci. 2020 12 231 10.3389/fnagi.2020.00231 32848710
    [Google Scholar]
  12. Sobue A. Komine O. Yamanaka K. Neuroinflammation in Alzheimer’s disease: Microglial signature and their relevance to disease. Inflamm. Regen. 2023 43 1 26 10.1186/s41232‑023‑00277‑3 37165437
    [Google Scholar]
  13. Lecca D. Jung Y.J. Scerba M.T. Role of chronic neuroinflammation in neuroplasticity and cognitive function: A hypothesis. Alzheimers Dement. 2022 18 11 2327 2340 10.1002/alz.12610 35234334
    [Google Scholar]
  14. Wong-Guerra M. Calfio C. Maccioni R.B. Rojo L.E. Revisiting the neuroinflammation hypothesis in Alzheimer’s disease: A focus on the druggability of current targets. Front. Pharmacol. 2023 14 1161850 10.3389/fphar.2023.1161850
    [Google Scholar]
  15. Saresella M. Marventano I. Piancone F. IL-33 and its decoy sST2 in patients with Alzheimer’s disease and mild cognitive impairment. J. Neuroinflammation 2020 17 1 174 10.1186/s12974‑020‑01806‑4 32505187
    [Google Scholar]
  16. Fu A.K.Y. Hung K.W. Yuen M.Y.F. IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline. Proc. Natl. Acad. Sci. USA 2016 113 19 E2705 E2713 10.1073/pnas.1604032113 27091974
    [Google Scholar]
  17. Liang C.S. Su K.P. Tsai C.L. The role of interleukin-33 in patients with mild cognitive impairment and Alzheimer’s disease. Alzheimers Res. Ther. 2020 12 1 86 10.1186/s13195‑020‑00652‑z 32678011
    [Google Scholar]
  18. Carlock C. Wu J. Shim J. Interleukin33 deficiency causes tau abnormality and neurodegeneration with Alzheimer-like symptoms in aged mice. Transl. Psychiatry 2017 7 8 e1191 10.1038/tp.2017.142 28763061
    [Google Scholar]
  19. Peña-Bautista C. Tarazona-Sánchez A. Braza-Boils A. Plasma microRNAs as potential biomarkers in early Alzheimer disease expression. Sci. Rep. 2022 12 1 15589 10.1038/s41598‑022‑19862‑6 36114255
    [Google Scholar]
  20. Liu S. Fan M. Zheng Q. MicroRNAs in Alzheimer’s disease: Potential diagnostic markers and therapeutic targets. Biomed. Pharmacother. 2022 148 112681 10.1016/j.biopha.2022.112681 35177290
    [Google Scholar]
  21. Khodayi-Shahrak M. Khalaj-Kondori M. Hosseinpour Feizi M.A. Talebi M. Insights into the mechanisms of non-coding RNAs’ implication in the pathogenesis of Alzheimer’s disease. excli j. 2022 21 921 940 10.17179/excli2022‑5006 36110561
    [Google Scholar]
  22. Abidin S.Z. Mat Pauzi N.A. Mansor N.I. Mohd Isa N.I. Hamid A.A. A new perspective on Alzheimer’s disease: MicroRNAs and circular RNAs. Front. Genet. 2023 14 1231486 10.3389/fgene.2023.1231486 37790702
    [Google Scholar]
  23. Han S.W. Pyun J.M. Bice P.J. miR-129-5p as a biomarker for pathology and cognitive decline in Alzheimer’s disease. Alzheimers Res. Ther. 2024 16 1 5 10.1186/s13195‑023‑01366‑8 38195609
    [Google Scholar]
  24. Biglari N. Khalaj-Kondori M. Ghasemi T. Potential of hsa-miR200a-3p and hsa-miR502-3p as blood-based biomarker for Alzheimer’s disease. Mol. Biol. Rep. 2022 49 12 11925 11932 10.1007/s11033‑022‑07987‑w 36251230
    [Google Scholar]
  25. Angelucci F. Cechova K. Valis M. Kuca K. Zhang B. Hort J. MicroRNAs in Alzheimer’s disease: Diagnostic markers or therapeutic agents? Front. Pharmacol. 2019 10 665 10.3389/fphar.2019.00665 31275145
    [Google Scholar]
  26. Moncini S. Lunghi M. Valmadre A. The miR-15/107 family of microRNA genes regulates CDK5R1/p35 with implications for Alzheimer’s disease pathogenesis. Mol. Neurobiol. 2017 54 6 4329 4342 10.1007/s12035‑016‑0002‑4 27343180
    [Google Scholar]
  27. Duan Q. Si E. MicroRNA-25 aggravates Aβ1-42-induced hippocampal neuron injury in Alzheimer’s disease by downregulating KLF2 via the Nrf2 signaling pathway in a mouse model. J. Cell. Biochem. 2019 120 9 15891 15905 10.1002/jcb.28861 31144355
    [Google Scholar]
  28. Hu G. Shi Z. Shao W. Xu B. MicroRNA-214-5p involves in the protection effect of Dexmedetomidine against neurological injury in Alzheimer’s disease via targeting the suppressor of zest 12. Brain Res. Bull. 2022 178 164 172 10.1016/j.brainresbull.2021.10.016 34715270
    [Google Scholar]
  29. Tao W. Yu L. Shu S. miR-204-3p/Nox4 mediates memory deficits in a mouse model of Alzheimer’s disease. Mol. Ther. 2021 29 1 396 408 10.1016/j.ymthe.2020.09.006 32950103
    [Google Scholar]
  30. Vahia V.N. Diagnostic and statistical manual of mental disorders 5: A quick glance. Indian J. Psychiatry 2013 55 3 220 223 10.4103/0019‑5545.117131 24082241
    [Google Scholar]
  31. Heng Z. Ruan L. Gan R. Three methods to purify leukocytes and rna quality assessment. Biopreserv. Biobank. 2018 16 6 434 438 10.1089/bio.2018.0058 30379576
    [Google Scholar]
  32. Akoglu H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018 18 3 91 93 10.1016/j.tjem.2018.08.001 30191186
    [Google Scholar]
  33. Cenini G. Lloret A. Cascella R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid. Med. Cell. Longev. 2019 2019 1 18 10.1155/2019/2105607 31210837
    [Google Scholar]
  34. Ioannidou S. Ginoudis A. Makedou K. Tsolaki M. Lymperaki E. Serum and cerebrospinal fluid malondialdehyde levels in patients with mild cognitive impairment. J. Xenobiot. 2025 15 2 50 10.3390/jox15020050 40278155
    [Google Scholar]
  35. Gustaw-Rothenberg K. Kowalczuk K. Stryjecka-Zimmer M. Lipids’ peroxidation markers in Alzheimer’s disease and vascular dementia. Geriatr. Gerontol. Int. 2010 10 2 161 166 10.1111/j.1447‑0594.2009.00571.x 20446930
    [Google Scholar]
  36. Padurariu M. Ciobica A. Hritcu L. Stoica B. Bild W. Stefanescu C. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett. 2010 469 1 6 10 10.1016/j.neulet.2009.11.033 19914330
    [Google Scholar]
  37. Torres L.L. Quaglio N.B. de Souza G.T. Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. J. Alzheimers Dis. 2011 26 1 59 68 10.3233/JAD‑2011‑110284 21593563
    [Google Scholar]
  38. Casado Á. Encarnación López-Fernández M. Concepción Casado M. de La Torre R. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem. Res. 2008 33 3 450 458 10.1007/s11064‑007‑9453‑3 17721818
    [Google Scholar]
  39. Polidori M.C. Mattioli P. Aldred S. Plasma antioxidant status, immunoglobulin g oxidation and lipid peroxidation in demented patients: Relevance to Alzheimer disease and vascular dementia. Dement. Geriatr. Cogn. Disord. 2004 18 3-4 265 270 10.1159/000080027 15286458
    [Google Scholar]
  40. Martín-Aragón S. Bermejo-Bescós P. Benedí J. Metalloproteinase’s activity and oxidative stress in mild cognitive impairment and Alzheimer’s disease. Neurochem. Res. 2009 34 2 373 378 10.1007/s11064‑008‑9789‑3 18618244
    [Google Scholar]
  41. Schrag M. Mueller C. Zabel M. Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: A meta-analysis. Neurobiol. Dis. 2013 59 100 110 10.1016/j.nbd.2013.07.005 23867235
    [Google Scholar]
  42. Chapuis J. Hot D. Hansmannel F. Transcriptomic and genetic studies identify IL-33 as a candidate gene for Alzheimer’s disease. Mol. Psychiatry 2009 14 11 1004 1016 10.1038/mp.2009.10 19204726
    [Google Scholar]
  43. Zhang L. Fang Y. Zhao X. miR-204 silencing reduces mitochondrial autophagy and ROS production in a murine AD model via the TRPML1-activated STAT3 pathway. Mol. Ther. Nucleic Acids 2021 24 822 831 10.1016/j.omtn.2021.02.010 34026326
    [Google Scholar]
  44. Taşdelen E. Özel Kızıl E.T. Tezcan S. Yalap E. Bingöl A.P. Kutlay N.Y. Determination of miR-373 and miR-204 levels in neuronal exosomes in Alzheimer’s disease. Turk. J. Med. Sci. 2022 52 5 1458 1467 10.55730/1300‑0144.5484 36422510
    [Google Scholar]
  45. Satoh J. Kino Y. Niida S. MicroRNA-Seq data analysis pipeline to identify blood biomarkers for Alzheimer’s disease from public data. Biomark. Insights 2015 10 21 31 10.4137/BMI.S25132 25922570
    [Google Scholar]
  46. Wang W.X. Huang Q. Hu Y. Stromberg A.J. Nelson P.T. Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: White matter versus gray matter. Acta Neuropathol. 2011 121 2 193 205 10.1007/s00401‑010‑0756‑0 20936480
    [Google Scholar]
  47. Nunez-Iglesias J. Liu C.C. Morgan T.E. Finch C.E. Zhou X.J. Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS One 2010 5 2 e8898 10.1371/journal.pone.0008898 20126538
    [Google Scholar]
  48. Hébert S.S. Papadopoulou A.S. Smith P. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum. Mol. Genet. 2010 19 20 3959 3969 10.1093/hmg/ddq311 20660113
    [Google Scholar]
  49. Sørensen S.S. Nygaard A.B. Christensen T. miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia - An exploratory study. Transl. Neurodegener. 2016 5 6 10.1186/s40035‑016‑0053‑5 26981236
    [Google Scholar]
  50. Brett J.O. Renault V.M. Rafalski V.A. Webb A.E. Brunet A. The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging 2011 3 2 108 124 10.18632/aging.100285 21386132
    [Google Scholar]
  51. Yu Y. Lü X. Ding F. microRNA regulatory mechanism by which PLLA aligned nanofibers influence PC12 cell differentiation. J. Neural Eng. 2015 12 4 046010 10.1088/1741‑2560/12/4/046010 26035737
    [Google Scholar]
  52. Guo Y. Niu S. MiR-25 protects PC-12 cells from H2O2 mediated oxidative damage via WNT/β-catenin pathway. J. Spinal Cord Med. 2018 41 4 416 425 10.1080/10790268.2017.1336319 28605990
    [Google Scholar]
  53. He W. Chi S. Jin X. Long non-coding RNA BACE1-AS modulates Isoflurane-induced neurotoxicity to Alzheimer’s disease through sponging miR-214-3p. Neurochem. Res. 2020 45 2324 2335 10.1007/s11064‑020‑03091‑2
    [Google Scholar]
  54. Zhou Y. Ge Y. Liu Q. LncRNA BACE1-AS promotes autophagy-mediated neuronal damage through the miR-214-3p/ATG5 signalling axis in Alzheimer’s disease. Neuroscience 2021 455 52 64 10.1016/j.neuroscience.2020.10.028 33197504
    [Google Scholar]
  55. Jiang T. Zheng T. Li W. Liu N. Wang M. IL-33/ST2 signaling pathway and Alzheimer’s disease: A systematic review and meta-analysis. Clin. Neurol. Neurosurg. 2023 230 107773 10.1016/j.clineuro.2023.107773 37172376
    [Google Scholar]
  56. Nie Y. Chu C. Qin Q. Lipid metabolism and oxidative stress in patients with Alzheimer’s disease and amnestic mild cognitive impairment. Brain Pathol. 2024 34 1 13202 10.1111/bpa.13202 37619589
    [Google Scholar]
  57. Liu C. Liu L. Huang Y. Shi R. Wu Y. Hakimah Binti Ismail I. Contribution of IL-33/ILC2-mediated Th2 cytokines during the progression of minimal change disease. Int. Immunopharmacol. 2023 114 109493 10.1016/j.intimp.2022.109493 36527879
    [Google Scholar]
  58. Segiet O.A. Romuk E. Nowalany-Kozielska E. Wojciechowska C. Piecuch A. Wojnicz R. The concentration of interleukin-33 in heart failure with reduced ejection fraction. Anatol. J. Cardiol. 2019 21 6 305 313 10.14744/AnatolJCardiol.2019.64614 31142723
    [Google Scholar]
  59. Liu W. Li L. Piao Y. Mechanism of action of miR-15b-5p in alleviating asthma airway remodeling through the HMGB1/TLR4/IL-33 signaling axis. Int. Immunopharmacol. 2025 145 113753 10.1016/j.intimp.2024.113753 39644790
    [Google Scholar]
  60. Kang D. Shin J. Cho Y. Stress-activated miR-204 governs senescent phenotypes of chondrocytes to promote osteoarthritis development. Sci. Transl. Med. 2019 11 486 eaar6659 10.1126/scitranslmed.aar6659 30944169
    [Google Scholar]
  61. Xu P. Wang Y. Deng Z. Tan Z. Pei X. MicroRNA 15a promotes prostate cancer cell ferroptosis by inhibiting GPX4 expression. Oncol. Lett. 2022 23 2 67 10.3892/ol.2022.13186 35069876
    [Google Scholar]
  62. Cao Y. Tang S. Nie X. Decreased miR-214–3p activates NF-κB pathway and aggravates osteoarthritis progression. EBioMedicine 2021 65 103283 10.1016/j.ebiom.2021.103283 33714889
    [Google Scholar]
  63. Loperfido A. Cavaliere C. Fionda B. The emerging role of microRNAs in nasal inflammatory diseases and tumors: From bench to bedside. Genes 2025 16 3 295 10.3390/genes16030295 40149447
    [Google Scholar]
  64. Long S. Zhang H. MIR-181A-5P attenuates ovalbumin-induced allergic inflammation in nasal epithelial cells by targeting IL-33/P38 MAPK pathway. Clin. Invest. Med. 2021 44 4 E31 E38 10.25011/cim.v44i4.37327 34978772
    [Google Scholar]
  65. Griswold A.J. Rajabli F. Gu T. Generalizability of tau and amyloid plasma biomarkers in Alzheimer’s disease cohorts of diverse genetic ancestries. Alzheimers Dement. 2025 21 3 14367 10.1002/alz.14367 40133765
    [Google Scholar]
  66. Goff L.M. Davies K. Zelek W.M. Ethnic differences in complement system biomarkers and their association with metabolic health in men of Black African and White European ethnicity. Clin. Exp. Immunol. 2023 212 1 52 60 10.1093/cei/uxad011 36722378
    [Google Scholar]
  67. Bougea A. MicroRNA as candidate biomarkers in atypical parkinsonian syndromes: Systematic literature review. Medicina 2022 58 4 483 10.3390/medicina58040483 35454322
    [Google Scholar]
  68. Felekkis K. Papaneophytou C. Challenges in using circulating micro-rnas as biomarkers for cardiovascular diseases. Int. J. Mol. Sci. 2020 21 2 561 10.3390/ijms21020561 31952319
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366411857251025004952
Loading
/content/journals/mirna/10.2174/0122115366411857251025004952
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Gene expression ; Interleukin-33 ; miRNA ; Cytokine ; Malondialdehyde ; Alzheimer’s disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test